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Abstract—Voice, as a convenient and efficient way of informa-
tion delivery, has a significant advantage over the conventional
keyboard-based input methods, especially on small mobile devices
such as smartphones and smartwatches. However, the human
voice could often be exposed to the public, which allows an
attacker to quickly collect sound samples of targeted victims and
further launch voice impersonation attacks to spoof those voice-
based applications. In this paper, we propose the design and
implementation of a robust software-only voice impersonation
defense system, which is tailored for mobile platforms and can
be easily integrated with existing off-the-shelf smart devices. In
our system, we explore magnetic field emitted from loudspeakers
as the essential characteristic for detecting machine-based voice
impersonation attacks. Furthermore, we use a state-of-the-art
automatic speaker verification system to defend against human
imitation attacks. Finally, our evaluation results show that our
system achieves simultaneously high accuracy (100%) and low
equal error rates (EERs) (0%) in detecting the machine-based
voice impersonation attack on smartphones.

I. INTRODUCTION

The proliferation of smartphones and wearable devices have

fostered the booming of voice-based mobile applications [24],

[33], which use human voice as a convenient and non-intrusive

way for communication and command control. Common

functionalities of these applications include traditional voice

over IP (VoIP) (e.g., Skype and Hangouts), trending voice-

based instant messaging (e.g., WeChat, TalkBox, and Skout),

and intelligent digital personal assistant (e.g., Amazon Alexa,

Google Home, Apple’s Siri).

Even for security, voice has also been widely used in many

mobile applications [51], [8] as a convenient and reliable

way of user authentication. For example, WeChat provides

“Voiceprint” [51], an authentication interface that allows users

to log into WeChat by speaking pass-phrases. Baidu, a major

Chinese web services company, also introduced voice-unlock

as a built-in authentication method in their smartphone oper-

ating system [8]. With the exploding market of smart mobile

devices, the voice-based mobile applications are expected to

become even more popular in the next few years [33].

However, unlike other human biometrics, the human voice

could often be exposed to the public. Examples of such

exposure include scenarios where people are present in public

receiving phone calls, or just talking loud in a restaurant. As

such, an attacker could easily “steal” a victim’s voice by just

using handy recorders such as smartphones, by downloading

the audio clips from the victim’s online social networking

website [7], or even by creating and recording a spam call.

Upon the successful collection of enough voice samples, a

high fidelity acoustic model of the victim’s voice can be then

reconstructed with the current advancement in voice process-

ing [25]. Using the victim’s acoustic model, an adversary could

easily convert his voice into the victim’s voice using voice

morphing techniques. With state-of-the-art speech synthesis

techniques (e.g. Adobe Voco [36]), even synthetic speech that

resembles the victim’s voice could be generated using any

provided text.

Because voice is commonly characterized as one of the

unique biometric features for personal authentication [13], an

adversary that can imitate the victim’s voice would quickly

launch voice impersonation attacks to spoof any voice-based

applications [53], [39]. This, in turn, would result in severe

consequences to harm victim’s reputation, safety, and prop-

erty. For example, by spoofing the voice-based authentication

mechanism, the attacker could easily steal private information

from the victim’s smartphone. Furthermore, fake voice calls

or scam voice messages could be used to fraud the victim’s

social contacts.

The traditional methods of defending against the voice

impersonation attacks require an automatic speaker verification

(ASV) system, which employs unique spectral and prosodic

features of a user’s voice for user authentication [2], [40].

However, current ASV systems are far from perfect. While

they are effective in detecting human-based voice imperson-

ation attacks (human voice imitation) [5], [9], they are widely

known for their inability to detect voice replay attacks [53].

Moreover, when detecting voice impersonation attacks, current
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ASV systems require a prior knowledge of specific voice

impersonation techniques used by the attacker [29]. Such an

assumption does not necessarily always hold in practice. For

example, one recent work [54] has demonestrated that ASV

alone could be subject to sophisticated machine-based voice

attacks. Hence, more robust designs resilient to both human-

based and machine-based voice impersonation attacks are in

great demand yet to be fully explored.

To build a robust defense system, there are many chal-

lenging barriers to overcome. One of the critical challenges

is to defend against both human-based and machine-based

attacks simultaneously. To achieve this goal, we leverage

the following insights: in machine-based voice impersonation

attacks (such as the replay attack, voice morphing attack, and

voice synthesize attack), an attacker usually needs to use a

loudspeaker (e.g., PC loudspeaker, smartphone loudspeaker,

and earphone) to transform the digital or analog signal into

the sound. The conventional loudspeaker uses magnetic force

to broadcast the sound and leads to the generation of a

magnetic field. Thus, if we can capture this magnetic field by

monitoring the magnetometer reading from the smartphone,

we can leverage it as a key differentiating factor between a

human speaker and a loudspeaker. By carefully integrating

our detection method with the current AVS systems, we can

achieve a much more robust design to defend against all types

of voice impersonation attacks on smartphones.

In addition to defending against attacks launched via con-

ventional loudspeakers, we also consider special cases of

machine-based voice impersonation attacks launched via small

earphones. In such scenarios, the magnetic force emitted can

be too small to be sensed directly by the magnetometer. To

address this challenge, we resort to detecting the channel

size of the sound source, and design a sound field validation

mechanism to ensure that the sound source size is always

close to a human mouth (i.e., not an earphone). By cross-

checking both approaches, together with the careful integration

of an existing AVS system, we can defeat the vast majority of

voice impersonation attacks and significantly raise the level of

security for existing voice-based mobile applications.

Contribution. Our main contributions are as follows:

1) We propose a robust software-only defense system against

voice impersonation attacks, which is tailored for mobile plat-

forms and can be easily integrated with off-the-shelf mobile

phones and systems.

2) We use advanced acoustic signal processing, mobile sens-

ing, and machine learning techniques, and integrate them as a

whole system to efficiently detect voice impersonation attacks.

3) We build our system prototype and conduct comprehensive

evaluations. The experimental results show that our system is

robust and achieves very high accuracy with zero equal error

rates (EER) in defending against voice impersonation.

Organization. In the rest of the paper, we begin with the

background and related work in Section II, followed by the

problem formulation in Section III. Section IV describes

the scheme overview and design details. The implementation

details are presented in Section V. The evaluation results are

in Section VI. We further discuss our solution in Section VII.

Finally, Section VIII concludes this paper.

II. BACKGROUND AND RELATED WORK

Voice-based Mobile Applications. Based on their function-

ality, existing voice-based mobile applications can be divided

into two categories: i) voice communication ii) voice control.
For voice communication, there are VoIP apps and instant

voice message apps. As previously stated, by imitating a

victim’s voice, tone and speaking style, the attacker could

easily launch impersonation attacks that would lead to severe

harm to the victim. On the other hand, the applications in

the second category allow users to use their voice commands

to control the smartphone, using services such as the voice
recognition and assistant and voice authentication. For voice

recognition and assistant, Siri and Google Voice Search (GVS)

are two noteworthy representative systems on iOS and Android

systems, respectively.

In [14], the authors presented a recent threat that uses GVS

application to launch voice-based permission bypassing attack

and steal private user information from smartphones. As for

voice authentication, quite a few mobile apps have adopted

it as a built-in method for user authentication and system

login. Besides the aforementioned WeChat “Voiceprint” [51]

interface, Superlock [20] is another example that utilizes

user’s voice to lock and unlocks the phone. Unfortunately, a

recent study shows that these authentication systems could be

spoofed by an attacker mimicking the voice of the victim [53].

Automatic Speaker Verification (ASV) System. An ASV

system can accept or reject a speech sample submitted by a

user, and verify her as either a genuine speaker or an imposter

[43], [27]. It can be text-dependent (with required utterances

from speakers) or text-independent (able to accept arbitrary

utterances) [10]. Text-independent ASV systems are more flex-

ible and are able to accept arbitrary utterances, i.e., different

languages, from speakers [10]. The text-dependent ASV is

more widely selected for authentication applications, since

it provides higher recognition accuracy with fewer required

utterances for verification. The current practice for building

an ASV system involves two processes: offline training and

runtime verification. During the offline training, the ASV

system uses speech samples provided by the genuine speaker

to extract certain spectral, prosodic (see [2] and [40]) or other

high-level features (c.f. [15] and [35]), to create a speaker

model. Later in the runtime verification phase, the incoming

voice is verified against the trained speaker model.

As shown in Fig. 1, a generic ASV system contains seven

vulnerability points. Attacks at point (1) are the voice im-
personation attacks, where the attacker tries to impersonate

another person by using pre-recorded or synthesized voice

sample before transmitting them into the microphone [23].

Attacks at point (2-6) are the indirection attacks [32], which

are performed within the ASV system. In our paper, we build

our defense system focusing on the first type of the attacks.
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Fig. 1: A generic automatic speaker verification (ASV) system with seven possible attack points. The attack at point 1 denotes

the voice impersonation attacks, whereas the attack at points 2 through 6 denote the indirection attacks.

Voice Impersonation Attack. The voice impersonation attack

implies an attack targeting the ASV system using a pre-

recorded, manipulated or synthesized voice samples to deceive

the system into verifying a claimed identity [29]. The work in

[26] suggests that, even though professional human imperson-

ators are more effective than the untrained, they are still unable

to repeatedly fool an ASV system. To address the human-based

voice impersonation attacks, the work in [5], [9] proposed a

disguise detection scheme. The scheme exploits the fact that

voice samples submitted by an impersonator are less practiced

and exhibit larger acoustic parameter variations. In particular,

[5] claims a 95.8% to 100% detection rate for human-based

impersonation attacks.

Another method of voice impersonation is the machine-
based voice impersonation attack, such as replay attack,

voice synthesis or conversion attack. To launch this type of

attack, the attacker needs to seek help with specific devices

(e.g., microphone, computer and loudspeaker). In [46], the

author shows that an attacker can concatenate speech samples

from multiple short voice segments of the target speaker and

overcome text-dependent ASV systems by launching replay

attacks. Although a few system research papers on developing

replay attack countermeasures have been published [30], [38],

[46], [47], [50], all these systems suffer from high false

acceptance rate (FAR) compared to the respective baselines. In

[4], the authors demonstrate vulnerabilities of ASV systems for

voice synthesis attacks with artificial speech generated from

text input. The work in [42], [55] propose the voice conversion

attack in which the attacker converts the spectral and prosody

features of her own speech in resembling the victim’s. To de-

tect voice synthesis and voice conversion attack, [56] exploited

artifacts introduced by the vocoder to discriminate converted

speech from original speech. A more recent work [3] claims a

method that can detect voice conversion attack effectively by

estimating dynamic speech variability.

The essential difference between our work and previous

studies lies in the method we use for machine-based voice

impersonation detection. We design a more general coun-

termeasure by leveraging smartphone-equipped magnetometer

to detect the magnetic field produced by the conventional

loudspeakers. We then use this physical characteristic of the

conventional loudspeakers to detect machine-based imperson-

ator on smartphones, instead of analyzing the acoustic features

of speech samples.

III. PROBLEM FORMULATION

A. Adversary Model

The voice impersonation attack aims at attacking biometric

identifiers of a system. In our adversary model, an attacker is

able to collect the voice samples of the victim. As mentioned

previously, this can be achieved by the attacker with little

cost, since human voice could often be exposed to the public.

Once an attacker acquires the voice samples, the attacker is

able to use different methods to change their voice biometrics

to appear like the victim. Then, the attacker can perform

spoofed phone calls, or launch replay attacks, voice conversion

attacks and voice synthesis attacks, through voice messaging

and voice authentication applications. Based on the methods

the attacker uses, we divide the voice impersonation attacks

into the following two categories:

1) Machine-based Voice Impersonation Attack. In this

type of attack, the attacker has the ability to leverage computer

and other peripherals (e.g., loudspeaker) to gain the capability

of voice replaying or voice morphing. Therefore, the attacker

can imitate the target’s voice at a high degree of similarity. We

assume the attacker has a permanent or temporary access to the

mobile application’s front-end, which displays the voice-based

I/O interface (e.g., a victim’s mobile phone). Based on the

capability of the attacker, we can further divide the machine-

based voice impersonation attacks into three types.

Type 1: Voice Replay Attack. In this type of attack, the

attacker is able to acquire an audio recording of the target’s

voice prior to the attack. The attacker tries to spoof the speaker

verification system by replaying the voice sample using a

loudspeaker.

Type 2: Voice Morphing Attack. In this type of attack,

the attacker is able to imitate the target’s voice by applying

voice morphing (conversion) techniques. We assume that the

voice spoofing techniques used by the attacker can produce

high-quality output with all details of the human vocal tract.

Moreover, the attacker has the ability to simulate the excitation
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Fig. 2: The architecture of conventional loudspeaker showing

the magnet, coil and cone used for loudspeaker operations.

of the vocal tract naturally. The attacker tries to spoof the

speaker verification system by broadcasting the morphed voice

using a loudspeaker to impersonate the targeted legitimate

user.

Type 3: Voice Synthesize Attack. This type of attacker is

able to synthesize target voice by using the state-of-the-art

speech synthesizers techniques. We assume the attacker is able

to use text-to-speech (TTS) technique to generate the natural-

sounding synthetic speech of the targeted user from any input

texts. The attacker tries to spoof the speaker verification

system by directly broadcasting the synthetic voice using a

loudspeaker.

We note that in the last step of each of the three types

of attacks, a loudspeaker (e.g., PC loudspeaker, smartphone

loudspeaker, etc.) is required to broadcast the processed voice.

Thus, if the differentiation between the voice produced by a

human and by a loudspeaker is clear, we can defend against the

machine-based voice impersonation attacks from the source

validation. The key insight of our design is discussed in the

following section.

2) Human-based Voice Impersonation Attack. This type

of attack, the attacker utilizes the acquired voice sample to

imitate the target’s voice without the help of any computer

or professional devices. In particular, the attacker may use his

voice or could seek help from other people (e.g., someone who

can imitate the target’s voice very closely). To defend against

this type of attack, we utilize the state-of-the-art ASV system

which leverages the acoustic features from the voice samples

to perform voice impersonation attack detection.

B. Key Insights

Our key goal is to differentiate genuine speakers from both

machine-based and human-based impostors on smartphones.

For human-based impostor, there already exist sophisticated

speaker verification systems, such as the open-sourced Bob

Spear verification toolbox developed by Khoury et al. [21],

which has been recognized for its performance in detecting

against human-based impersonation attacks [53], [5], [9].

For the machine-based impersonation attack, the existing

state-of-the-art voice authentication systems can be easily cir-

cumvented by voice replay and conversion tools (e.g., Festvox

[16]), among others. Therefore, relying on the spectral and

prosodic features within the voice to defend against machine-
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Fig. 3: A typical use case of our system.

based voice impersonation attacks has been proven ineffective.

Thus, we address this problem from a new perspective.

We note that different from human-based voice imperson-

ation, the machine-based impersonation attack requires the

attacker to convert the digital signal to an audible sound by the

assistance of a loudspeaker. Moreover, most of today’s conven-

tional (dynamic) loudspeakers contain a permanent magnet,

a metal coil behaving like an electromagnet, and a cone to

translate an electrical signal into an audible sound [34], as

shown in Fig. 2. When operating correctly, such a loudspeaker

would naturally produce a magnetic field, originating from

both the permanent magnet fixed inside the speaker, and the

movable coil that creates a dynamic magnetic field when an

electric current flows through it.

Therefore, our key insight is to detect the magnetic field pro-

duced by the conventional loudspeakers. By using the magne-

tometer (compass) in modern smartphones, we can distinguish

between a human speaker and a computer loudspeaker, since

the human vocal tract would not produce any magnetic field.

As we show below, such observations will help us design and

obtain a robust defense system with high accuracy. Moreover,

we use the Spear speaker verification system as a building

block to defend against the human impostor.

C. Use Cases

To successfully leverage our key insight, we require users to

place the smartphone as close as possible to the sound source.

This is because the magnetic field produced by the loudspeaker

can only be detected within a short range. However, the

distance between the smartphone and the sound source is

hard to measure. Therefore, we design non-intrusive use cases

to confine the moving pattern of the smartphone and assist

in measuring the distance. As shown in Fig. 3, our scheme

requires the user first to open our mobile application and

hold the smartphone near his head vertically or horizontally

(a similar interaction model has been adopted by [11]); the

user starts speaking the voice command while moving the

smartphone towards his or her mouth at the same time. Finally,

the user waits for our application to verify his identity. During

this process, our application first collects the acoustic data and

the reading of the inertial sensors, and then feeds them into

the verification pipeline.
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Fig. 4: The architecture of our defense system.
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Fig. 5: Geometric constraint of our system

IV. THE PROPOSED SOLUTION

A. System Architecture

As shown in Fig. 4, our system consists of four verifica-

tion components for defending against voice impersonation

attacks: 1) sound source distance verification, 2) sound field

verification, 3) loudspeaker detection, and 4) speaker identity

verification components.

The sound source distance verification component is de-

signed for calculating the distance between the smartphone

and the sound source. It manipulates the smartphone trajectory

recovery algorithm with acoustic and sensory data to recon-

struct the moving trajectory of the smartphone. We utilize

the least-square circle fitting algorithm [17] to calculate the

distance. The purpose of this component is to ensure that the

smartphone is placed close enough to the sound source so that

we can detect the magnetic field created by the loudspeaker

with the smartphone built-in magnetometer.

The sound field verification component is designed for

analyzing the characteristic of the sound field produced by the

sound source. We add this element because the magnetometer

is not sensitive enough to detect magnet in a small size, such

as the magnet inside an earphone. Therefore, we use this

component to detect if the sound is formed and articulated

by a sound source, whose size is close to a human mouth

(i.e., not a loudspeaker).

If the collected dataset passes the second and third tests,

we then use the loudspeaker detection component to perform

further detection. By cross-checking the magnetometer and
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Fig. 6: Received spectrograph of the high-frequency tone while

moving the phone.

motion trajectory data, we are able to verify if the sound is

produced by a human speaker or a loudspeaker. The fourth

component is designed for speaker identity verification, and

is based on analyzing the spectral and prosodic features of

the acoustic data. We leverage the state-of-the-art speaker

verification algorithm to detect human-based voice imperson-

ation attacks. Thus, combining the detection result from the

fourth component with the one from the third component,

we are able to defend against both machine-based voice

impersonation attacks and human-based voice impersonation

attacks on smartphones.

B. Defending Against Machine-Based Voice Impersonation

1) Sound Source Distance Verification: As shown in Fig. 5,

to calculate the distance d between the sound source and the

smartphone, we use speakers, microphones and inertial sensors

to reconstruct the moving trajectory of the smartphone.

Motion Trajectory Reconstruction. As we mentioned before,

we require the user to hold and move the smartphone toward

his mouth while speaking. In the meantime, we collect both

the acoustic data and the inertial sensor data from the smart-

phone. In our system, we adopt a similar phase-based distance

measurement method as in [49] to calculate the distance using

the following steps.

First, we let the smartphone’s speaker generate inaudible

tone in a static high frequency fs ( fs > 16 kHz). Since the

corresponding wavelength of that sound is less than 3 centime-

ter, the movement of the smartphone will significantly change

420187
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Fig. 7: The sound field created by (a) a point sound source

and (b) created by a strip-type sound source.

the phase when it reflects off from the user’s head. Based

on the limitation of the speaker on commodity smartphones,

we select the highest possible frequency using a calibration

method described in [18]. With the high-frequency tone being

broadcasted, the movement of the smartphone will cause phase

change. Fig. 6 shows the received spectrograph of the high-

frequency tone while moving the phone. Since the phase

change is directly related to the moving distance d of the

smartphone, we can easily reconstruct the estimated moving

trajectory and correlate it with the value derived from the

inertial sensor.

Instead of tracking the smartphone in 3D space with free

movement, we set up a pre-defined 2D moving plane. We

assume the smartphone stays in the same plane while moving.

The moving trajectory of the smartphone is approximate to

a straight line, where the smartphone screen always faces

the human’s head while moving. Based on this model, we

can use the time interval between the smartphone direction

change combined with the relative moving speed to estimate

the relative location of the smartphone in a 2D plane. As the

magnetometer reading can result in some error in an indoor

environment [37], we jointly use the magnetometer, gyroscope,

and accelerometer to obtain the direction change Δω [31].

By using the pre-defined 2D trajectory model, we can then

set the start location as (0, 0) and keep updating the location

coordinate (xt, yt) by combining the timestamp t, velocity v
and direction ω information. Finally, we can fully reconstruct

the phone’s 2D moving trajectory.

2) Sound Field Verification: In our defense system, we sim-

plify the human voice as an acoustic sound source. Therefore,

the user’s speech is regarded as an acoustic signal broadcast by

the sound source. The amplitude of the acoustic signal, which

is the sound intensity level, can be measured by smartphone’s

microphone. To justify whether the received sound is broadcast

from a human mouth, our system first models the sound field of

the human mouth using the training data. Then, by performing

a binary classification of each set of newly received sound

data, we can verify the result. Therefore, only the sound source

(or sound channel) with a similar size of a human mouth can

be accepted and will be further processed.

Quantifying the Sound Field. The sound field represents the

energy transfer in the air by the acoustic waves. The sound

intensity level can express the energy contained in sound fields.
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−10000
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Fig. 8: The feature points of the human-mouth sound field

(red circles) and the earphone sound field (blue triangles) after

principal component analysis (PCA).

Fig. 7-(a)(b) shows the sound field created by a point sound

source, and the sound field generated by a strip-type sound

source, respectively. According to [19], the sound field around

the user is affected not only by the vocal tract but also by the

shape of the user’s mouth and head. By allowing users to hold

and horizontally move the phone in front of the sound source,

we can collect a set of sound intensity measurements from

different locations, which are further utilized to quantify the

spatial characteristics of the sound field.

Two Phases in Sound Field Verification. As shown in Fig. 9,

the sound source verification process is divided into two

phases, the training phase and the predicting phase. In the

training phase, we collect several sets of sound intensity as

training data and use them to model the spatial characteristics

of the user’s sound field. While moving the smartphone as

instructed, the user needs to speak the command displayed on

the smartphone’s screen repeatedly. For each round, we build

a feature vector to represent the quantified sound field. Each

feature vector contains multiple datasets, and each dataset is

composed by a tuple of volumes (dB) and the rotation angle

(degree). Specifically, the volume of the sound is measured

by the microphone, and the rotation angle is jointly measured

by the magnetometer, the gyroscope, and the accelerometer

[37]. These feature vectors are then used to train a binary

classifier using the linear Support Vector Machine (SVM) [12]

algorithm. In the prediction phase, we ask users to perform a

similar motion trajectory with the smartphone (as they did

in the training phase). We then submit the newly collected

feature vector to the pre-trained binary classifier and validate

the results. Fig. 8 shows the feature vector of the human mouth

sound field and the earphone sound field after applying the

Principal Component Analysis (PCA) [52]. This shows that

the feature points are easy to be separated, and thus the sound

source size can be correctly classified.

3) Loudspeaker Detection: The goal of the loudspeaker

detection component is to detect the emitted magnetic field.

Unlike human vocal tract, conventional loudspeakers leverage

421188
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Fig. 9: The sound source validation process, containing two phases: i) Training phase and ii) Predicting phase.
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Fig. 10: The polar graph of the magnetic field reading for

a conventional loudspeaker. (Note that the magnetic field

strength emitted by loudspeakers usually ranges from 30 −
210μT ).

magnetic force to transfer the electrical signal into acous-

tic sound. According to the validation mechanism presented

above, two geometric constraints of the sound source and the

smartphone in the submitted trajectory should be satisfied: i)

the smartphone is close enough to the sound source, which

means the distance is within a certain threshold Dt; ii) the size

of the voice channel is close to the human mouth. Therefore,

if an imposter tries to launch a machine-based impersonation

attack using the loudspeaker, we can detect the speaker by

checking the variance of the magnetometer readings.

Fig. 10 shows the polar graph (0◦–180◦) of the magnetic

field reading for a conventional loudspeaker (Logitech LS21).

Note that different loudspeaker may have different structure

appearances as well as the magnetic field distributions. In our

system, we jointly use the absolute value and the changing rate

of magnetic readings to detect the speaker. We set a magnetic

strength threshold Mt and a changing rate threshold βt. Both

values are determined based on our experimental results.

C. Defending Against Human-Based Voice Impersonation

1) Speaker Identity Verification: As part of our defense sys-

tem, we choose the state-of-the-art Spear system as the speaker

identity verification component to defend against human-based

TABLE I: The performance of speaker identity verification

component using the false acceptance rate (FAR).

Test 1
(FAR)

Test 2
(FAR)

UBM 0.0% 0.5%
ISV 0.0% 1.3%

voice impersonation attacks. The Spear system has already

implemented multiple mature speaker verification algorithms

and has been evaluated using several standard voice datasets

(e.g., Voxforge [48], NIST SRE [41] and MOBIO [28]). The

toolchains provided by the Spear system are configurable. We

further choose the Gaussian Mixture Model (GMM) and Inter-
Session Variability (ISV) techniques. Spear has two phases, a

training phase and a testing phase. Both phases require the

voice data as an input. In our design, our application first

collects the genuine user’s voice samples to model the user

using Spear (the voice samples are also used for the sound

source verification), and then uses the trained speaker model

to identify the incoming voice samples.

We evaluate the performance of the Spear system for

defending against human-based voice impersonation attack by

conducting two tests. For the first test, we create a dataset

which consists of five speakers. Each speaker is asked to

pronounce a unique six-digit passphrase for five times. We

then allow the speaker to collect other speakers’ voice samples

and ask them to mimic it. Technically, the Spear system is

for training and testing our data set. As shown in Table I,

the false acceptance rates (FAR) for both of the GMM and

ISV models are all equal to zero, which implies the success

rate of the human-based voice impersonation attack is equal

to zero. For the second test, we use the existing Voxforge

dataset to train the Spear speaker model and test it using the

CMU Arctic Database [22], in which they pronounce the same

utterance when recording. The FAR value for the second test is

significantly low, which confirms that Spear is very robust for

defending against human-based voice impersonation attacks.

V. IMPLEMENTATION

To evaluate and validate the effectiveness of our system,

we build a prototype implemented on several smartphone

testbeds from three different manufactures (shown in Table II),

running Android 4.4 KitKat and one Arch Linux [6] server
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TABLE II: Types of smartphones.

Maker Model

Google (LG)
Nexus 5
Nexus 4

Samsung Galaxy Nexus

TABLE III: Four categories of output decisions.

Decision
Accept Reject

Genuine Correct Acceptance False Rejction
Impostor False Acceptance Correct Rejection

with Intel(R) Core(TM) Devil’s Canyon Quad-Core i7-4790K

@ 4.00 GHz CPU and 32 GB of RAM.

Our prototype is based on a typical client-server architecture

and can be divided into two parts: 1) a mobile application

running on Android and 2) a server backend deployed in a

virtual private cloud (VPC).

1) Mobile Application. The mobile application allows users

to record and upload acoustic data annotated with inertial

sensory information. We design and implement a simple

graphical user interface (GUI) (Fig. 11) for guiding mobile

users moving the smartphone while speaking the command.

2) Server Backend. The server backend has two main

functionalities: i) handling incoming acoustic and inertial

sensory data, and ii) processing received data and feeding back

the verification decision. Our defense system uses a computer

server configured with Arch Linux and Tornado web server

[44] for parallel data processing.

Handling Incoming Data. We utilize a Tornado web server

to process incoming connection requests. Tornado is a high-

performance asynchronous web server, and it is capable of

receiving and handling data from a larger number of users

simultaneously. Our mobile clients send zipped data to the

Tornado server via a secure web socket protocol and all the

data sent from the users is encrypted to ensure confidentiality.

Data Processing Pipeline. At the server side, we first unzip

the received data and then feed it into a cascade pipeline as

we described in the previous section. Besides, we leverage

the Advanced Python Scheduler (APScheduler) to accelerate

the process of defending against the machine-based voice

impersonation attack. The verification result is directly sent

back to the smartphone through the secure web socket channel.

VI. EVALUATION

A. Methodology

To perform our experiments, we design and build a small

testbed environment with a real loudspeaker and a smartphone

hardware. Because the Spear sub-system can address the

human-based voice impersonation attacks, our evaluation fo-

cuses on the machine-based voice impersonation anti-spoofing

sub-system. Since our method is for differentiating between

a human speaker and a computer loudspeaker, we do not

identify the differences among the voice replay attack, the

voice morphing attack and voice synthesis attack as they all

use the loudspeaker.

Fig. 11: The graphical user interface (GUI) for mobile user for

guiding mobile users moving the smartphone while speaking

the command.

Devices and Tools. We evaluate our system on smartphones.

The models of smartphone testbed for implementing our

system are shown in Table II. Appendix A provides the models

of PC loudspeakers, notebook internal speakers, smartphone

internal speakers, and earphones used in our evaluations.

Performance Metrics. As shown in Table III, our system

contains four possible outcomes, where two are correct and

two are incorrect. To assess the performance of our defense

scheme, we choose the standard automatic speaker verification

metrics, namely, the false acceptance rate (FAR) and the false

rejection rate (FRR). FAR characterizes the rate at which an

attacker is wrongly accepted by the system and considered as

an authorized user. On the other hand, FRR characterizes the

rate at which a true user is falsely rejected by our systems.

Both FAR and FRR are controlled by adjusting the verification

threshold. An attacker can launch a successful attack when

the system confuses a spoofing attempt with a genuine one.

In addition to FAR and FRR, we also measure the equal error

rate (EER), which is the rate at which the acceptance and

rejection errors are identical. To measure the EER for each

test round, we vary the threshold value of each verification

component in the defense scheme. A system with a perfect

accuracy should have a zero EER.

Sound Source Distance. To assess the impact of the sound

source distance in the defense mechanism, we create a test

database which consists of five individual speakers. Each

speaker contributes six groups of voice samples measured at

different distances. We further use the recorded voice samples

to perform machine-based voice replay attack using 25 differ-

ent loudspeakers at various distances. The results coming from

each of our system components are measured and merged. As

shown in Fig. 12 (a), the FAR, FRR, and EER are all zero

when the sound source distance is less than or equal to 6 cm.

This is mainly because when the smartphone is placed very

close to the loudspeaker, the magnetic field of the loudspeaker

heavily interferes with the magnetometer’s reading. Therefore,

we can easily set up a threshold to differentiate the individual
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Fig. 12: Impact of sound source distance for (a) No shielding and (b) Magnetic field shielding of our defense scheme. The

FAR, FRR and EER values of our system are all equal to zero when the distance is less than or equal to 6 cm.
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Fig. 13: The magnetic field distribution of: (a) unshielded

magnet and (b) shielded magnet.

speaker and the loudspeaker. From 8 to 10 cm, the magnetic

field emitted from the loudspeaker becomes weaker, and the

FAR rises from zero to approximately 5%. When the distance

between the smartphone and the sound source is larger than 10
cm, the magnetic field emitted from the loudspeaker becomes

feeble, which is hard to differentiate from environmental mag-

netic interferences. Hence, the FAR rises sharply. However,

the FRR remains low within all distance ranges (except at

10 cm) because the individual speaker does not produce the

magnetic field. Thus, it can be correctly distinguished when

there are no environmental magnetic interferences. According

to the evaluation results, we set the sound source distance

threshold Dt to 6 cm for the best system performance.

Magnetic Field Shielding. Unlike the electrical field, the

magnetic field can never be eliminated. One common way to

avoid the emanation of the magnetic field is to use a metal (e.g.

iron) box which covers the magnet. In this way, the magnetic

field travels within the walls of the box and cannot penetrate

the box (shown in Fig. 13). Among all the metals, the Mu-
metal [1] achieves the best performance to shield the magnetic

field. Mu-metal is a nickel-iron alloy, with 77% nickel, 16%

iron, 5% copper, and 2% chromium. It has a high magnetic

permeability that is perfect to shield the magnetic field.

To evaluate our system performance against machine-based

voice impersonation attack using magnetic field shielding,

the test database created from the sound source distance

experiment is utilized. Different from the previous experiment,

we now perform machine-based voice replay attack with

the loudspeaker shielded by the Mu-metal. The results are

measured from each of our system components and combined.

As in Fig. 12 (b), the FAR, FRR, and EER values are equal

to zero when the distance is less than or equal to 6 cm.

This is because the metal box can still be detected by our

system, as the magnetometer can detect both the magnet and

the metal [45]. Moreover, the shielding metal also changes

the sound field distribution of the loudspeaker, so our sound

field validation component is still able to detect the anomaly.

According to the results at 8 cm, the Mu-metal successfully

decreases the magnetic field created by the loudspeaker and

results in a higher FAR (8%) compared to the unshielded

result (5.3%). From 8 to 14 cm, the values of FAR, FER,

and EER increase dramatically as the Mu-metal significantly

decreases the intensity of the magnetic field emanated from the

loudspeaker. Based on these results, our system can be applied

to detect shielded loudspeakers when the distance between the

sound source and the smartphone is less than or equal to 6 cm.

Environmental Magnetic Interference. In order to assess

the impact of environmental magnetic interference, we set up

two test scenarios. First, the success rate of our method is

evaluated when a user is nearby a computer. Same as in the

previous experiments, we collect test data from both legitimate

users and voice impostors with various distances. During the

test, an all-in-one computer (iMac 27”) is put 30 cm away

from the test location. Hence, we expect high electromagnetic

field (EMF) that may cause interference to our system. Before
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(b) In a car.

Fig. 14: The FAR, FRR and EER values of our system with environmental magnetic interference: (a) Near a computer (iMac

27’ Late 2009) and (b) In a car’s front seat (Hyundai Sonata 2012).

Fig. 15: Authentication time comparison.

conducting the experiment, we first measure the EMF radiation

by using an Acoustimeter RF meter (Model AM-10) at the

distance of 30 cm. The results show that the average exposure

level varies from 500 μW/m2 to 2500 μW/m2. As shown

in Fig. 14 (a), the FAR, FRR, and EER values are equal

to zero when the distance is less than or equal to 6 cm.

However, different from previous results, the FRR value rises

sharply (27.8%) while the FAR remains at zero at the distance

of 8 cm. This is mainly because, with the increase of the

distance, the moving trajectories of the smartphone become

closer to the computer screen, and the smartphone is exposed

to heavier EMF radiation. Therefore, the interference from the

EMF affects the reading of the magnetometer and triggers a

false alarm.

Second, we conduct the same experiment in a car’s front

seat (Hyundai Sonata 2012). Since modern cars are equipped

with many electronics, all of these electronics are emitters

of EMF, potentially resulting in a very high level of EMF

interference. As we expected, the evaluation result shown in

Fig. 14 indicates that our method suffers a high FRR (around

45%) at a distance above 4 cm. Even at 4 cm, the FRR is still

near 30%, which is unacceptable in our evaluation. However,

the EERs in all test distances remain at zero. The results

indicate that by adjusting the sensitivity level of the detection

components (in particular, the loudspeaker detection compo-

nent), we can achieve much better FAR and FRR results.

Therefore, one solution could be by letting the smartphone

sense the environment before collecting the data and adjusting

its sensitivity level automatically. We will discuss more details

of this solution later.

Authentication Speed and Usability. We compare the au-

thentication time of our method, WeChat voice print, and

credential based authentications. We recruit 20 volunteers

(non-computer science background). Each of the volunteers

performed ten trials of voice authentication using our system.

In addition to the 200 trials in our system, our volunteers also

performed 200 trials on WeChat voiceprint, as well as 200

trials to log in on WeChat using a traditional password. For

all these experiments, we stop the time counter only when

the authentication result is sent back. We try to minimize

the influence of network latency by redirecting all network

traffic to a local server and record the data transmission time.

The time costs of the three schemes are averaged and plotted

in Fig. 15 (Note that “Time per trial” contains unsuccessful

trials which can be considered as false negatives). This figure

indicates well that our system is only less than a second slower

than the original WeChat voice print method. Moreover, both

approaches are comparable to the traditional credential-based

method.

Various Classes of Speakers. To demonstrate our proposed

defense system is universal, we have selected and tested 25

different conventional loudspeakers ranging from low-end to
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Fig. 16: Plastic CAB tube for sound-tube attack.

high-end, including PC loudspeakers, mobile phone internal

speakers, laptop internal speakers, and earphones. For the lack

of space, we omit the make and model information of those

evaluated speakers and the detailed evaluation results. How-

ever, in short, the main result shows that our method can detect

all of these loudspeakers owing to the same structure they

share, all containing a permanent magnet. Thereby, the detec-

tion method should be the same. Besides, the magnetometer

sensor AK8975 used by the smartphone has a sensitivity of

0.3μT/LSB and a measurement range of ±1200μT . On the

other hand, as shown in Fig. 10, the magnetic field strength

emitted by the loudspeakers is usually within the range of

30 − 210μT . Therefore, the magnetic field based detection

mechanism is quite reliable within a short distance.

VII. DISCUSSION

Unconventional Loudspeakers. Different from conventional

loudspeakers which use magnetic force to create sound, some

of the unconventional loudspeakers use an alternative way to

produce a sound wave. These loudspeakers are usually very

costly, and therefore unlikely to be adopted by a large popu-

lation. However, as a defense system, we need to consider all

possible attack vectors. We take the Electrostatic Loudspeaker

(ESL) as an example of unconventional loudspeakers which

does not produce a magnetic field. An electrostatic loudspeaker

(ESL) consists of two metal grids with a plastic diaphragm.

The diaphragm constantly charges a fixed positive voltage and

creates a strong electrostatic field around it. It generates sound

by the metal grids which are electrodes. Without utilizing the

electrodynamic method to create sound, this type of speaker

does not create a magnetic field. However, this kind of speaker

can still be detected by magnetometer as the metal grids

generate the magnetic interference. We notice that this type

of loudspeakers usually has a larger size, which can also be

detected by the sound field verification component. Another

example is the Piezoelectric speakers which the electric current

in the piezo crystal generates a movement (piezo effect) which

produces the sound. Although it is already used by some

phones, such speakers typically do not have good audio quality

at the current stage.

Sound-tube Attacks. We further test our system against the

sound-tube attacks. In this experiment, we ask volunteers

to use several different size plastic CAB tubes (shown in

Fig. 16) as “sound tube” and a loudspeaker to launch the

attack. The plastic tube keeps a sufficient distance between

the loudspeaker and the phone, and also transmits sound to

break our sound field verification mechanism. However, all

their attempts failed, mainly because replicating a human

sound field using a mechanical device is hard to achieve.

Furthermore, the attacker needs to cancel out sound resonance

effect in the tube and simulate the shape of the mouth, which

requires very sophisticated structure design.

Adaptive Thresholding. All four verification components in

our defense scheme leverage thresholding to validate the input.

We manually set the thresholds to achieve the best possible

performance (FAR, FRR, EER) in a normal usage scenario.

However, for some particular usage scenarios where the user

is exposed to a high electromagnetic field (EMF) radiation,

e.g., near a computer or in a car, adaptive thresholding may

produce better results. As a future work, we propose the

following solution: i) when encountering high environmental

EMF radiation, we ask users to calibrate the smartphone

by monitoring the environment for a few seconds, and ii)

we calculate the average environmental magnetic interference

level and adjust the threshold for each verification component

adaptively. However, the design of this function should be with

caution as it is possible to trick the application by training it

at a high EMF environment, and then using the loudspeaker

in a low EMF environment.

Dual Microphones. Certain smartphones like Nexus 4 have

two microphones, and one of them is usually used for noise

cancellation. To further improve the usability of our system,

in the future we plan to utilize the dual microphones to

reduce the required moving distance. The main idea is to

measure the sound level difference (SLD) feature between

the two microphones of the device. We then use sound

volumes information with the SLD feature to perform sound

field verification. Because different types of smartphones offer

different dual-microphone layouts, we also need to investigate

the estimation method for automatically setting the sound field

verification parameters.

VIII. CONCLUSIONS

This paper presents a robust software-only voice imperson-

ation defense system tailored for smartphones and is readily

deployable on existing mobile platforms. Our solution lever-

ages the fact that the loudspeaker used in the machine-based

voice impersonation attack has special physical charactertis-

tics, i.e., it generates a magnetic field. We exploit this insight

by non-intrusively requiring the user to place the smartphone

near the sound source for detection and use the magnetometer

to differentiate the human speaker and the loudspeaker. The

prototype of our defense scheme achieves a nearly perfect

accuracy and zero equal error rates in detecting the machine-

based voice impersonation attack on smartphones. The exper-

iment results show that our solution is capable of defeating

the vast majority of voice impersonation attacks. Furthermore,

our system significantly raises the level of security for existing

voice-based mobile applications.
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[26] J. Mariéthoz and S. Bengio. Can a professional imitator fool a gmm-
based speaker verification system? Technical report, 2005.

[27] H. Melin. Automatic speaker verification on site and by telephone:
methods, applications and assessment. 2006.

[28] Mobio. https://www.idiap.ch/dataset/mobio.
[29] J. Y. Nicholas Evans and T. Kinnunen. Spoofing and countermeasures

for speaker verification: a need for standard corpora, protocols and
metrics. IEEE Signal Processing Society Speech and language Technical
Committee Newsletter., 2013.

[30] Nuance. Nuance vocalpassword. http://www.nuance.com/landing-
pages/products/voicebiometrics/vocalpassword.asp, 2013.

[31] A. Rai, K. K. Chintalapudi, V. N. Padmanabhan, and R. Sen. Zee:
zero-effort crowdsourcing for indoor localization. In Mobicom, 2012.

[32] N. K. Ratha, J. H. Connell, and R. M. Bolle. Enhancing security
and privacy in biometrics-based authentication systems. IBM systems
Journal, 40(3):614–634, 2001.

[33] R. Rawassizadeh, B. A. Price, and M. Petre. Wearables: has the age of
smartwatches finally arrived? Communications of the ACM, 58(1):45–
47, 2014.

[34] D. Reese, L. Gross, and B. Gross. Audio Production Worktext: Concepts,
Techniques, and Equipment. 2012.

[35] D. Reynolds, W. Andrews, J. Campbell, J. Navratil, B. Peskin, A. Adami,
Q. Jin, D. Klusacek, J. Abramson, R. Mihaescu, et al. The supersid
project: Exploiting high-level information for high-accuracy speaker
recognition. In ICASSP, 2003.

[36] J. Rodgers. Adobe voco - should we be afraid? http://www.pro-tools-
expert.com/home-page/2016/11/16/adobe-voco-should-we-be-afraid.

[37] N. Roy, H. Wang, and R. Roy Choudhury. I am a smartphone and i can
tell my user’s walking direction. In Mobisys, 2014.

[38] W. Shang and M. Stevenson. Score normalization in playback attack
detection. In ICASSP, 2010.

[39] M. Shirvanian and N. Saxena. Wiretapping via mimicry: Short voice
imitation man-in-the-middle attacks on crypto phones. In ACM CCS,
2014.

[40] E. Shriberg, L. Ferrer, S. Kajarekar, A. Venkataraman, and A. Stolcke.
Modeling prosodic feature sequences for speaker recognition. Speech
Communication, 46(3):455–472, 2005.

[41] N. SRE. http://www.itl.nist.gov/iad/mig/tests/spk.
[42] Y. Stylianou. Voice transformation: a survey. In ICASSP, 2009.
[43] R. Togneri and D. Pullella. An overview of speaker identification:

Accuracy and robustness issues. Circuits and systems Magazine,
11(2):23–61, 2011.

[44] Tornado. http://www.tornadoweb.org.
[45] D. Vandermeulen, C. Vercauteren, and M. Weyn. Indoor localization

using a magnetic flux density map of a building. In AMBIENT, 2013.
[46] J. Villalba and E. Lleida. Detecting replay attacks from far-field

recordings on speaker verification systems. In Biometrics and ID
Management. 2011.

[47] J. Villalba and E. Lleida. Preventing replay attacks on speaker verifica-
tion systems. In ICCST, 2011.

[48] Voxforge. http://www.voxforge.org/.
[49] W. Wang, A. X. Liu, and K. Sun. Device-free gesture tracking using

acoustic signals. In Mobicom’16, 2016.
[50] Z.-F. Wang, G. Wei, and Q.-H. He. Channel pattern noise based playback

attack detection algorithm for speaker recognition. In ICMLC, 2011.
[51] WeChat. Voiceprint. http://thenextweb.com/apps/2015/03/25/wechat-on-

ios-now-lets-you-log-in-using-just-your-voice/.
[52] S. Wold, K. Esbensen, and P. Geladi. Principal component analysis.

Chemometrics and intelligent laboratory systems, 2(1):37–52, 1987.
[53] Z. Wu, N. Evans, T. Kinnunen, J. Yamagishi, F. Alegre, and H. Li.

Spoofing and countermeasures for speaker verification: a survey. Speech
Communication, 66:130–153, 2015.

[54] Z. Wu, T. Kinnunen, N. Evans, and J. Yamagishi. Asvspoof 2015:
Automatic speaker verification spoofing and countermeasures challenge
evaluation plan. Training, 10(15):3750, 2014.

[55] Z. Wu and H. Li. Voice conversion and spoofing attack on speaker
verification systems. In APSIPA, 2013.

[56] H. L. Zhizheng Wu, Eng Siong Chng. Detecting converted speech
and natural speech for anti-spoofing attack in speaker recognition. In
Interspeech, 2012.

427194



APPENDIX A

MODELS OF LOUDSPEAKERS USED FOR EVALUATION

TABLE IV: Makers and Models of Loudspeakers Used for

Evaluation

Maker Model
Logitech 7 Watts RMS (FTC) 2.1 Stereo Speaker System LS21
Klipsch - 2-Way Indoor/Outdoor Speakers KHO-7
Insignia - 2-Way Indoor/Outdoor Speakers NS-OS112
Sony - Portable Bluetooth Speaker SRSX2/BLK
Bose - SoundLink Mini Bluetooth Speaker PINK
Bose - 151 SE(R) Environmental Speakers 151 SE
Yamaha - Natural Sound 5” Outdoor Speakers NS-AW190BL
Pioneer - 5-1/4” Floor Speaker SP-FS52
HP - 2.0 Speaker System D9J19AT
GPX - 2.1 Speaker System HT12B
Coby - 2.1 Home Audio Speaker System CSMP67
Acoustic Audio - AA2101 AA2101
Macbook Pro (Mid 2012) Internal Speaker A1286
Macbook Air (Mid 2012) Internal Speaker A1466
iMac (Late 2009) Internal Speaker MB952XX/A
HP 6510b Internal Speaker GM949
Toshiba - Satellite Internal Speaker C55-B5101
Dell - Inspiron 5000 Series Internal Speaker I5558-2571BLK
Apple iPhone 6 Plus Smartphone Internal Speaker A1524
Apple iPhone 5S Smartphone Internal Speaker A1533
Apple iPhone 4S Smartphone Internal Speaker A1387
LG Nexus 5 Smartphone Internal Speaker LG-D820
LG Nexus 4 Smartphone Internal Speaker LG-E960
Samsung Galaxy S Headset Earphones EHS44
Apple White 3.5mm Connector EarPods MD827LL/A
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