
The
Portable Extensible Toolkit for Scientific Computing

Matthew Knepley1 and Dmitry Karpeev2

1Computation Institute
University of Chicago

2Mathematics and Computer Science Division
Argonne National Laboratory

October, 2009
T.J. Watson Research Center

Yorktown Heights, NY

Knepley–Karpeev PETSc IBM ’09 1 / 160

Getting Started with PETSc

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

2 Common PETSc Usage

3 PETSc Integration

4 Advanced PETSc

5 Sieve

6 Conclusions

Knepley–Karpeev PETSc IBM ’09 3 / 160

Getting Started with PETSc What is PETSc?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 4 / 160

Getting Started with PETSc What is PETSc?

Unit Objectives

Introduce PETSc

Download, Configure, Build, and Run an Example

Empower students to learn more about PETSc

Knepley–Karpeev PETSc IBM ’09 5 / 160

Getting Started with PETSc What is PETSc?

What I Need From You

Tell me if you do not understand
Tell me if an example does not work
Suggest better wording or figures
Followup problems at petsc-maint@mcs.anl.gov

Knepley–Karpeev PETSc IBM ’09 6 / 160

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

Ask Questions!!!

Helps me understand what you are missing

Helps you clarify misunderstandings

Helps others with the same question

Knepley–Karpeev PETSc IBM ’09 7 / 160

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

Knepley–Karpeev PETSc IBM ’09 8 / 160

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

Knepley–Karpeev PETSc IBM ’09 8 / 160

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

Knepley–Karpeev PETSc IBM ’09 8 / 160

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

How We Can Help at the Tutorial

Point out relevant documentation
Quickly answer questions
Help install
Guide design of large scale codes
Answer email at petsc-maint@mcs.anl.gov

Knepley–Karpeev PETSc IBM ’09 8 / 160

mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

Tutorial Repositories

http://petsc.cs.iit.edu/petsc/TutorialExamples
Very simple
Shows how to create your own project
Uses multiple languages

http://petsc.cs.iit.edu/petsc/GUCAS09TutorialCode
Fairly complex
Shows how to use most PETSc features
Uses C and C++

Knepley–Karpeev PETSc IBM ’09 9 / 160

http://petsc.cs.iit.edu/petsc/TutorialExamples
http://petsc.cs.iit.edu/petsc/GUCAS09TutorialCode

Getting Started with PETSc What is PETSc?

How did PETSc Originate?

PETSc was developed as a Platform for
Experimentation

We want to experiment with different
Models
Discretizations
Solvers
Algorithms

which blur these boundaries

Knepley–Karpeev PETSc IBM ’09 10 / 160

http://amzn.com/0521602866

Getting Started with PETSc What is PETSc?

The Role of PETSc

Developing parallel, nontrivial PDE solvers that
deliver high performance is still difficult and re-
quires months (or even years) of concentrated
effort.

PETSc is a toolkit that can ease these difficul-
ties and reduce the development time, but it is
not a black-box PDE solver, nor a silver bullet.
— Barry Smith

Knepley–Karpeev PETSc IBM ’09 11 / 160

http://www.mcs.anl.gov/~bsmith

Getting Started with PETSc What is PETSc?

Advice from Bill Gropp

You want to think about how you decompose your data
structures, how you think about them globally. [...] If you
were building a house, you’d start with a set of blueprints
that give you a picture of what the whole house looks
like. You wouldn’t start with a bunch of tiles and say.
“Well I’ll put this tile down on the ground, and then I’ll
find a tile to go next to it.” But all too many people try to
build their parallel programs by creating the smallest
possible tiles and then trying to have the structure of
their code emerge from the chaos of all these little
pieces. You have to have an organizing principle if
you’re going to survive making your code parallel.

(http://www.rce-cast.com/Podcast/rce-28-mpich2.html)

Knepley–Karpeev PETSc IBM ’09 12 / 160

http://www.rce-cast.com/Podcast/rce-28-mpich2.html

Getting Started with PETSc What is PETSc?

What is PETSc?

A freely available and supported research
code for the parallel solution of nonlinear
algebraic equations

Free
Download from http://www.mcs.anl.gov/petsc
Free for everyone, including industrial users

Supported
Hyperlinked manual, examples, and manual pages for all routines
Hundreds of tutorial-style examples
Support via email: petsc-maint@mcs.anl.gov

Usable from C, C++, Fortran 77/90, Matlab, Julia, and Python

Knepley–Karpeev PETSc IBM ’09 13 / 160

http://www.mcs.anl.gov/petsc
mailto:petsc-maint@mcs.anl.gov

Getting Started with PETSc What is PETSc?

What is PETSc?

Portable to any parallel system supporting MPI, including:
Tightly coupled systems

Cray XT6, BG/Q, NVIDIA Fermi, K Computer
Loosely coupled systems, such as networks of workstations

IBM, Mac, iPad/iPhone, PCs running Linux or Windows

PETSc History
Begun September 1991
Over 60,000 downloads since 1995 (version 2)
Currently 400 per month

PETSc Funding and Support
Department of Energy

SciDAC, MICS Program, AMR Program, INL Reactor Program
National Science Foundation

CIG, CISE, Multidisciplinary Challenge Program

Knepley–Karpeev PETSc IBM ’09 14 / 160

Getting Started with PETSc What is PETSc?

Timeline

1991 1995 2000 2005 2010

PETSc-1

MPI-1
MPI-2

PETSc-2 PETSc-3
Barry

Bill
Lois

Satish
Dinesh

Hong
Kris
Matt

Victor
Dmitry

Lisandro
Jed
Shri

Peter

Knepley–Karpeev PETSc IBM ’09 15 / 160

Getting Started with PETSc What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

Knepley–Karpeev PETSc IBM ’09 16 / 160

https://hpgmg.org/

Getting Started with PETSc What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

Knepley–Karpeev PETSc IBM ’09 16 / 160

https://hpgmg.org/

Getting Started with PETSc What is PETSc?

What Can We Handle?

PETSc has run implicit problems with over 500 billion unknowns
UNIC on BG/P and XT5
PFLOTRAN for flow in porous media

PETSc has run on over 290,000 cores efficiently
UNIC on the IBM BG/P Jugene at Jülich
PFLOTRAN on the Cray XT5 Jaguar at ORNL

PETSc applications have run at 23% of peak (600 Teraflops)
Jed Brown on NERSC Edison
HPGMG code

Knepley–Karpeev PETSc IBM ’09 16 / 160

https://hpgmg.org/

Getting Started with PETSc Who uses and develops PETSc?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 17 / 160

Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

Earth Science
PyLith (CIG)
Underworld (Monash)
Magma Dynamics (LDEO, Columbia, Oxford)

Subsurface Flow and Porous Media
STOMP (DOE)
PFLOTRAN (DOE)

Knepley–Karpeev PETSc IBM ’09 18 / 160

http://www.geodynamics.org/cig/software/pylith
http://www.underworldproject.org/
http://www.bu.edu/pasi/files/2011/01/MarcSpiegelman4-11-1000.pdf
http://stomp.pnnl.gov/
http://ees.lanl.gov/pflotran/

Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

Computational Scientists

CFD
Firedrake
Fluidity
OpenFOAM
freeCFD
OpenFVM

MicroMagnetics
MagPar

Fusion
XGC
BOUT++
NIMROD

Knepley–Karpeev PETSc IBM ’09 19 / 160

http://firedrakeproject.org/
http://amcg.ese.ic.ac.uk/index.php?title=Fluidity
http://www.openfoam.com/
http://www.freecfd.com/
http://openfvm.sourceforge.net/
http://www.magpar.net/
http://w3.physics.lehigh.edu/~xgc/
https://bout.llnl.gov/
http://www.nimrodteam.org/

Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Iterative methods
Deflated GMRES
LGMRES
QCG
SpecEst

Preconditioning researchers
Prometheus (Adams)
ParPre (Eijkhout)
FETI-DP (Klawonn and Rheinbach)

Knepley–Karpeev PETSc IBM ’09 20 / 160

http://www.columbia.edu/~ma2325/prom_intro.html
http://www.columbia.edu/~ma2325/
http://www.netlib.org/scalapack/manual.ps
http://tacc-web.austin.utexas.edu/staff/home/veijkhout/public_html/
http://www.uni-due.de/numerik/klawonn.shtml
http://www.uni-due.de/numerik/rheinbach.shtml

Getting Started with PETSc Who uses and develops PETSc?

Who Uses PETSc?

Algorithm Developers

Finite Elements
libMesh
MOOSE
PETSc-FEM
Deal II
OOFEM

Other Solvers
Fast Multipole Method (PetFMM)
Radial Basis Function Interpolation (PetRBF)
Eigensolvers (SLEPc)
Optimization (TAO)

Knepley–Karpeev PETSc IBM ’09 21 / 160

http://libmesh.sourceforge.net/
http://mooseframework.org/
http://www.cimec.org.ar/petscfem
http://www.dealii.org/
http://www.oofem.org/
http://barbagroup.bu.edu/Barba_group/PetFMM.html
http://barbagroup.bu.edu/Barba_group/PetRBF.html
http://www.grycap.upv.es/slepc/
http://www.mcs.anl.gov/tao

Getting Started with PETSc Who uses and develops PETSc?

The PETSc Team

Bill Gropp Barry Smith Satish Balay

Jed Brown Matt Knepley Lisandro Dalcin

Hong Zhang Mark Adams Toby Issac
Knepley–Karpeev PETSc IBM ’09 22 / 160

Getting Started with PETSc How can I get PETSc?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 23 / 160

Getting Started with PETSc How can I get PETSc?

Downloading PETSc

The latest tarball is on the PETSc site:
http://www.mcs.anl.gov/petsc/download

There is a Debian package (aptitude install petsc-dev)

There is a Git development repository

Knepley–Karpeev PETSc IBM ’09 24 / 160

http://www.mcs.anl.gov/petsc/download
https://packages.debian.org/search?keywords=petsc
http://git-scm.com/
https://bitbucket.org/petsc/petsc/

Getting Started with PETSc How can I get PETSc?

Cloning PETSc

The full development repository is open to the public
https://bitbucket.org/petsc/petsc/

Why is this better?
You can clone to any release (or any specific ChangeSet)
You can easily rollback changes (or releases)
You can get fixes from us the same day

All releases are just tags:
Source at tag v3.4.4

Knepley–Karpeev PETSc IBM ’09 25 / 160

https://bitbucket.org/petsc/petsc/
https://bitbucket.org/petsc/petsc/src/a071802d3efee8b987703a6ce2cf5d9a25fa8160/?at=v3.4.4

Getting Started with PETSc How can I get PETSc?

Unpacking PETSc

Just clone development repository
git clone http://bitbucket.org/petsc/petsc.git
git clone -rv3.4.4 petsc petsc-3.4.4

or

Unpack the tarball
tar xzf petsc.tar.gz

Knepley–Karpeev PETSc IBM ’09 26 / 160

Getting Started with PETSc How can I get PETSc?

Exercise 1

Download and Unpack PETSc!

Knepley–Karpeev PETSc IBM ’09 27 / 160

Getting Started with PETSc How do I Configure PETSc?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 28 / 160

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc

Set $PETSC_DIR to the installation root directory
Run the configuration utility

$PETSC_DIR/configure
$PETSC_DIR/configure -help
$PETSC_DIR/configure -download-mpich
$PETSC_DIR/configure -prefix=/usr

There are many examples on the installation page
Configuration files are in $PETSC_DIR/$PETSC_ARCH/conf

Configure header is in $PETSC_DIR/$PETSC_ARCH/include
$PETSC_ARCH has a default if not specified

Knepley–Karpeev PETSc IBM ’09 29 / 160

http://www.mcs.anl.gov/petsc/petsc-as/documentation/installation.html

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc

You can easily reconfigure with the same options
./$PETSC_ARCH/conf/reconfigure-$PETSC_ARCH.py

Can maintain several different configurations
./configure -PETSC_ARCH=linux-fast
-with-debugging=0

All configuration information is in the logfile
./$PETSC_ARCH/conf/configure.log
ALWAYS send this file with bug reports

Knepley–Karpeev PETSc IBM ’09 29 / 160

Getting Started with PETSc How do I Configure PETSc?

Configuring PETSc for Unstructured Meshes

-with-clanguage=cxx

-with-shared-libraries -with-dynamic-loading

-download-f-blas-lapack -download-mpich

-download-boost -download-fiat
-download-generator

-download-triangle -download-tetgen

-download-chaco -download-parmetis
-download-zoltan

-with-sieve

Knepley–Karpeev PETSc IBM ’09 30 / 160

Getting Started with PETSc How do I Configure PETSc?

Automatic Downloads

Starting in 2.2.1, some packages are automatically
Downloaded
Configured and Built (in $PETSC_DIR/externalpackages)
Installed with PETSc

Currently works for
petsc4py
PETSc documentation utilities (Sowing, lgrind, c2html)
BLAS, LAPACK, BLACS, ScaLAPACK, PLAPACK
MPICH, MPE, OpenMPI
ParMetis, Chaco, Jostle, Party, Scotch, Zoltan
MUMPS, Spooles, SuperLU, SuperLU_Dist, UMFPack, pARMS
BLOPEX, FFTW, SPRNG
Prometheus, HYPRE, ML, SPAI
Sundials
Triangle, TetGen
FIAT, FFC, Generator
Boost

Knepley–Karpeev PETSc IBM ’09 31 / 160

Getting Started with PETSc How do I Configure PETSc?

Exercise 2

Configure your downloaded PETSc.

Knepley–Karpeev PETSc IBM ’09 32 / 160

Getting Started with PETSc How do I Build PETSc?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 33 / 160

Getting Started with PETSc How do I Build PETSc?

Building PETSc

There is now One True Way to build PETSc:
make
make install if you configured with --prefix
Check build when done with make test

Can build multiple configurations
PETSC_ARCH=linux-fast make
Libraries are in $PETSC_DIR/$PETSC_ARCH/lib/

Complete log for each build is in logfile
./$PETSC_ARCH/conf/make.log
ALWAYS send this with bug reports

Knepley–Karpeev PETSc IBM ’09 34 / 160

Getting Started with PETSc How do I Build PETSc?

Exercise 3

Build your configured PETSc.

Knepley–Karpeev PETSc IBM ’09 35 / 160

Getting Started with PETSc How do I Build PETSc?

Exercise 4

Reconfigure PETSc to use ParMetis.

1 linux-c-debug/conf/reconfigure-linux-c-debug.py

-PETSC_ARCH=linux-parmetis
-download-metis -download-parmetis

2 PETSC_ARCH=linux-parmetis make

3 PETSC_ARCH=linux-parmetis make test

Knepley–Karpeev PETSc IBM ’09 36 / 160

Getting Started with PETSc How do I run an example?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 37 / 160

Getting Started with PETSc How do I run an example?

Running PETSc

Try running PETSc examples first
cd $PETSC_DIR/src/snes/examples/tutorials

Build examples using make targets
make ex5

Run examples using the make target
make runex5

Can also run using MPI directly
mpirun ./ex5 -snes_max_it 5
mpiexec ./ex5 -snes_monitor

Knepley–Karpeev PETSc IBM ’09 38 / 160

Getting Started with PETSc How do I run an example?

Using MPI

The Message Passing Interface is:
a library for parallel communication
a system for launching parallel jobs (mpirun/mpiexec)
a community standard

Launching jobs is easy
mpiexec -n 4 ./ex5

You should never have to make MPI calls when using PETSc
Almost never

Knepley–Karpeev PETSc IBM ’09 39 / 160

Getting Started with PETSc How do I run an example?

MPI Concepts

Communicator
A context (or scope) for parallel communication (“Who can I talk to”)
There are two defaults:

yourself (PETSC_COMM_SELF),
and everyone launched (PETSC_COMM_WORLD)

Can create new communicators by splitting existing ones
Every PETSc object has a communicator
Set PETSC_COMM_WORLD to put all of PETSc in a subcomm

Point-to-point communication
Happens between two processes (like in MatMult())

Reduction or scan operations
Happens among all processes (like in VecDot())

Knepley–Karpeev PETSc IBM ’09 40 / 160

Getting Started with PETSc How do I run an example?

Alternative Memory Models

Single process (address space) model
OpenMP and threads in general
Fortran 90/95 and compiler-discovered parallelism
System manages memory and (usually) thread scheduling
Named variables refer to the same storage

Single name space model
HPF, UPC
Global Arrays
Titanium
Variables refer to the coherent values (distribution is automatic)

Distributed memory (shared nothing)
Message passing
Names variables in different processes are unrelated

Knepley–Karpeev PETSc IBM ’09 41 / 160

Getting Started with PETSc How do I run an example?

Common Viewing Options

Gives a text representation
-vec_view

Generally views subobjects too
-snes_view

Can visualize some objects
-mat_view draw::

Alternative formats
-vec_view binary:sol.bin:, -vec_view ::matlab,
-vec_view socket

Sometimes provides extra information
-mat_view ::ascii_info, -mat_view
::ascii_info_detailed

Use -help to see all options

Knepley–Karpeev PETSc IBM ’09 42 / 160

Getting Started with PETSc How do I run an example?

Common Monitoring Options

Display the residual
-ksp_monitor, graphically -ksp_monitor_draw

Can disable dynamically
-ksp_monitors_cancel

Does not display subsolvers
-snes_monitor

Can use the true residual
-ksp_monitor_true_residual

Can display different subobjects
-snes_monitor_residual, -snes_monitor_solution,
-snes_monitor_solution_update
-snes_monitor_range
-ksp_gmres_krylov_monitor

Can display the spectrum
-ksp_monitor_singular_value

Knepley–Karpeev PETSc IBM ’09 43 / 160

Getting Started with PETSc How do I run an example?

Exercise 5

Run SNES Example 5 using come custom options.

1 cd $PETSC_DIR/src/snes/examples/tutorials

2 make ex5

3 mpiexec ./ex5 -snes_monitor -snes_view

4 mpiexec ./ex5 -snes_type tr -snes_monitor
-snes_view

5 mpiexec ./ex5 -ksp_monitor -snes_monitor
-snes_view

6 mpiexec ./ex5 -pc_type jacobi -ksp_monitor
-snes_monitor -snes_view

7 mpiexec ./ex5 -ksp_type bicg -ksp_monitor
-snes_monitor -snes_view

Knepley–Karpeev PETSc IBM ’09 44 / 160

Getting Started with PETSc How do I run an example?

Exercise 6

Create a new code based upon SNES Example 5.

1 Create a new directory
mkdir -p /home/knepley/proj/newsim/src

2 Copy the source
cp ex5.c /home/knepley/proj/newsim/src
Add myStuff.c and myStuff2.F

3 Create a PETSc makefile
bin/ex5: src/ex5.o src/myStuff.o src/myStuff2.o
${CLINKER} -o $@ $^ ${PETSC_SNES_LIB}

include ${PETSC_DIR}/conf/variables
include ${PETSC_DIR}/conf/rules

To get the project ready-made
hg clone http://petsc.cs.iit.edu/petsc/tutorials/SimpleTutorial newsim

Knepley–Karpeev PETSc IBM ’09 45 / 160

Getting Started with PETSc How do I get more help?

Outline

1 Getting Started with PETSc
What is PETSc?
Who uses and develops PETSc?
How can I get PETSc?
How do I Configure PETSc?
How do I Build PETSc?
How do I run an example?
How do I get more help?

Knepley–Karpeev PETSc IBM ’09 46 / 160

Getting Started with PETSc How do I get more help?

Getting More Help

http://www.mcs.anl.gov/petsc
Hyperlinked documentation

Manual
Manual pages for evey method
HTML of all example code (linked to manual pages)

FAQ
Full support at petsc-maint@mcs.anl.gov
High profile users

David Keyes
Marc Spiegelman
Richard Katz
Brad Aagaard
Aron Ahmadia

Knepley–Karpeev PETSc IBM ’09 47 / 160

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/petsc-as/snapshots/petsc-dev/docs/manual.pdf
http://www.mcs.anl.gov/petsc/petsc-as/documentation
http://www.mcs.anl.gov/petsc/petsc-as/documentation/faq.html
mailto:petsc-maint@mcs.anl.gov

Common PETSc Usage

Outline

1 Getting Started with PETSc

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

3 PETSc Integration

4 Advanced PETSc

5 Sieve

6 Conclusions
Knepley–Karpeev PETSc IBM ’09 48 / 160

Common PETSc Usage Principles and Design

Outline

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

Knepley–Karpeev PETSc IBM ’09 49 / 160

Common PETSc Usage Principles and Design

PETSc Structure

Knepley–Karpeev PETSc IBM ’09 50 / 160

Common PETSc Usage Principles and Design

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc

Knepley–Karpeev PETSc IBM ’09 51 / 160

Common PETSc Usage Principles and Design

Levels of Abstraction
In Mathematical Software

Application-specific interface
Programmer manipulates objects associated with the application

High-level mathematics interface
Programmer manipulates mathematical objects

Weak forms, boundary conditions, meshes

Algorithmic and discrete mathematics interface
Programmer manipulates mathematical objects

Sparse matrices, nonlinear equations
Programmer manipulates algorithmic objects

Solvers

Low-level computational kernels
BLAS-type operations, FFT

Knepley–Karpeev PETSc IBM ’09 52 / 160

Common PETSc Usage Principles and Design

Object-Oriented Design

Design based on operations you perform,
rather than the data in the object

Example: A vector is
not a 1d array of numbers

an object allowing addition and scalar multiplication
The efficient use of the computer is an added difficulty

which often leads to code generation

Knepley–Karpeev PETSc IBM ’09 53 / 160

Common PETSc Usage Principles and Design

The PETSc Programming Model

Goals
Portable, runs everywhere
High performance
Scalable parallelism

Approach
Distributed memory (“shared-nothing”)
No special compiler
Access to data on remote machines through MPI
Hide within objects the details of the communication
User orchestrates communication at a higher abstract level

Knepley–Karpeev PETSc IBM ’09 54 / 160

Common PETSc Usage Principles and Design

Symmetry Principle

Interfaces to mutable data must be symmetric.

Creation and query interfaces are paired
“No get without a set”

Fairness
“If you can do it, your users will want to do it”

Openness
“If you can do it, your users will want to undo it”

Knepley–Karpeev PETSc IBM ’09 54 / 160

Common PETSc Usage Principles and Design

Empiricism Principle

Interfaces must allow easy testing and comparison.

Swapping different implementations
“You will not be smart enough to pick the solver”

Commonly violated in FE code
Elements are hard coded

Also avoid assuming structure outside of the interface
Making continuous fields have discrete structure
Temptation to put metadata in a different places

Knepley–Karpeev PETSc IBM ’09 54 / 160

Common PETSc Usage Principles and Design

Experimentation is Essential!

Proof is not currently enough to examine solvers

N. M. Nachtigal, S. C. Reddy, and L. N. Trefethen,
How fast are nonsymmetric matrix iterations?,
SIAM J. Matrix Anal. Appl., 13, pp.778–795, 1992.
Anne Greenbaum, Vlastimil Ptak, and Zdenek
Strakos, Any Nonincreasing Convergence Curve
is Possible for GMRES, SIAM J. Matrix Anal.
Appl., 17 (3), pp.465–469, 1996.

Knepley–Karpeev PETSc IBM ’09 55 / 160

Common PETSc Usage Principles and Design

Collectivity

MPI communicators (MPI_Comm) specify collectivity
Processes involved in a computation

Constructors are collective over a communicator
VecCreate(MPI_Comm comm, Vec *x)
Use PETSC_COMM_WORLD for all processes and
PETSC_COMM_SELF for one

Some operations are collective, while others are not
collective: VecNorm()
not collective: VecGetLocalSize()

Sequences of collective calls must be in the same order on each
process

Knepley–Karpeev PETSc IBM ’09 56 / 160

Common PETSc Usage Principles and Design

What is not in PETSc?

Unstructured mesh generation and manipulation
In 3.2, we have DMMesh objects

Discretizations
In 3.2, we have an interface to FIAT
DealII

Higher level representations of PDEs
FEniCS (FFC/Syfi) and Sundance

Load balancing
Interface to Zoltan

Sophisticated visualization capabilities
Interface to MayaVi2 and Paraview through VTK

Eigenvalues
SLEPc and BLOPEX

Optimization and sensitivity
TAO

Knepley–Karpeev PETSc IBM ’09 57 / 160

https://launchpad.net/fiat
http://www.dealii.org/
http://www.fenicsproject.org
http://www.math.ttu.edu/~klong/Sundance/html/index.html
http://www.cs.sandia.gov/zoltan/
http://code.enthought.com/projects/mayavi/
http://www.paraview.org/
http://www.grycap.upv.es/slepc/
http://code.google.com/p/blopex/
http://www.mcs.anl.gov/research/projects/tao/

Common PETSc Usage Principles and Design

Basic PetscObject Usage

Every object in PETSc supports a basic interface
Function Operation

Create() create the object
Get/SetName() name the object
Get/SetType() set the implementation type

Get/SetOptionsPrefix() set the prefix for all options
SetFromOptions() customize from the command line

SetUp() preform other initialization
View() view the object

Destroy() cleanup object allocation
Also, all objects support the -help option.

Knepley–Karpeev PETSc IBM ’09 58 / 160

Common PETSc Usage Debugging PETSc

Outline

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

Knepley–Karpeev PETSc IBM ’09 59 / 160

Common PETSc Usage Debugging PETSc

Correctness Debugging

Automatic generation of tracebacks

Detecting memory corruption and leaks

Optional user-defined error handlers

Knepley–Karpeev PETSc IBM ’09 60 / 160

Common PETSc Usage Debugging PETSc

Interacting with the Debugger

Launch the debugger
-start_in_debugger [gdb,dbx,noxterm]
-on_error_attach_debugger [gdb,dbx,noxterm]

Attach the debugger only to some parallel processes
-debugger_nodes 0,1

Set the display (often necessary on a cluster)
-display khan.mcs.anl.gov:0.0

Knepley–Karpeev PETSc IBM ’09 61 / 160

Common PETSc Usage Debugging PETSc

Debugging Tips

Put a breakpoint in PetscError() to catch errors as they occur
PETSc tracks memory overwrites at both ends of arrays

The CHKMEMQ macro causes a check of all allocated memory
Track memory overwrites by bracketing them with CHKMEMQ

PETSc checks for leaked memory
Use PetscMalloc() and PetscFree() for all allocation
Print unfreed memory on PetscFinalize() with -malloc_dump

Simply the best tool today is valgrind
It checks memory access, cache performance, memory usage, etc.
http://www.valgrind.org
Need -trace-children=yes when running under MPI

Knepley–Karpeev PETSc IBM ’09 62 / 160

http://www.valgrind.org

Common PETSc Usage Debugging PETSc

Exercise 7

Use the debugger to find a SEGV
Locate a memory overwrite using CHKMEMQ.

Get the example
hg clone -r1
http://petsc.cs.iit.edu/petsc/SimpleTutorial

Build the example make

Run it and watch the fireworks
mpiexec -n 2 ./bin/ex5 -use_coords

Run it under the debugger and correct the error
mpiexec -n 2 ./bin/ex5 -use_coords
-start_in_debugger -display :0.0
hg update -r2

Build it and run again smoothly

Knepley–Karpeev PETSc IBM ’09 63 / 160

Common PETSc Usage Profiling PETSc

Outline

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

Knepley–Karpeev PETSc IBM ’09 64 / 160

Common PETSc Usage Profiling PETSc

Performance Debugging

PETSc has integrated profiling
Option -log_summary prints a report on PetscFinalize()

PETSc allows user-defined events
Events report time, calls, flops, communication, etc.
Memory usage is tracked by object

Profiling is separated into stages
Event statistics are aggregated by stage

Knepley–Karpeev PETSc IBM ’09 65 / 160

Common PETSc Usage Profiling PETSc

Using Stages and Events

Use PetscLogStageRegister() to create a new stage
Stages are identifier by an integer handle

Use PetscLogStagePush/Pop() to manage stages
Stages may be nested, but will not aggregate in a nested fashion

Use PetscLogEventRegister() to create a new stage
Events also have an associated class

Use PetscLogEventBegin/End() to manage events
Events may also be nested and will aggregate in a nested fashion
Can use PetscLogFlops() to log user flops

Knepley–Karpeev PETSc IBM ’09 66 / 160

Common PETSc Usage Profiling PETSc

Adding A Logging Stage
C

i n t stageNum ;

PetscLogStageRegister (&stageNum , "name") ;
PetscLogStagePush (stageNum) ;

/ * Code to Moni tor * /

PetscLogStagePop () ;

Knepley–Karpeev PETSc IBM ’09 67 / 160

Common PETSc Usage Profiling PETSc

Adding A Logging Stage
Python

wi th PETSc . LogStage (’ F l u i d Stage ’) as f l u i d S t a g e :
A l l opera t ions w i l l be aggregated i n f l u i d S t a g e
f l u i d . so lve ()

Knepley–Karpeev PETSc IBM ’09 68 / 160

Common PETSc Usage Profiling PETSc

Adding A Logging Event
C

s t a t i c i n t USER_EVENT;

PetscLogEventRegister (&USER_EVENT, "name" , CLS_ID) ;
PetscLogEventBegin (USER_EVENT, 0 , 0 , 0 , 0) ;

/ * Code to Moni tor * /

PetscLogFlops (user_event_ f lops) ;
PetscLogEventEnd (USER_EVENT, 0 , 0 , 0 , 0) ;

Knepley–Karpeev PETSc IBM ’09 69 / 160

Common PETSc Usage Profiling PETSc

Adding A Logging Event
Python

wi th PETSc . logEvent (’ Reconst ruc t ion ’) as recEvent :
A l l opera t ions are t imed i n recEvent
recons t ruc t (so l)
Flops are logged to recEvent
PETSc . Log . logFlops (user_event_ f lops)

Knepley–Karpeev PETSc IBM ’09 70 / 160

Common PETSc Usage Profiling PETSc

Adding A Logging Class

s t a t i c i n t CLASS_ID ;

PetscLogClassRegister (&CLASS_ID , "name") ;

Class ID identifies a class uniquely
Must initialize before creating any objects of this type

Knepley–Karpeev PETSc IBM ’09 71 / 160

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation

PETSc sparse matrices are dynamic data structures
can add additional nonzeros freely

Dynamically adding many nonzeros
requires additional memory allocations
requires copies
can kill performance

Memory preallocation provides
the freedom of dynamic data structures
good performance

Easiest solution is to replicate the assembly code
Remove computation, but preserve the indexing code
Store set of columns for each row

Call preallocation rourines for all datatypes
MatSeqAIJSetPreallocation()
MatMPIAIJSetPreallocation()
Only the relevant data will be used

Knepley–Karpeev PETSc IBM ’09 72 / 160

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation
Sequential Sparse Matrices

MatSeqAIJPreallocation(Mat A, int nz, int nnz[])

nz: expected number of nonzeros in any row
nnz(i): expected number of nonzeros in row i

Knepley–Karpeev PETSc IBM ’09 72 / 160

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation
ParallelSparseMatrix

Each process locally owns a submatrix of contiguous global rows
Each submatrix consists of diagonal and off-diagonal parts

proc 5

proc 4

proc 3
proc 2
proc 1

proc 0
diagonal blocks
offdiagonal blocks

MatGetOwnershipRange(Mat A,int *start,int *end)
start: first locally owned row of global matrix
end-1: last locally owned row of global matrix

Knepley–Karpeev PETSc IBM ’09 72 / 160

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation
Parallel Sparse Matrices

MatMPIAIJPreallocation(Mat A, int dnz, int dnnz[],
int onz, int onnz[])

dnz: expected number of nonzeros in any row in the diagonal block
dnnz(i): expected number of nonzeros in row i in the diagonal block

onz: expected number of nonzeros in any row in the offdiagonal portion
onnz(i): expected number of nonzeros in row i in the offdiagonal portion

Knepley–Karpeev PETSc IBM ’09 72 / 160

Common PETSc Usage Profiling PETSc

Matrix Memory Preallocation
Verifying Preallocation

Use runtime option -info

Output:
[proc #] Matrix size: %d X %d; storage space:
%d unneeded, %d used
[proc #] Number of mallocs during MatSetValues()
is %d

Knepley–Karpeev PETSc IBM ’09 72 / 160

Common PETSc Usage Profiling PETSc

Exercise 8

Return to Execise 7 and add more profiling.

Update to the next revision
hg update -r3

Build, run, and look at the profiling report
make ex5
./bin/ex5 -use_coords -log_summary

Add a new stage for setup
Add a new event for FormInitialGuess() and log the flops
Build it again and look at the profiling report

Knepley–Karpeev PETSc IBM ’09 73 / 160

Common PETSc Usage Serial Performance

Outline

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

Knepley–Karpeev PETSc IBM ’09 74 / 160

Common PETSc Usage Serial Performance

STREAM Benchmark

Simple benchmark program measuring sustainable memory bandwidth

Protoypical operation is Triad (WAXPY): w = y + αx
Measures the memory bandwidth bottleneck (much below peak)
Datasets outstrip cache

Machine Peak (MF/s) Triad (MB/s) MF/MW Eq. MF/s
Matt’s Laptop 1700 1122.4 12.1 93.5 (5.5%)
Intel Core2 Quad 38400 5312.0 57.8 442.7 (1.2%)
Tesla 1060C 984000 102000.0* 77.2 8500.0 (0.8%)

Table: Bandwidth limited machine performance

http://www.cs.virginia.edu/stream/

Knepley–Karpeev PETSc IBM ’09 75 / 160

http://www.cs.virginia.edu/stream/

Common PETSc Usage Serial Performance

Analysis of Sparse Matvec (SpMV)

Assumptions
No cache misses
No waits on memory references

Notation
m Number of matrix rows
nz Number of nonzero matrix elements
V Number of vectors to multiply

We can look at bandwidth needed for peak performance(
8 +

2
V

)
m
nz

+
6
V

byte/flop (1)

or achieveable performance given a bandwith BW
Vnz

(8V + 2)m + 6nz
BW Mflop/s (2)

Towards Realistic Performance Bounds for Implicit CFD Codes, Gropp,
Kaushik, Keyes, and Smith.

Knepley–Karpeev PETSc IBM ’09 76 / 160

http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf
http://www.cs.odu.edu/~keyes/papers/pcfd99_gkks.pdf

Common PETSc Usage Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (3)

which is a dismal 8.8% of peak.

Can improve performance by
Blocking
Multiple vectors

but operation issue limitations take over.

Knepley–Karpeev PETSc IBM ’09 77 / 160

Common PETSc Usage Serial Performance

Improving Serial Performance
For a single matvec with 3D FD Poisson, Matt’s laptop can achieve at
most

1
(8 + 2) 1

7 + 6
bytes/flop(1122.4 MB/s) = 151 MFlops/s, (3)

which is a dismal 8.8% of peak.

Better approaches:
Unassembled operator application (Spectral elements, FMM)

N data, N2 computation
Nonlinear evaluation (Picard, FAS, Exact Polynomial Solvers)

N data, Nk computation

Knepley–Karpeev PETSc IBM ’09 77 / 160

Common PETSc Usage Serial Performance

Performance Tradeoffs

We must balance storage, bandwidth, and cycles

Assembled Operator Action
Trades cycles and storage for bandwidth in application

Unassembled Operator Action
Trades bandwidth and storage for cycles in application
For high orders, storage is impossible
Can make use of FErari decomposition to save calculation
Could storage element matrices to save cycles

Partial assembly gives even finer control over tradeoffs
Also allows introduction of parallel costs (load balance, . . .)

Knepley–Karpeev PETSc IBM ’09 78 / 160

Common PETSc Usage Modeling Code

Outline

2 Common PETSc Usage
Principles and Design
Debugging PETSc
Profiling PETSc
Serial Performance
Modeling Code

Knepley–Karpeev PETSc IBM ’09 79 / 160

Common PETSc Usage Modeling Code

Importance of Computational Modeling

Without a model,
performance measurements are meaningless!

Before a code is written, we should have a model of
computation
memory usage
communication
bandwidth
achievable concurrency

This allows us to
verify the implementation
predict scaling behavior

Knepley–Karpeev PETSc IBM ’09 80 / 160

PETSc Integration

Outline

1 Getting Started with PETSc

2 Common PETSc Usage

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

4 Advanced PETSc

5 Sieve

6 Conclusions
Knepley–Karpeev PETSc IBM ’09 81 / 160

PETSc Integration Initial Operations

Outline

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

Knepley–Karpeev PETSc IBM ’09 82 / 160

PETSc Integration Initial Operations

Application Integration

Be willing to experiment with algorithms
No optimality without interplay between physics and algorithmics

Adopt flexible, extensible programming
Algorithms and data structures not hardwired

Be willing to play with the real code
Toy models are rarely helpful

If possible, profile before integration
Automatic in PETSc

Knepley–Karpeev PETSc IBM ’09 83 / 160

PETSc Integration Initial Operations

PETSc Integration

PETSc is a set a library interfaces
We do not seize main()

We do not control output
We propagate errors from underlying packages
We present the same interfaces in:

C
C++
F77
F90
Python

See Gropp in SIAM, OO Methods for Interop SciEng, ’99

Knepley–Karpeev PETSc IBM ’09 84 / 160

PETSc Integration Initial Operations

Integration Stages

Version Control
It is impossible to overemphasize
We use Git

Initialization
Linking to PETSc

Profiling
Profile before changing
Also incorporate command line processing

Linear Algebra
First PETSc data structures

Solvers
Very easy after linear algebra is integrated

Knepley–Karpeev PETSc IBM ’09 85 / 160

http://git-scm.com/

PETSc Integration Initial Operations

Initialization

Call PetscInitialize()
Setup static data and services
Setup MPI if it is not already

Call PetscFinalize()
Calculates logging summary
Shutdown and release resources

Checks compile and link

Knepley–Karpeev PETSc IBM ’09 86 / 160

PETSc Integration Initial Operations

Profiling

Use -log_summary for a performance profile
Event timing
Event flops
Memory usage
MPI messages

Call PetscLogStagePush() and PetscLogStagePop()
User can add new stages

Call PetscLogEventBegin() and PetscLogEventEnd()
User can add new events

Knepley–Karpeev PETSc IBM ’09 87 / 160

PETSc Integration Initial Operations

Command Line Processing

Check for an option
PetscOptionsHasName()

Retrieve a value
PetscOptionsGetInt(), PetscOptionsGetIntArray()

Set a value
PetscOptionsSetValue()

Check for unused options
-options_left

Clear, alias, reject, etc.
Modern form uses

PetscOptionsBegin(), PetscOptionsEnd()
PetscOptionsInt(),PetscOptionsReal()
Integrates with -help

Knepley–Karpeev PETSc IBM ’09 88 / 160

PETSc Integration Vector Algebra

Outline

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

Knepley–Karpeev PETSc IBM ’09 89 / 160

PETSc Integration Vector Algebra

Vector Algebra

What are PETSc vectors?

Fundamental objects representing
solutions
right-hand sides
coefficients

Each process locally owns a subvector of contiguous global data

Knepley–Karpeev PETSc IBM ’09 90 / 160

PETSc Integration Vector Algebra

Vector Algebra

How do I create vectors?

VecCreate(MPI_Comm, Vec*)

VecSetSizes(Vec, PetscIntn, PetscInt N)

VecSetType(Vec, VecType typeName)

VecSetFromOptions(Vec)

Can set the type at runtime

Knepley–Karpeev PETSc IBM ’09 91 / 160

PETSc Integration Vector Algebra

Vector Algebra

A PETSc Vec

Supports all vector space operations
VecDot(), VecNorm(), VecScale()

Has a direct interface to the values
VecGetArray(), VecGetArrayF90()

Has unusual operations
VecSqrtAbs(), VecStrideGather()

Communicates automatically during assembly
Has customizable communication (PetscSF,VecScatter)

Knepley–Karpeev PETSc IBM ’09 92 / 160

PETSc Integration Vector Algebra

Parallel Assembly
Vectors and Matrices

Processes may set an arbitrary entry
Must use proper interface

Entries need not be generated locally
Local meaning the process on which they are stored

PETSc automatically moves data if necessary
Happens during the assembly phase

Knepley–Karpeev PETSc IBM ’09 93 / 160

PETSc Integration Vector Algebra

Vector Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

VecSetValues (Vec v , Pe tsc In t n , Pe tsc In t rows [] ,
PetscScalar values [] , InsertMode mode)

Mode is either INSERT_VALUES or ADD_VALUES
Two phases allow overlap of communication and computation

VecAssemblyBegin(Vecv)
VecAssemblyEnd(Vecv)

Knepley–Karpeev PETSc IBM ’09 94 / 160

PETSc Integration Vector Algebra

One Way to Set the Elements of a Vector

VecGetSize (x , &N) ;
MPI_Comm_rank (PETSC_COMM_WORLD, &rank) ;
i f (rank == 0) {

va l = 0 . 0 ;
f o r (i = 0 ; i < N; ++ i) {

VecSetValues (x , 1 , &i , &val , INSERT_VALUES) ;
va l += 10 .0 ;

}
}
/ * These rou t i nes ensure t h a t the data i s

d i s t r i b u t e d to the other processes * /
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

Knepley–Karpeev PETSc IBM ’09 95 / 160

PETSc Integration Vector Algebra

A Better Way to Set the Elements of a Vector

VecGetOwnershipRange (x , &low , &high) ;
va l = low * 1 0 . 0 ;
f o r (i = low ; i < high ; ++ i) {

VecSetValues (x , 1 , &i , &val , INSERT_VALUES) ;
va l += 10 .0 ;

}
/ * No data w i l l be communicated here * /
VecAssemblyBegin (x) ;
VecAssemblyEnd (x) ;

Knepley–Karpeev PETSc IBM ’09 96 / 160

PETSc Integration Vector Algebra

Selected Vector Operations

Function Name Operation
VecAXPY(Vec y, PetscScalar a, Vec x) y = y + a ∗ x
VecAYPX(Vec y, PetscScalar a, Vec x) y = x + a ∗ y
VecWAYPX(Vec w, PetscScalar a, Vec x, Vec y) w = y + a ∗ x
VecScale(Vec x, PetscScalar a) x = a ∗ x
VecCopy(Vec y, Vec x) y = x
VecPointwiseMult(Vec w, Vec x, Vec y) wi = xi ∗ yi
VecMax(Vec x, PetscInt *idx, PetscScalar *r) r = maxri
VecShift(Vec x, PetscScalar r) xi = xi + r
VecAbs(Vec x) xi = |xi |
VecNorm(Vec x, NormType type, PetscReal *r) r = ||x ||

Knepley–Karpeev PETSc IBM ’09 97 / 160

PETSc Integration Vector Algebra

Working With Local Vectors

It is sometimes more efficient to directly access local storage of a Vec.
PETSc allows you to access the local storage with

VecGetArray(Vec, double *[])

You must return the array to PETSc when you finish
VecRestoreArray(Vec, double *[])

Allows PETSc to handle data structure conversions
Commonly, these routines are fast and do not involve a copy

Knepley–Karpeev PETSc IBM ’09 98 / 160

PETSc Integration Vector Algebra

VecGetArray in C

Vec v ;
PetscScalar * ar ray ;
Pe tsc In t n , i ;

VecGetArray (v , &ar ray) ;
VecGetLocalSize (v , &n) ;
PetscSynchron izedPr in t f (PETSC_COMM_WORLD,

" F i r s t element o f l o c a l a r ray i s %f \ n " , a r ray [0]) ;
PetscSynchronizedFlush (PETSC_COMM_WORLD) ;
f o r (i = 0 ; i < n ; ++ i) {

a r ray [i] += (PetscScalar) rank ;
}
VecRestoreArray (v , &ar ray) ;

Knepley–Karpeev PETSc IBM ’09 99 / 160

PETSc Integration Vector Algebra

VecGetArray in F77

inc lude " f i n c l u d e / petsc . h "

Vec v ;
PetscScalar ar ray (1)
PetscOf fse t o f f s e t
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArray (v , array , o f f s e t , i e r r)
c a l l VecGetLocalSize (v , n , i e r r)
do i =1 ,n

ar ray (i + o f f s e t) = ar ray (i + o f f s e t) + rank
end do
c a l l VecRestoreArray (v , array , o f f s e t , i e r r)

Knepley–Karpeev PETSc IBM ’09 100 / 160

PETSc Integration Vector Algebra

VecGetArray in F90

inc lude " f i n c l u d e / petsc . h90 "

Vec v ;
PetscScalar p o i n t e r : : a r ray (:)
Pe tsc In t n , i
PetscErrorCode i e r r

c a l l VecGetArrayF90 (v , array , i e r r)
c a l l VecGetLocalSize (v , n , i e r r)
do i =1 ,n

ar ray (i) = ar ray (i) + rank
end do
c a l l VecRestoreArrayF90 (v , array , i e r r)

Knepley–Karpeev PETSc IBM ’09 101 / 160

PETSc Integration Vector Algebra

VecGetArray in Python

wi th v as a :
f o r i i n range (len (a)) :

a [i] = 5 .0* i

Knepley–Karpeev PETSc IBM ’09 102 / 160

PETSc Integration Vector Algebra

DMDAVecGetArray in C

DM da ;
Vec v ;
DMDALocalInfo * i n f o ;
PetscScalar * * ar ray ;

DMDAVecGetArray (da , v , &ar ray) ;
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
uxx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
uyy = (2 . 0 * u − x [j −1][i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = uxx + uyy ;

}
}
DMDAVecRestoreArray (da , v , &ar ray) ;

Knepley–Karpeev PETSc IBM ’09 103 / 160

PETSc Integration Matrix Algebra

Outline

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

Knepley–Karpeev PETSc IBM ’09 104 / 160

PETSc Integration Matrix Algebra

Matrix Algebra

What are PETSc matrices?

Fundamental objects for storing stiffness matrices and Jacobians
Each process locally owns a contiguous set of rows
Supports many data types

AIJ, Block AIJ, Symmetric AIJ, Block Matrix, etc.
Supports structures for many packages

MUMPS, Spooles, SuperLU, UMFPack, DSCPack

Knepley–Karpeev PETSc IBM ’09 105 / 160

PETSc Integration Matrix Algebra

How do I create matrices?

MatCreate(MPI_Comm, Mat*)

MatSetSizes(Mat, PetscIntm, PetscInt n, M, N)

MatSetType(Mat, MatType typeName)

MatSetFromOptions(Mat)

Can set the type at runtime

MatSeqAIJPreallocation(Mat, PetscIntnz, const PetscInt nnz[])

MatXAIJPreallocation(Mat, bs, dnz[], onz [], dnzu[], onzu[])

MatSetValues(Mat, m, rows[], n, cols [], values [], InsertMode)

MUST be used, but does automatic communication

Knepley–Karpeev PETSc IBM ’09 106 / 160

PETSc Integration Matrix Algebra

Matrix Polymorphism

The PETSc Mat has a single user interface,
Matrix assembly

MatSetValues()

Matrix-vector multiplication
MatMult()

Matrix viewing
MatView()

but multiple underlying implementations.
AIJ, Block AIJ, Symmetric Block AIJ,
Dense
Matrix-Free
etc.

A matrix is defined by its interface, not by its data structure.

Knepley–Karpeev PETSc IBM ’09 107 / 160

PETSc Integration Matrix Algebra

Matrix Assembly

A three step process
Each process sets or adds values
Begin communication to send values to the correct process
Complete the communication

MatSetValues(Matm, m, rows[], n, cols [], values [], mode)

mode is either INSERT_VALUES or ADD_VALUES
Logically dense block of values

Two phase assembly allows overlap of communication and
computation

MatAssemblyBegin(Matm, MatAssemblyType type)
MatAssemblyEnd(Matm, MatAssemblyType type)
type is either MAT_FLUSH_ASSEMBLY or MAT_FINAL_ASSEMBLY

Knepley–Karpeev PETSc IBM ’09 108 / 160

PETSc Integration Matrix Algebra

One Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [0] = −1.0; v [1] = 2 . 0 ; v [2] = −1.0;
i f (rank == 0) {

f o r (row = 0; row < N; row++) {
co ls [0] = row−1; co ls [1] = row ; co ls [2] = row +1;
i f (row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1] ,& v [1] , INSERT_VALUES) ;
} e lse i f (row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES) ;
}

}
}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

Knepley–Karpeev PETSc IBM ’09 109 / 160

PETSc Integration Matrix Algebra

A Better Way to Set the Elements of a Matrix
Simple 3-point stencil for 1D Laplacian

v [0] = −1.0; v [1] = 2 . 0 ; v [2] = −1.0;
MatGetOwnershipRange (A,& s t a r t ,&end) ;
f o r (row = s t a r t ; row < end ; row++) {

co ls [0] = row−1; co ls [1] = row ; co ls [2] = row +1;
i f (row == 0) {

MatSetValues (A,1 ,& row ,2 ,& co ls [1] ,& v [1] , INSERT_VALUES) ;
} e lse i f (row == N−1) {

MatSetValues (A,1 ,& row ,2 , cols , v , INSERT_VALUES) ;
} e lse {

MatSetValues (A,1 ,& row ,3 , cols , v , INSERT_VALUES) ;
}

}
MatAssemblyBegin (A, MAT_FINAL_ASSEMBLY) ;
MatAssemblyEnd (A, MAT_FINAL_ASSEMBLY) ;

Knepley–Karpeev PETSc IBM ’09 110 / 160

PETSc Integration Matrix Algebra

Why Are PETSc Matrices That Way?

No one data structure is appropriate for all problems
Blocked and diagonal formats provide performance benefits
PETSc has many formats
Makes it easy to add new data structures

Assembly is difficult enough without worrying about partitioning
PETSc provides parallel assembly routines
High performance still requires making most operations local
However, programs can be incrementally developed.
MatPartitioning and MatOrdering can help

Matrix decomposition in contiguous chunks is simple
Makes interoperation with other codes easier
For other ordering, PETSc provides “Application Orderings” (AO)

Knepley–Karpeev PETSc IBM ’09 111 / 160

PETSc Integration Algebraic Solvers

Outline

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

Knepley–Karpeev PETSc IBM ’09 112 / 160

PETSc Integration Algebraic Solvers

Solver Types

Explicit:
Field variables are updated using local neighbor information

Semi-implicit:
Some subsets of variables are updated with global solves
Others with direct local updates

Implicit:
Most or all variables are updated in a single global solve

Knepley–Karpeev PETSc IBM ’09 113 / 160

PETSc Integration Algebraic Solvers

Linear Solvers
Krylov Methods

Using PETSc linear algebra, just add:
KSPSetOperators(KSPksp, MatA, MatM, MatStructure flag)
KSPSolve(KSPksp, Vecb, Vecx)

Can access subobjects
KSPGetPC(KSPksp, PC*pc)

Preconditioners must obey PETSc interface
Basically just the KSP interface

Can change solver dynamically from the command line
-ksp_type bicgstab

Knepley–Karpeev PETSc IBM ’09 114 / 160

PETSc Integration Algebraic Solvers

Nonlinear Solvers

Using PETSc linear algebra, just add:
SNESSetFunction(SNESsnes, Vecr, residualFunc, void *ctx)
SNESSetJacobian(SNESsnes, MatA, MatM, jacFunc, void *ctx)
SNESSolve(SNESsnes, Vecb, Vecx)

Can access subobjects
SNESGetKSP(SNESsnes, KSP*ksp)

Can customize subobjects from the cmd line
Set the subdomain preconditioner to ILU with -sub_pc_type ilu

Knepley–Karpeev PETSc IBM ’09 115 / 160

PETSc Integration Algebraic Solvers

Basic Solver Usage

Use SNESSetFromOptions() so that everything is set dynamically
Set the type

Use -snes_type (or take the default)
Set the preconditioner

Use -npc_snes_type (or take the default)
Override the tolerances

Use -snes_rtol and -snes_atol

View the solver to make sure you have the one you expect
Use -snes_view

For debugging, monitor the residual decrease
Use -snes_monitor
Use -ksp_monitor to see the underlying linear solver

Knepley–Karpeev PETSc IBM ’09 116 / 160

PETSc Integration Algebraic Solvers

3rd Party Solvers in PETSc

Complete table of solvers
1 Sequential LU

ILUDT (SPARSEKIT2, Yousef Saad, U of MN)
EUCLID & PILUT (Hypre, David Hysom, LLNL)
ESSL (IBM)
SuperLU (Jim Demmel and Sherry Li, LBNL)
Matlab
UMFPACK (Tim Davis, U. of Florida)
LUSOL (MINOS, Michael Saunders, Stanford)

2 Parallel LU
MUMPS (Patrick Amestoy, IRIT)
SPOOLES (Cleve Ashcroft, Boeing)
SuperLU_Dist (Jim Demmel and Sherry Li, LBNL)

3 Parallel Cholesky
DSCPACK (Padma Raghavan, Penn. State)
MUMPS (Patrick Amestoy, Toulouse)
CHOLMOD (Tim Davis, Florida)

4 XYTlib - parallel direct solver (Paul Fischer and Henry Tufo, ANL)
Knepley–Karpeev PETSc IBM ’09 117 / 160

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration Algebraic Solvers

3rd Party Preconditioners in PETSc

Complete table of solvers
1 Parallel ICC

BlockSolve95 (Mark Jones and Paul Plassman, ANL)
2 Parallel ILU

PaStiX (Faverge Mathieu, INRIA)
3 Parallel Sparse Approximate Inverse

Parasails (Hypre, Edmund Chow, LLNL)
SPAI 3.0 (Marcus Grote and Barnard, NYU)

4 Sequential Algebraic Multigrid
RAMG (John Ruge and Klaus Steuben, GMD)
SAMG (Klaus Steuben, GMD)

5 Parallel Algebraic Multigrid
Prometheus (Mark Adams, PPPL)
BoomerAMG (Hypre, LLNL)
ML (Trilinos, Ray Tuminaro and Jonathan Hu, SNL)

Knepley–Karpeev PETSc IBM ’09 117 / 160

http://www.mcs.anl.gov/petsc/petsc-as/documentation/linearsolvertable.html

PETSc Integration More Abstractions

Outline

3 PETSc Integration
Initial Operations
Vector Algebra
Matrix Algebra
Algebraic Solvers
More Abstractions

Knepley–Karpeev PETSc IBM ’09 118 / 160

PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DA class is a topology and discretization interface.
Structured grid interface

Fixed simple topology
Supports stencils, communication, reordering

Limited idea of operators

Nice for simple finite differences

The PETSc Mesh class is a topology interface.
Unstructured grid interface

Arbitrary topology and element shape

Supports partitioning, distribution, and global orders

Knepley–Karpeev PETSc IBM ’09 119 / 160

PETSc Integration More Abstractions

Higher Level Abstractions

The PETSc DM class is a hierarchy interface.
Supports multigrid

PCMG combines it with a multigrid preconditioner

Abstracts the logic of multilevel methods

The PetscSection class is a helper class for data layout.
Functions over unstructured grids

Arbitrary layout of degrees of freedom

Enables distribution and assembly

Knepley–Karpeev PETSc IBM ’09 120 / 160

PETSc Integration More Abstractions

3 Ways To Use PETSc

User manages all topology (just use Vec and Mat)
All indexing is user managed

PETSc manages single topology (use DM)
DMDA manages structured grids using (i , j , k) indexing
DMMesh manages unstructured grids using PetscSection for
indexing
Communication is setup automatically
Use KSPSetDM() and SNESSetDM() to notify solver

PETSc manages a hierarchy (use PCMG)
Only automated for DMDA

Knepley–Karpeev PETSc IBM ’09 121 / 160

Advanced PETSc

Outline

1 Getting Started with PETSc

2 Common PETSc Usage

3 PETSc Integration

4 Advanced PETSc
SNES
DA

5 Sieve

6 Conclusions

Knepley–Karpeev PETSc IBM ’09 122 / 160

Advanced PETSc SNES

Outline

4 Advanced PETSc
SNES
DA

Knepley–Karpeev PETSc IBM ’09 123 / 160

Advanced PETSc SNES

Flow Control for a PETSc Application

Timestepping Solvers (TS)

Preconditioners (PC)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Function
Evaluation Postprocessing

Jacobian
Evaluation

Application
Initialization

Main Routine

PETSc

Knepley–Karpeev PETSc IBM ’09 124 / 160

Advanced PETSc SNES

SNES Paradigm

The SNES interface is based upon callback functions
FormFunction(), set by SNESSetFunction()

FormJacobian(), set by SNESSetJacobian()

When PETSc needs to evaluate the nonlinear residual F (x),
Solver calls the user’s function

User function gets application state through the ctx variable
PETSc never sees application data

Knepley–Karpeev PETSc IBM ’09 125 / 160

Advanced PETSc SNES

Topology Abstractions

DMDA
Abstracts Cartesian grids in any dimension
Supports stencils, communication, reordering
Nice for simple finite differences

DMMesh
Abstracts general topology in any dimension
Also supports partitioning, distribution, and global orders
Allows aribtrary element shapes and discretizations

Knepley–Karpeev PETSc IBM ’09 126 / 160

Advanced PETSc SNES

Assembly Abstractions

DM
Abstracts the logic of multilevel (multiphysics) methods
Manages allocation and assembly of local and global structures
Interfaces to PCMG solver

PetscSection
Abstracts functions over a topology
Manages allocation and assembly of local and global structures
Will merge with DM somehow

Knepley–Karpeev PETSc IBM ’09 127 / 160

Advanced PETSc SNES

SNES Function

User provided function calculates the nonlinear residual:

PetscErrorCode (* func) (SNES snes , Vec x , Vec r , vo id * c t x)

x: The current solution
r: The residual

ctx: The user context passed to SNESSetFunction()

Use this to pass application information, e.g. physical constants

Knepley–Karpeev PETSc IBM ’09 128 / 160

Advanced PETSc SNES

SNES Jacobian

User provided function calculates the Jacobian:

PetscErrorCode (* func) (SNES snes , Vec x , Mat * J , Mat *M, vo id * c t x)

x: The current solution
J: The Jacobian
M: The Jacobian preconditioning matrix (possibly J itself)

ctx: The user context passed to SNESSetJacobian()

Use this to pass application information, e.g. physical constants

Alternatively, you can use
matrix-free finite difference approximation, -snes_mf
finite difference approximation with coloring, -snes_fd

Knepley–Karpeev PETSc IBM ’09 129 / 160

Advanced PETSc SNES

SNES Variants

Picard iteration

Line search/Trust region strategies

Quasi-Newton

Nonlinear CG/GMRES

Nonlinear GS/ASM

Nonlinear Multigrid (FAS)

Variational inequality approaches

Knepley–Karpeev PETSc IBM ’09 130 / 160

Advanced PETSc SNES

Finite Difference Jacobians

PETSc can compute and explicitly store a Jacobian via 1st-order FD
Dense

Activated by -snes_fd
Computed by SNESDefaultComputeJacobian()

Sparse via colorings (default)
Coloring is created by MatFDColoringCreate()
Computed by SNESDefaultComputeJacobianColor()

Can also use Matrix-free Newton-Krylov via 1st-order FD
Activated by -snes_mf without preconditioning
Activated by -snes_mf_operator with user-defined
preconditioning

Uses preconditioning matrix from SNESSetJacobian()

Knepley–Karpeev PETSc IBM ’09 131 / 160

Advanced PETSc SNES

SNES Example
Driven Cavity

Velocity-vorticity formulation
Flow driven by lid and/or bouyancy
Logically regular grid

Parallelized with DMDA

Finite difference discretization
Authored by David Keyes

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

Knepley–Karpeev PETSc IBM ’09 132 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced PETSc SNES

Driven Cavity Application Context

typedef s t r u c t {
/ *−−−−− basic a p p l i c a t i o n data −−−−−* /
PetscReal l i d _ v e l o c i t y ;
PetscReal p r a n d t l
PetscReal grashof ;
PetscBool draw_contours ;

} AppCtx ;

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

Knepley–Karpeev PETSc IBM ’09 133 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced PETSc SNES

Driven Cavity Residual Evaluation

Residual (SNES snes , Vec X, Vec F , vo id * p t r) {
AppCtx * user = (AppCtx *) p t r ;

/ * l o c a l s t a r t i n g and ending g r i d po in t s * /
Pe tsc In t i s t a r t , iend , j s t a r t , jend ;
PetscScalar * f ; / * l o c a l vec to r data * /
PetscReal grashof = user−>grashof ;
PetscReal p r a n d t l = user−>p r a n d t l ;
PetscErrorCode i e r r ;

/ * Code to communicate non loca l ghost po i n t data * /
VecGetArray (F , & f) ;
/ * Code to compute l o c a l f u n c t i o n components * /
VecRestoreArray (F , & f) ;
r e t u r n 0 ;

}

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

Knepley–Karpeev PETSc IBM ’09 134 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced PETSc SNES

Better Driven Cavity Residual Evaluation

ResLocal (DMDALocalInfo * in fo ,
PetscScalar * * x , PetscScalar * * f , vo id * c tx)

{
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
uxx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
uyy = (2 . 0 * u − x [j −1][i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] . u = uxx + uyy − . 5 * (x [j + 1] [i] . omega−x [j −1][i] . omega) * hx ;
f [j] [i] . v = uxx + uyy + . 5 * (x [j] [i + 1] . omega−x [j] [i −1].omega) * hy ;
f [j] [i] . omega = uxx + uyy +

(vxp * (u − x [j] [i −1].omega) + vxm * (x [j] [i + 1] .omega − u)) * hy +
(vyp * (u − x [j −1][i] . omega) + vym * (x [j + 1] [i] . omega − u)) * hx −
0.5* grashof * (x [j] [i + 1] . temp − x [j] [i −1]. temp) * hy ;

f [j] [i] . temp = uxx + uyy + p r a n d t l *
((vxp * (u − x [j] [i −1]. temp) + vxm * (x [j] [i + 1] . temp − u)) * hy +
(vyp * (u − x [j −1][i] . temp) + vym * (x [j + 1] [i] . temp − u)) * hx) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex19.c

Knepley–Karpeev PETSc IBM ’09 135 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex19.c.html

Advanced PETSc DA

Outline

4 Advanced PETSc
SNES
DA

Knepley–Karpeev PETSc IBM ’09 136 / 160

Advanced PETSc DA

What is a DMDA?

DMDA is a topology interface on structured grids
Handles parallel data layout
Handles local and global indices

DMDAGetGlobalIndices() and DMDAGetAO()
Provides local and global vectors

DMGetGlobalVector() and DMGetLocalVector()
Handles ghost values coherence

DMGlobalToLocalBegin/End() and DMLocalToGlobalBegin/End()

Knepley–Karpeev PETSc IBM ’09 137 / 160

Advanced PETSc DA

Residual Evaluation

The DM interface is based upon local callback functions
FormFunctionLocal()

FormJacobianLocal()

Callbacks are registered using
SNESSetDM(), TSSetDM()

DMSNESSetFunctionLocal(), DMTSSetJacobianLocal()

When PETSc needs to evaluate the nonlinear residual F(x),
Each process evaluates the local residual

PETSc assembles the global residual automatically
Uses DMLocalToGlobal() method

Knepley–Karpeev PETSc IBM ’09 138 / 160

Advanced PETSc DA

Ghost Values

To evaluate a local function f (x), each process requires
its local portion of the vector x
its ghost values, bordering portions of x owned by neighboring
processes

Local Node
Ghost Node

Knepley–Karpeev PETSc IBM ’09 139 / 160

Advanced PETSc DA

DMDA Global Numberings

Proc 2 Proc 3
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Proc 0 Proc 1
Natural numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
PETSc numbering

Knepley–Karpeev PETSc IBM ’09 140 / 160

Advanced PETSc DA

DMDA Global vs. Local Numbering

Global: Each vertex has a unique id belongs on a unique process
Local: Numbering includes vertices from neighboring processes

These are called ghost vertices

Proc 2 Proc 3
X X X X X
X X X X X
12 13 14 15 X
8 9 10 11 X
4 5 6 7 X
0 1 2 3 X

Proc 0 Proc 1
Local numbering

Proc 2 Proc 3
21 22 23 28 29
18 19 20 26 27
15 16 17 24 25
6 7 8 13 14
3 4 5 11 12
0 1 2 9 10

Proc 0 Proc 1
Global numbering

Knepley–Karpeev PETSc IBM ’09 141 / 160

Advanced PETSc DA

DMDA Local Function

User provided function calculates the nonlinear residual (in 2D)

(* lf)(DMDALocalInfo *info, PetscScalar**x, PetscScalar ** r , void *ctx)

info: All layout and numbering information
x: The current solution (a multidimensional array)
r: The residual

ctx: The user context passed to DMDASNESSetFunctionLocal()

The local DMDA function is activated by calling

DMDASNESSetFunctionLocal(dm, INSERT_VALUES, lfunc, &ctx)

Knepley–Karpeev PETSc IBM ’09 142 / 160

Advanced PETSc DA

Bratu Residual Evaluation

∆u + λeu = 0

ResLocal (DMDALocalInfo * in fo , PetscScalar * * x , PetscScalar * * f , vo id * c tx) {
f o r (j = in fo −>ys ; j < in fo −>ys+ in fo −>ym; ++ j) {

f o r (i = in fo −>xs ; i < in fo −>xs+ in fo −>xm; ++ i) {
u = x [j] [i] ;
i f (i ==0 | | j ==0 | | i == M | | j == N) {

f [j] [i] = 2 . 0 * (hydhx+hxdhy) * u ; cont inue ;
}
u_xx = (2 . 0 * u − x [j] [i −1] − x [j] [i + 1]) * hydhx ;
u_yy = (2 . 0 * u − x [j −1][i] − x [j + 1] [i]) * hxdhy ;
f [j] [i] = u_xx + u_yy − hx * hy * lambda * exp (u) ;

} } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

Knepley–Karpeev PETSc IBM ’09 143 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

Advanced PETSc DA

DMDA Local Jacobian

User provided function calculates the Jacobian (in 2D)

(* ljac)(DMDALocalInfo *info, PetscScalar**x, MatJ, void *ctx)

info: All layout and numbering information
x: The current solution
J: The Jacobian

ctx: The user context passed to DASetLocalJacobian()

The local DMDA function is activated by calling

DMDASNESSetJacobianLocal(dm, ljac, &ctx)

Knepley–Karpeev PETSc IBM ’09 144 / 160

Advanced PETSc DA

Bratu Jacobian Evaluation

JacLocal (DMDALocalInfo * in fo , PetscScalar * * x , Mat jac , vo id * c tx) {
f o r (j = in fo −>ys ; j < in fo −>ys + in fo −>ym; j ++) {

f o r (i = in fo −>xs ; i < in fo −>xs + in fo −>xm; i ++) {
row . j = j ; row . i = i ;
i f (i == 0 | | j == 0 | | i == mx−1 | | j == my−1) {

v [0] = 1 . 0 ;
Mat SetVa luesStenc i l (jac ,1 ,& row ,1 ,& row , v , INSERT_VALUES) ;

} e lse {
v [0] = −(hx / hy) ; co l [0] . j = j −1; co l [0] . i = i ;
v [1] = −(hy / hx) ; co l [1] . j = j ; co l [1] . i = i −1;
v [2] = 2 . 0 * (hy / hx+hx / hy)

− hx * hy * lambda * PetscExpScalar (x [j] [i]) ;
v [3] = −(hy / hx) ; co l [3] . j = j ; co l [3] . i = i +1;
v [4] = −(hx / hy) ; co l [4] . j = j +1; co l [4] . i = i ;
Mat SetVa luesStenc i l (jac ,1 ,& row ,5 , col , v , INSERT_VALUES) ;

} } } }

$PETSC_DIR/src/snes/examples/tutorials/ex5.c

Knepley–Karpeev PETSc IBM ’09 145 / 160

http://www.mcs.anl.gov/petsc/petsc-current/src/snes/examples/tutorials/ex5.c.html

Advanced PETSc DA

A DMDA is more than a Mesh

A DMDA contains topology, geometry, and (sometimes) an implicit Q1
discretization.

It is used as a template to create
Vectors (functions)
Matrices (linear operators)

Knepley–Karpeev PETSc IBM ’09 146 / 160

Advanced PETSc DA

DMDA Vectors

The DMDA object contains only layout (topology) information
All field data is contained in PETSc Vecs

Global vectors are parallel
Each process stores a unique local portion
DMCreateGlobalVector(DM da, Vec *gvec)

Local vectors are sequential (and usually temporary)
Each process stores its local portion plus ghost values
DMCreateLocalVector(DM da, Vec *lvec)
includes ghost and boundary values!

Knepley–Karpeev PETSc IBM ’09 147 / 160

Advanced PETSc DA

Updating Ghosts

Two-step process enables overlapping
computation and communication

DMGlobalToLocalBegin(da, gvec, mode, lvec)
gvec provides the data
mode is either INSERT_VALUES or ADD_VALUES
lvec holds the local and ghost values

DMGlobalToLocalEnd(da, gvec, mode, lvec)
Finishes the communication

The process can be reversed with DALocalToGlobalBegin/End().

Knepley–Karpeev PETSc IBM ’09 148 / 160

Advanced PETSc DA

DMDA Stencils

Both the box stencil and star stencil are available.

proc 0 proc 1

proc 10

proc 0 proc 1

proc 10

Box Stencil Star Stencil

Knepley–Karpeev PETSc IBM ’09 149 / 160

Advanced PETSc DA

Setting Values on Regular Grids

PETSc provides

Mat SetVa luesStenc i l (Mat A, m, Mat S t e n c i l idxm [] , n , Mat S t e n c i l idxn [] ,
PetscScalar values [] , InsertMode mode)

Each row or column is actually a MatStencil
This specifies grid coordinates and a component if necessary
Can imagine for unstructured grids, they are vertices

The values are the same logically dense block in row/col

Knepley–Karpeev PETSc IBM ’09 150 / 160

Advanced PETSc DA

Creating a DMDA

DMDACreate2d(comm, bdX, bdY, type, M, N, m, n, dof, s, lm[], ln[], DMDA *da)

bd: Specifies boundary behavior
DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, or
DM_BOUNDARY_PERIODIC

type: Specifies stencil
DMDA_STENCIL_BOX or DMDA_STENCIL_STAR

M/N: Number of grid points in x/y-direction
m/n: Number of processes in x/y-direction
dof: Degrees of freedom per node
s: The stencil width

lm/n: Alternative array of local sizes
Use NULL for the default

Knepley–Karpeev PETSc IBM ’09 151 / 160

Sieve

Outline

1 Getting Started with PETSc

2 Common PETSc Usage

3 PETSc Integration

4 Advanced PETSc

5 Sieve

6 Conclusions

Knepley–Karpeev PETSc IBM ’09 152 / 160

Sieve

What is Sieve?

Sieve is intended to connect
topology and discretization

with linear algebra.

It introduces new PETSc classes:
Mesh, Overlap
Section, just a ghosted Vec

Numbering, GlobalOrder
Mesh Algorithms for PDE with Sieve I: Mesh Distribution,
Scientific Programming, 17(3), 215–230, 2009.

Knepley–Karpeev PETSc IBM ’09 153 / 160

http://dx.doi.org/10.3233/SPR-2009-0249

Sieve

Topology management

Meshes creation, manipulation, visualization
Boundary extraction
Cracks and faults
Arbitrary dimension, shape, embedding
Geometries are just fields

Knepley–Karpeev PETSc IBM ’09 154 / 160

Sieve

Numbering and Labeling

Labels are bi-directional maps from mesh pieces to Z
Ex Piece dimension, material type, boundary condition type

Can extract slice corresponding to a given value
Numberings map mesh pieces to Z

Guaranteed to be contiguous set of integers
Mainly used for output

Orderings map mesh pieces to Z
Mainly used for dof offsets
Supports distinction between local and global offsets

Knepley–Karpeev PETSc IBM ’09 155 / 160

Sieve

Parallelism

Supports ghosted vectors (called Sections)
Creates scatter between ghosted and global representations
Allows indexing by mesh piece

Preallocates matrices
Uses information in a GlobalOrder

Represents connections between meshes (called Overlaps)
Can sychronize data on parts using any combination function
Scatter construction code is independent of mesh type

Knepley–Karpeev PETSc IBM ’09 156 / 160

Sieve

FEM

Can define dof for each mesh piece
Interfaces with FieldSplit preconditioner
Can extract subfields as another vector with shared storage

Can introduce constraints and BC
Handles automatic elimination

Can extract values over an element closure

Knepley–Karpeev PETSc IBM ’09 157 / 160

Conclusions

Outline

1 Getting Started with PETSc

2 Common PETSc Usage

3 PETSc Integration

4 Advanced PETSc

5 Sieve

6 Conclusions

Knepley–Karpeev PETSc IBM ’09 158 / 160

Conclusions

Conclusions

PETSc can help you
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition or multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

Knepley–Karpeev PETSc IBM ’09 159 / 160

Conclusions

Conclusions

PETSc can help you
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition or multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

Knepley–Karpeev PETSc IBM ’09 159 / 160

Conclusions

Conclusions

PETSc can help you
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition or multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

Knepley–Karpeev PETSc IBM ’09 159 / 160

Conclusions

Conclusions

PETSc can help you
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition or multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

Knepley–Karpeev PETSc IBM ’09 159 / 160

Conclusions

Conclusions

PETSc can help you
easily construct a code to test your ideas

Lots of code construction, management, and debugging tools

scale an existing code to large or distributed machines
Using FormFunctionLocal() and scalable linear algebra

incorporate more scalable or higher performance algorithms
Such as domain decomposition or multigrid

tune your code to new architectures
Using profiling tools and specialized implementations

Knepley–Karpeev PETSc IBM ’09 159 / 160

Conclusions

References

Documentation: http://www.mcs.anl.gov/petsc/docs
PETSc Users manual
Manual pages
Many hyperlinked examples
FAQ, Troubleshooting info, installation info, etc.

Publications: http://www.mcs.anl.gov/petsc/publications
Research and publications that make use PETSc

MPI Information: http://www.mpi-forum.org
Using MPI (2nd Edition), by Gropp, Lusk, and Skjellum
Domain Decomposition, by Smith, Bjorstad, and Gropp

Knepley–Karpeev PETSc IBM ’09 160 / 160

http://www.mcs.anl.gov/petsc/docs
http://www.mcs.anl.gov/petsc/publications
http://www.mpi-forum.org

	Getting Started with PETSc
	What is PETSc?
	Who uses and develops PETSc?
	How can I get PETSc?
	How do I Configure PETSc?
	How do I Build PETSc?
	How do I run an example?
	How do I get more help?

	Common PETSc Usage
	Principles and Design
	Debugging PETSc
	Profiling PETSc
	Serial Performance
	Modeling Code

	PETSc Integration
	Initial Operations
	Vector Algebra
	Matrix Algebra
	Algebraic Solvers
	More Abstractions

	Advanced PETSc
	SNES
	DA

	Sieve
	Conclusions

