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ABSTRACT
The database community is on a constant quest for better integra-
tion of data management and knowledge management. Recently,
with the increasing use of ontology in various applications, the
quest has become more concrete and urgent. However, manipulat-
ing knowledge along with relational data in DBMSs is not a trivial
undertaking. In this paper, we introduce a novel, unified frame-
work for managing data and domain knowledge. We provide the
user with a virtual view that unifies the data, the domain knowledge
and the knowledge inferable from the data using the domain knowl-
edge. Because the virtual view is in the relational format, users can
query the data and the knowledge in a seamlessly integrated man-
ner. To facilitate knowledge representation and inferencing within
the database engine, our approach leverages XML support in hy-
brid relational-XML DBMSs (e.g., Microsoft SQL Server & IBM
DB2 9 PureXML). We provide a query rewriting mechanism to
bridge the difference between logical and physical data modeling,
so that queries on the virtual view can be automatically transformed
to components that execute on the hybrid relational-XML engine in
a way that is transparent to the user.

1. INTRODUCTION
Since the introduction of the relational data model, and its suc-

cess in managing transactional data, various extensions have been
proposed in the past decades so that data in different domains or
applications of different nature can be brought into the relational
world to be managed in the same rigorous and elegant manner. For
example, the need to model object-oriented data relationships even-
tually gave birth to the Object-Relational DBMSs, which has since
become the industry standard for database vendors. In the 1990s,
on-line analytical processing (OLAP) distinguished itself from tra-
ditional transaction processing by providing support for better de-
cision making. This brought the mechanism of data cubes, which
enabled the data to be viewed from many different business per-
spectives. Recently, data mining has become increasingly impor-
tant in day-to-day business, and as a result, various data mining
oriented language and system extensions have been introduced by
major database vendors.
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Notwithstanding the progress that has been made, there is a de-
sire to operate on the data as well as the knowledge associated with
the data. The quest has been driving the database community to
create better data models, languages, and systems. Recently, it has
been intensified in several new application areas, including the se-
mantic Web, for which the paramount interest lies in data semantics
understanding and knowledge inferencing rather than simple trans-
actional or analytical data processing.

Unfortunately, current DBMSs, albeit improved by many exten-
sions over the past years, are not ready to manipulate data in con-
nection with knowledge. More and more applications are develop-
ing ad-hoc systems that deal directly with ontologies. Still, since
data is managed by DBMSs, it is desirable that the domain knowl-
edge is managed in the same framework, so that users can query
the data, the domain knowledge, and the knowledge inferred from
the data in the same way as querying just relational data. We call
such an effortsemantic data management.

In order to support semantic data management in DBMSs, new
extensions are required to bridge the gap between data representa-
tion and knowledge representation/inferencing. Towards this goal,
we propose a framework that extends a DBMS to operate on data
and their semantics in a seamlessly integrated manner. To insulate
the users from the details of knowledge representation and infer-
encing, we present the users with a unified view, through which
knowledge appears to be no different from data – it is manipulated
by relational operators, and is fully incorporated and supported
within the DBMSs. Before diving into the details of our method,
we use an example to illustrate the task we are undertaking.

A Motivating Example. Consider a relational table for wines,
as shown in Table 1. Every row in the wine table is associated with
a specific instance of wine. Each wine has the following attributes:
type, origin, maker, andprice. A relational DBMS al-
lows us to query wines through these attributes. The expressive
power of such queries is known to be relational complete, which in
a certain sense, is quite limited.

Human intelligence, on the other hand, operates in a quite differ-
ent way. Humans have the ability to combine data with the domain
knowledge, and this process sometimes takes place subconsciously.
Let us consider the following two examples.

Id Type Origin Maker Price
1 Burgundy CotesDOr ClosDeVougeot 30
2 Riesling NewZealand Corbans 20
3 Zinfandel EdnaValley Elyse 15

Table 1: The Wine base table

• When asked which wine originates from the United States
(US), one would answer Zinfandel because its origin Ed-
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(a) The wine class hierarchy

(type=CotesDOr) ⇒(hasF lavor=moderate)

(type=CotesDOr) ⇐⇒ (type=RedBurgundy)

∧ (origin=CotesDOrRegion)

(type=RedBurgundy) ⇐⇒ (type=Burgundy)

∧ (type=RedWine)

(type=RedBurgundy) ⇒(madeFromGrape=PinotNoirGrape)

(type=RedBurgundy) ⇒(madeFromGrape.cardinality=1)

(type=RedWine) ⇒(type=Wine) ∧ (hasColor=red)

(type=Zinfandel) ⇒(hasColor=red)

(type=Zinfandel) ⇒(hasSugar=dry)

(b) A subset of the implications.

NewZealand Italian German

World

French US

California

CentralTexas

TexasBourgogne Bordeaux

CotesDOr Meursault EdnaValley Mendocino

(c) The locatedIn property.

Figure 1: The wine ontology consists of a class hierarchy, implications
or rules, and properties.

naValley is located in California. The fact that EdnaValley
is in California, and California is in the US, is not explicitly
represented in the data shown in Table 1, but belongs to the
domain knowledge of geographical regions.

• When asked which wine is a red wine, one would answer
Zinfandel and Burgundy. It is a known fact that Zinfandel is
red, and although Burgundy can be either red or white, the
Burgundy wines originating from CotesDOr are always red.

Clearly, the domain knowledge required to answer such queries is
not present in the relational table.

Ontology. The first step toward solving the problem is to make
domain knowledge machine accessible. In Fig. 1, we show the
well-known wine ontology [25], which is used in the OWL guide [18].
For more information on the data model and syntax of the OWL on-
tology language, please consult [19, 18].

The wine ontology consists of i) a class hierarchy of objects, ii)
properties associated with each object class, and iii) rules govern-
ing the objects, their properties, and the values these properties may
take. Fig. 1(a) shows part of the class hierarchy in the wine ontol-
ogy. The wine class is associated with five properties (hasSugar,
hasBody, hasColor, hasMaker, madeFromGrape) and in-

herits one property (locatedIn) from its superclass owl:Thing.
Each property is associated with a range class: values of the prop-
erty are restricted to instances of the range class. For example, the
hasMaker property takes values that are instances of the Winery
class. Fig. 1(b) shows a subset of the rules in the wine ontology.
The first rule prescribes that all instances of wine in the CotesDOr
subclass have moderate favor. Fig. 1(c) shows thelocatedIn
property for all region object instances. Note that thelocatedIn
property is a property of the owl:Thing class and takes values that
are instances of the Region class. The wine ontology also specifies
the locatedIn property to be transitive; hence, all the locate-
dIn relations on region instances form a tree (or a directed acyclic
graph).

Although the ontology as shown in Fig. 1 contains enough in-
formation to answer the two queries we mentioned before, they are
unfortunately not in the relational form. Hence, relational DBMSs
cannot make use of such information while evaluating the above
queries. Nevertheless, an increasing number of applications require
interaction with domain knowledge during data processing. It is
much desirable if domain knowledge can be managed in DBMSs.
The benefits are two-fold. First, in many cases, the data already
resides in the DBMS, and the DBMS provides a wide range of
transactional and analytical support that is indispensable in data
processing. Second, a declarative query language such as SQL can
insulate the users from the details of data representation and ma-
nipulation, while offering much opportunity in query optimization.
This is a critical requirement in handling domain knowledge, which
has flexible forms.

Our Whimsical Approach. Before we present our method for
supporting semantic queries in RDBMSs, we ask, what is the most
desirableway to express a semantic query in SQL? If possible, we
would like to express the queries in the following way.

Example 1 (Semantic Query on Location)To find wines that orig-
inate from the US, we may naı̈vely issue the following SQL query:
SELECT W.Id
FROM Wine AS W
WHERE W.Origin = ‘US’;

Example 2 (Semantic Query on Wine Color)To find red wines,
we may näıvely issue the following SQL query:
SELECT W.Id
FROM Wine AS W
WHERE W.hasColor = ‘red’;

Of course, neither of the above queries will return the intended
results. For Example 1, none of the wines in the relational table
has “US” as the value in theOrigin column, thus no tuples will
be returned. In order to provide semantically correct answers, the
DBMS must know not only thatOrigin denotes a location but
also location’s semantics, which is illustrated in Fig. 1(c). For Ex-
ample 2, we engage an imaginaryHasColor attribute for the wine
table in the query. However,HasColor is not in the schema of the
wine table. This is even more challenging than the previous query.
In order to support the query in Example 2, first, both the user and
the DBMS must know whatHasColor stands for when it appears
in a query, and how to derive the value forHasColor for any
given wine.

The above examples in SQL are nothing more than our whim-
sical desires to marry domain knowledge and SQL, which seem to
be as highly incompatible as it could be. In essence, this reflects a
situation that has been long bothering the database community: on
the one hand, we want to extend our arena as far as possible, but
on the other hand, we are not ready to give up the comfort we have
enjoyed in the spartan simplicity of SQL and the relational model.
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Figure 2: A schematic diagram of our framework for querying base
table data with meaning from an ontology.

In this paper, we present a framework to support the queries we
have shown above in the relational framework. Our endeavor fo-
cuses on making the transition from query-by-value to query-by-
meaning as smooth as possible.

Other Challenges.Before we start working on a new modeling
approach in order to accommodate the above queries in RDBMSs,
we must first address two issues: how to store and access the do-
main knowledge or the ontology, and how to infer new knowledge.

Ontology data is of very different form from relational data. Be-
cause of this difference, XML-based protocols including RDF [11],
RDFS [1], DAML+OIL [2], and OWL [19], have emerged as stan-
dards for encoding ontology. In other words, ontology is currently
represented as semi-structured data. The relational data model re-
mains ill-suited for storing and processing the semi-structured data
efficiently. The flexibility of the XML data model, on the other
hand, appears to be a good match for the required schema flexibil-
ity. However, the flexibility of XML in modeling semistructured
data usually comes with a big cost in terms of storage and query
processing overhead, which to a large extent has impeded the de-
ployment of pure XML databases to handle such data.

Knowledge inferencing is an even more daunting challenge. It
can be highly complicated as it engages a lot of details of the do-
main ontology. For instance, an ontological relationship can be
transitive, and transitive relationships are involved in many useful
queries (such as Example 1, which in essence, queries locations
based on thesubregionOf relationships). However, transitivity
is difficult to express and costly to execute: In RDBMSs, we often
have to resort to recursive SQL queries and this approach has been
studied in [4]. Currently, to provide efficient support for ontology-
based semantic queries in a DBMS, a well-known approach pre-
processes the ontology and materializes the transitive closures for
all transitive relationships in the ontology. For instance, materi-
alizing thesubregionOf relationship will result in a table that
contains every pair of locations(x, y) as long asx is a subregion of
y. The main problem with this approach is its huge time and stor-
age overhead. Furthermore, once the transitive closures have been
materialized, it makes update of ontology data almost impossible.

In view of these challenges, we argue that neither pure relational
nor pure XML databases can accomplish the task alone. In our
framework, we support ontology-based semantic queries in a hy-
brid relational-XML DBMS, i.e., a RDBMS with support for XML
data and XML queries.

Overview of our approach. We introduce a framework that
aims at supporting a rich class of semantic-related queries within
DBMSs in an easy-to-express and potentially efficient-to-process
manner. A schematic diagram of our framework is shown in Fig. 2.

As shown in the figure, we create a relational virtual view on
top of the data and the domain knowledge. A virtual view is cre-
ated by specifying how the data in relational tables relate to the
domain knowledge encoded as ontologies in the ontology reposi-
tory. Through this virtual view, data and knowledge can be queried
together, new knowledge can be derived, and our whimsical ideas
in Example 1 and Example 2 can be realized. The virtual view is an
interface through which users can query data, domain knowledge,
and derived knowledge in a seamlessly unified manner.

In order to support the virtual view, we augment a DBMS with
an ontology repository for managing ontological information. Be-
fore ontologies can be used in the DBMS, users must first reg-
ister ontology files with the ontology repository. These ontology
files are then pre-processed into a representation more suitable for
query processing: class hierarchies and transitive properties are ex-
tracted into trees, and implications are extracted into an implication
graph. These trees and graphs are encoded and stored as XML data.
Clearly, RDBMSs cannot meet this challenge, which is the reason
we base our framework on DBMSs with native XML support.

Once the virtual view is created, SQL queries can be written
against it just like against any other relational table. Our framework
processes the queries on the virtual view by re-writing them into
queries on both the base table and the ontological information in
the ontology repository. Our query re-writing uses the implication
graph to expand the predicates and then leverages on SQL/X [7]
and XPath for subsumption checking. The re-written queries can
be processed natively by the DBMS query engine and the results
returned to the user with minor re-formatting.

Paper Organization. In Section 2, we introduce virtual views
that aim at unifying data and the domain knowledge. Section 3
briefly introduces the key features of a hybrid relational-XML DBMS.
Section 4 describes how we support ontology data in a hybrid DBMS.
Section 5 describes how we express semantic queries. We review
some related work on ontology-based semantic queries in Section 7.
Conclusions are drawn in Section 8.

2. VIRTUAL VIEWS
In order to support semantic queries, the RDBMS must be fur-

ther extended so that knowledge representation can be incorporated
into the relational framework, and the manipulation of knowledge
can be conducted no differently from the manipulation of data. To
satisfy these requirements, we propose the concept ofvirtual view.
We adopt a minimalist’s approach to provide the user with a unified
view of the data and the knowledge. Through the virtual views, we
offer a rich set of functionalities for knowledge inferencing out of
the spartan simplicity of SQL.

2.1 Knowledge is a View
Our goal is to express semantic queries in SQL with little di-

vergence from our whimsical desires as shown in Example 1 and
Example 2. In this section, we continue to use the wine table as an
example.

Imagine the wine table shown in Fig. 1 is appended by two vir-
tual columns,LocatedIn andHasColor, as shown in Table 2.
The meanings of the two virtual columns are as follows.

• For every wine ofOrigin x, its LocatedIn value is a
set of locations{y1, · · · , yn}, such thatx is a sub-region of
yi, as prescribed by the location property shown in Fig. 1(c).
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Id Type Origin Maker Price LocatedIn HasColor
1 Burgundy CotesDOr ClosDeVougeot 30 {Bourgogne, French} red
2 Riesling NewZealand Corbans 20 {} white
3 Zinfandel EdnaValley Elyse 15 {California, US} red

Table 2: WineView: A Virtual View

For instance, wineBurgundy originates fromCotesDOr,
which is a sub-region ofBourgogne, which in turn, is a
sub-region ofFrance. As a result, itsLocatedIn value
is {Bourgogne, France}.

• The other virtual column,HasColor, is introduced from
the wine ontology. The ontology includes a set of rules. For
example, the following rules are present:

(type = Zinfandel)⇒ (hasColor = red)

(type = Riesling)⇒ (hasColor = white)

Thus, for wines of typeZinfandel, we can derive the
value of itsHasColor column asred.

We can append as many virtual columns as we like onto the original
table. The virtual view incorporates both the data and the domain
knowledge that associated with the data. However, it is a virtual
view, which means none of the values in the virtual columns are
materialized. The purpose of introducing this virtual view is (a)
to inform the user what data can be queried, and (b) to inform the
system how to derive values for the virtual columns from the raw
data and the ontology when needed. In this section, we focus on
the first issue, and leaves the second issue to later sections.

With this unified view of the data and the domain knowledge, it is
no longer difficult for us to ask queries that manipulate both the data
and their meaning. In the following, we revisit the two queries in
Example 1 and Example 2, but this time we ask the queries against
the virtual view instead of the original wine table.

Example 3 (Semantic Query on Location)To find wines that orig-
inate from the US, we issue the following SQL query against the
virtual view:
SELECT W.Id
FROM WineView AS W
WHERE ‘US’ IN W.LocatedIn;

Example 4 (Semantic Query on Wine Color)To find red wines,
we issue the following SQL query against the virtual view:
SELECT W.Id
FROM WineView AS W
WHERE W.HasColor= ‘red’;

We can see that Example 4 is the same as Example 2 except that
HasColor is a valid (virtual) column in the view, and the only
difference between Example 3 and Example 1 is the use of the set-
valued virtual columnLocatedIn.

2.2 The Virtuality of the View
At the first look, one may argue a schema of the form as shown

in Table 2 violates relational normal forms. For example, a location
can be a sub region of many other locations. For any wine, the set of
its LocatedIn values only depends on theOrigin of the wine,
which means the two columnsOrigin andLocatedIn should
be isolated and made into a table on their own. Same argument
goes againstHasColor, which depends on theType of the wine.

We argue that this is not a concern because Table 2 is a virtual
view. The introduction of such a view is solely for the database
user, so that she can query the data and the domain knowledge as if
they are both in relational tables.

In fact, a user can imagine that theLocatedIn column is cre-
ated by a join operation.

Example 5 (User’s Viewpoint) From a user’s point of view, the
virtual view can be seen as the result of joining the wine table with
a “knowledge” table.

CREATE VIEW WineView(Id, Type, Origin,

Maker, Price, LocatedIn) AS

SELECT W.*, R.superRegions

FROM Wine AS W, RegionKnowledge AS R

WHERE W.Origin = R.region

In Example 5, we assume there is a “knowledge” table called
RegionKnowledge(region, superRegions), which stores
for eachregion all of its super regions as a set. For exam-
ple,(CotesDOr, {Bourgogne, France}) is a tuple of this
knowledge table. We can also create theHasColor column in the
same way. Thus, from a user’s view point, the view we introduced
in Table 2 is just a shorthand for specifying the joins.

Example 5 shows how the user thinks what the view represents.
However, the view never exists in the system as a materialized ta-
ble. In addition, the join operations shown above will never take
place, not even in query time. A virtual view is different from tra-
ditional views in that the “knowledge” tables used in creating the
view as shown by Example 5 does not exist in real life.

Instead, the system must remember how to derive the values of
the virtual columns from the values in the base table. This may
involve reasoning over the ontology, which will be carried out au-
tomatically when a query is issued against the virtual view. Thus,
the process of creating a virtual view is the process of informing
the system of how to derive such values when needed. We describe
this in detail in Section 2.3.

2.3 Marrying Relational Tables and Ontology
Beneath the virtual view lie the data and the ontology, which,

when properly integrated, produce knowledge queryable through
the virtual view. The integration is carried out by aCREATE VIR-
TUAL VIEW statement. It is part of the language extension we in-
troduce to support semantic queries in DBMSs.

In essence, theCREATE VIRTUAL VIEW statement introduces a
mapping between relational schema and the hierachy of the ontol-
ogy. Following a minimalist’s approach, we use the join syntax of
SQL to express the mapping.

Definition 1 Create a Virtual View
CREATE VIRTUAL VIEW View(Column1, · · · , ColumnN) AS

SELECT head1, · · · , headN

FROM BaseTable AS T, Ontology AS O

WHERE constructor

AND p1 AND · · · AND pk

AND m1 AND · · · AND mj

According to the above definition, a virtual view is derived from
a base table (or a set of base tables) and an ontology, which are
specified in theFROM clause. If we regard an ontology hierarchy
as a class hierarchy in an object-oriented programming language,
the join operation can be regarded as using data from the base tables
to instantialize specific ontological types. The integration between

258



madeFromGrape

locatedIn

hasSugar

hasBody

hasColor

hasMaker

WineSugar

WineBody

WineColor

Winery

WineGrape

Region

SweetRiesling

Riesling

DryRiesling

Burgundy

Wine

PotableLiquid

owl:Thing

...

...

1 Burgundy CotesDOr ClosDeVougeot 30

id type origin maker price

is-a

Figure 3: Creating a virtual view

the data and the ontology is specified by theWHEREclause, through
its use of predicates of three different types.

(1) Constructor. EachCREATE VIRTUAL VIEW statement has
one and only one constructor in the form ofO.type = expr,
which instantiate ontology instance of typeO.type for a record
in the relational table. For example, the constructorO.type =
’Wine’ creates a Wine object, and as another example, the con-
structorO.type = T.type creates an object whose type is spec-
ified by the type column in the base table.

(2) Constraints: p1, · · ·, pk. Eachpi can be a traditional
boolean predicate on the relational tableT . For example, with
T.price≥30we exclude tuples whose price is less than 30 in the
virtual view. Eachpi can also be an ontological constraint, which
is a triplet in the form of(Object1, Relation, Object2).
For example, the constraint(O.type isA ’Wine’) prescribes
that the instance we have contrusted must be of type Wine or a sub-
type of Wine, and(O.type madeFromGrape ’Barbera’)
prescribes that the wine instance we created must be made from
grapeBarbera. Note that theCREATE VIRTUAL VIEW statement
is only responsible for expressing such contraints; the enforcing of
such constraints may require knowledge inferencing, and is han-
dled by rule rewriting at query time.

(3) Mapping: m1, · · ·, mk. In the ontology, an instance can
have many properties, for example, a wine may have such proper-
ties as price, color, origin, etc. The integration enables properties to
take values from the relational data. To do this, we create a mapping
between the schema of the base table and the properties in the on-
tology. For instance,T.origin → O.locatedIn maps the
origin column of the base table to thelocatedIn property.
Note that a mapping is different from a constructor. A constructor
associates a record in the relational table to an instance of a spe-
cific type in the ontology, while a mapping associates attributes of
the record to properties of the instance created for the record.

We study an example of theCREATE VIRTUAL VIEW statement.
In Example 6, the sources of the virtual view are theWine table and
theWineOntology. They are specified in theFROM clause. The
predicates in theWHERE clause specify how the wine table and the
wine ontology are integrated. The constructorO.type=W.type
instantiates an ontology instance whose type is given byW.type.
Take the first tuple in the wine table as an example. The construc-
tor O.type=’Burgundy’ creates a Burgundy instance, which
is a subtype of Wine in the ontology. The second line,(O.type
’isA’ ’Wine’), prescribes that the newly created instance must
be an instance of the Wine class. Thus, if the data in the wine table
contains non-wine items, it will not be instantiated. The next two
conditions specify that theorigin column of the wine table cor-
responds to Burgundy’slocatedIn attribute (which is inherited

from classowl:Thing), and themaker column corresponds to
wine’shasMaker attribute. Note here thatO.hasMaker is only
meaningful whenO is an instance of the Wine class.

Example 6 To create a virtual viewWineView for integrating the
wine table and the wine ontology, the following SQL statement is
invoked. After the virtual view is registered, users can issue queries
such as Example 3 and Example 4 as if it were a relational table.

CREATE VIRTUAL VIEW WineView(
Id, Type, Origin, Maker, Price,
LocatedIn, HasColor) AS

SELECT W.*,
O.locatedIn,
O.hasColor

FROM Wine AS W, WineOntology AS O
WHERE O.type=W.type /*constructor*/

AND (O.type isA ’Wine’) /*constraint*/
AND W.origin → O.locatedIn /*mapping*/
AND W.maker → O.hasMaker /*mapping*/

The result of theCREATE VIRTUAL VIEW statement is a schema
that includes two virtual columns:LocatedIn andHasColor.
This is prescribed by theSELECT list, which has three items.

• ItemW.* indicates that the schema of the virtual view con-
tains all the columns (Id, Type, Origin, Maker, Price)
in the original wine table.

• ItemO.hasColor specifies a virtual column, which is based
on the hasColor property of the wine object in the ontology.
The attribute value is to be derived using implication rules
during query time.

• ItemO.locatedIn specifies another virtual column. Note
that unlikehasColor, thelocatedIn property is transi-
tive, which is indicated in the ontology. Thus, conceptually,
the values returned by theSELECTwill be the transitive clo-
sure of thelocatedIn property, which is a set of locations
that contain the region specified byW.origin.

Fig. 3 illustrates the functionality of theCREATE VIRTUAL VIEW

statement. Clearly, the registration of the virtual view merely cre-
ates a mapping between values in a relational table and concepts
in the ontology. This enables the system to perform knowledge
inferencing for queries against the virtual view.

3. HYBRID RELATIONAL-XML DBMSS
The modeling described in Section 2 needs physical level support

in a DBMS. In particular, the ontology is modeled as semistruc-
tured data, which traditional RDBMSs cannot handle directly.
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We leveragehybrid relational-XML DBMSsfor physical level
support. Some commercial RDBMSs such as IBM DB2 9 PureXML
[10, 20] now support XML in its native form. For concreteness, the
examples in this paper will be based on IBM’s DB2.

In a hybrid relational-XML DBMS, XML is supported as a basic
data type. Users can create a table with one or more XML type
columns. A collection of XML documents can therefore be de-
fined as a column in a table. For example, a user can create a table
ClassHierarchy with the following statement:

CREATE TABLE ClassHierarchy
(id integer, name VARCHAR(27), hierarchy XML);

To insert an XML document into a table, it must be parsed,
placed into the native XML storage, and then indexed. We use
the SQL/X function, XMLParse, for this purpose:

insert into ClassHierarchy values(1, ’Wine’,
XMLParse(’<?xml version=’1.0’>
<wine>

<WhiteWine>
<WhiteBurgundy> ... </WhiteBurgundy> ...

</WhiteWine>
</wine>’));

Users can query relational columns and XML column together
by issuing SQL/XML query [5, 6]. For example, the following
query returns class ids and class names of all class hierarchies that
contain the XPath/Wine/DessertWine/SweetRiesling:
SELECT id, name
FROM ClassHierarchy AS C
WHERE XMLExists(‘$t/Wine/DessertWine/SweetRiesling’

PASSING BY REF C.order AS "t")

The SQL/XML [7] functionXMLExists evaluates an XPath ex-
pression on an XML value. If XPath returns a nonempty sequence
of nodes, thenXMLExists is true, otherwise, it is false.

4. ONTOLOGY REPOSITORY
In order to support ontologies as first class citizens of the DBMS,

we augment the DBMS with anontology repository. An ontology
repository consists of a collection of tables that store all the infor-
mation associated with the ontologies registered by the users. In
this section, we describe how users can manage ontologies with
the ontology repository and how these ontologies are preprocessed
internally to extract various information such as class hierarchies,
transitive properties, implication graph from the ontology files. For
the sake of concreteness, we use OWL ontologies for our discus-
sion. Our framework, however, is not restricted to the OWL format.

Managing Ontology Files.From the user’s perspective, the on-
tology repository is a table of ontology files and their identifiers

OntologyInfo TransitiveProperty

foodwine locatedIn

propID treeontID

OntologyDocs

foodwine food.owl

foodwine wine.owl

docnameontID doc
XML

XML

XML

XML

XML

foodwine

class implyontID

Figure 5: Internal schema of the ontology repository. We use text as
identifiers for readability. The OntologyDocs table stores a copy of the
original ontology files registered by the user. TheOntologyInfo and
TransitiveProperty tables store the information extracted from the
ontology files for query processing.

(ontIDs). Besides being a storage system for ontology files, an-
other important purpose of an ontology repository is to hide the
complexity of ontology related processing from the user.

Our ontology repository provides a simple user interface. The
user supplies a unique ontology identifier (ontID) to identify a log-
ical ontology. Each logical ontology is usually encoded in several
ontology files. The user registers each ontology file that is part of a
logical ontology with a unique identifier (ID) via the stored proce-
dureregisterOntology( ontid, ontology File ).

When an existing logical ontology in the repository needs to be
removed, the stored proceduredropOntology( ontid ) is
called with the ontology ID. All the ontology files and extracted in-
formation associated with the specified ontology ID will be deleted.

Preprocessing Ontology Files.After the user has finished reg-
istering the ontology files, the ontology files associated with the
same ontID are pre-processed in order to extract a variety of in-
formation that could be used in query processing (see Fig. 4). In
particular, we highlight several pieces of key ontology information
that are extracted and stored to facilitate query processing: the class
hierarchies, the transitive properties, and the implication graph.
These three pieces of key ontology information that we extract
are organized around three tables,OntologyDocs, OntologyInfo,

TransitiveProperty, in the ontology repository (see Fig. 5). In an
actual system, more ontology information may be extracted: some
to support specific query types, others for optimizing query pro-
cessing.

Conceptually, the three types of information that we extract cor-
respond to three types of rules encoded in the ontology. In particu-
lar, all three types of rules areHorn rules (defined next).

A Horn rule or clauseis a logic expression of the form

H ← A1 ∧ . . . ∧Am ∧ ∼Am+1 ∧ . . . ∧ ∼An

whereH, Ai are atoms or atomic formulae, andn ≥ m ≥ 0. H

is called thehead (or consequent) of the rule and the righ-hand-
side (RHS) of← is called the body (or antecedent) of the rule.
The operator← is to be read as “if” and∼ stands for negation-as-
failure. Each rule is implicitly viewed as universally quantified. A
definite Horn ruleis a Horn rule where the RHS does not contain
any negation1. The implication rules that we consider in this paper
are acyclic Horn rules without negations.

Atoms or atomic formulae are represented in two ways in this
paper. For example, the atom representing the predicate “wine X

1In the case of Datalog [24], definite Horn rules are often further
restricted to non-recursive rules and “safe” rules where all variables
that occur in the head also occur in the body.
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has color red” can be written in the following two ways,

hasColor(X, red) or (hasColor=red),

where variable identifiers begin with capital letters, and constants
begin with small letters. The first representation is used in the con-
text of logical inference: atoms are represented as logical func-
tions with any arity. The latter representation is used in the context
of SQL predicates in a SQL where-clause: atomic formulas are
more conveniently written as attribute-operator-value expressions
or triples. In the above example, the operator= denote an equality
test and the implicit object is a row of the base table associated with
the SQL query.

Providing the mapping of the entire OWL syntax into the three
types of rules considered in this paper is beyond the scope and
space limitations of this paper. Instead we provide a few examples
to illustrate the mapping.

Class Hierarchies. The class hierarchies that we extract from
the ontology corresponds to subsumption rules dealing with the
specialsubClassOfrelationship,

subClassOf (A, C)← subClassOf (A, B) ∧ subClassOf (B, C)

andisA relationship,

isA(B, X)← isA(A, X) ∧ subClassOf (A, B).

ThesubClassOfrelationship relates two classes. TheisA relation-
ship relates an instance to its class. Note that thesubClassOfand
isA relationships are special “builtin” relationship that not defined
by the ontology-author.

For OWL ontologies, thesesubClassOfrelationships that define
the class hierarchy can be expressed in several ways. If strict tree
structure is required for persistence, non-disjointsubClassOfrela-
tionships can be flattened into tree structure. In most cases,sub-
ClassOf relationships are explicitly specified in asubClassOf
construct and in some cases via restrictions. For example,

<owl:Class rdf:ID="DessertWine">
<rdfs:subClassOf rdf:resource="#Wine" />

...
</owl:Class>
...
<owl:Class rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Wine" />
<owl:Restriction>

<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#White" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

where the WhiteWine class is defined to be all wines whose has-
Color attribute has the value white. The class hierarchy for the
above OWL fragments is:

DessertWine WhiteWine

Wine

Transitive Properties. Transitive properties corresponds to sub-
sumption rules dealing with transitive relationships defined in the
ontology by the ontology-author. For example, thelocatedIn
property in the wine ontology corresponds to the following rule,

locatedIn(A, C)← locatedIn(A, B) ∧ locatedIn(B, C).

The facts associated with these transitive relationships can be
extracted from the ontology into a tree representation to facilitate
query re-writing and processing. In OWL, transitive binary rela-
tionships (owl:ObjectProperty) are specified using the following
construct:

<owl:ObjectProperty rdf:ID="locatedIn">
<rdf:type rdf:resource

="&owl;TransitiveProperty" />
...

</owl:ObjectProperty>

Once we know that the locatedIn property is transitive, we scan
for all the instances of the property and construct a tree (or forest)
from them. For example, suppose the following instances of the
locatedIn property are found,

<Region rdf:ID="USRegion" />
<Region rdf:ID="CaliforniaRegion">

<locatedIn rdf:resource="#USRegion" />
</Region>
<Region rdf:ID="TexasRegion">

<locatedIn rdf:resource="#USRegion" />
</Region>

The following transitive tree is constructed.

California TexasRegion

USRegion

Implication Rules. Both the class hierarchies and the transi-
tive properties are a type of recursive rules. The implication graph,
on the other hand, captures non-recursive rules encoded in the on-
tology. These non-recursive rules are represented internally as an
implication graph.

An implication graphG is a directed acyclic graph consisting
of two types of vertices and two types of edges. The vertex and
edge set ofG is denoted byV (G) andE(G) respectively. The
set of nodes adjacent to a given vertexv is defined asAdj(v) =
{u|(v, u) ∈ E(G)}. An implication graph has two types of nodes.
Predicate nodesP (G) are associated with atoms in Horn clauses.
Conjunction nodesC(G) represent the conjunction of two or more
atoms in the body of a Horn clause. For a vertexv ∈ P (G), the
predicate name (object property name) associated withv is denoted
by pred(v), the predicate value byval(v), the operator that relates
the predicate name to the predicate value byop(v).

For example, Figure 6 shows the implication graph for the fol-
lowing set of implication rules:

A=v1 ← G=v7

A=v1 ← B=v2 ∧ C=v3

B=v2 ← H=v8

C=v5 ← D=v4

C=v5 ← F=v6

The construction of the implication graph for an ontology is straight-
forward. We start with an empty implication graph and scan the
ontology files for all implications. After filtering out recursive im-
plications, such as those associated with class hierarchies and tran-
sitive properties, we are left with the non-recursive implications.
We iterate through each non-recursive implication and insert ver-
tices and edges into the implication graph.

For OWL ontologies, standard logical equivalences can be used
to convert definitions into implication rules. Complex implications
whose consequent is a conjunction of atoms can in most cases be
decomposed into Horn rules. Consider the following OWL frag-
ment from the definition of the Zinfandel class:

<owl:Class rdf:about="#Zinfandel">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#Red" />

</owl:Restriction>
</rdfs:subClassOf>
<rdfs:subClassOf>

<owl:Restriction>
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<owl:onProperty rdf:resource="#hasSugar" />
<owl:hasValue rdf:resource="#Dry" />

</owl:Restriction>
</rdfs:subClassOf>
...

</owl:Class>

The OWL fragment specifies that all instances of the Zinfandel
class must also belong to the sub-class of all wines whose hasColor
property takes the value red and to the sub-class of all wines whose
hasSugar property takes the value dry, i.e.,

(isA(Zinfandel , X)→ [(hasColor(X,Red) ∧ (hasSugar(X,Dry)]

which can be decomposed into a collection of Horn rules (the proof
using a truth table is trivial):

[isA(Zinfandel , X)→ hasColor(X,Red)]

∧[isA(Zinfandel , X)→ hasSugar(X,Dry)].

Encoding Extracted Information in XML. After the class hi-
erarchy, transitive properties, and implication graph are extracted
from the ontology, they are serialized into XML and stored in the
ontology repository.

The class hierarchy and transitive properties all contain subsump-
tion relationships in a tree data structure. Because our query pro-
cessing component will be relying on XPath for subsumption check-
ing, these tree data needs to be serialized into XML in a way that
preserves their tree structure in XML. For example the transitive
tree shown previously can be encoded into XML as
<USRegion>

<California/>
<TexasRegion/>

</USRegion>

On the other hand, there is much more flexibility for serializing
the implication graph, because we do not need any kind of sub-
sumption testing on it at all. Any standard method for encoding
graphs to XML can be used.

5. QUERY PROCESSING
In this section, we describe how queries written against the vir-

tual view can be processed by re-writing into equivalent queries
that run on both the base table and the information in the ontology.
When describing algorithms in a formal setting, we will useR to
denote the set of recursive relationships, where each relationship
is either a class hierarchy or a transitive property in the ontology.
From the logic inferencing point of view, the class hierarchies and
the transitive relationships are both a type of recursive rule. We will
also use a set ofview triplesto refer to the mapping information in
the create-virtual-view statement. These view triple information
will typically be stored in the catalog tables of a DBMS. In general
a view triple(b, r, v) encodes a binary association between any pair
of a base tableb, a property or relationshipr in the ontology, and a
columnv in the virtual view2.

Consider a SQL query with a WHERE-clause that consists of
conjunctions and disjunctions of atomic predicates. The conjunc-
tion and disjunction operators need no re-writing. The atomic pred-
icates in the WHERE-clause can be re-written independently, be-
cause (1) predicates on view columns that are not associated with
2For example, the view triples associated with Example 6 are
relational view triples (W .id , ǫ, V .Id ),

(W .type, ǫ, V .Type),
(W .origin, ǫ, V .Origin),
(W .maker , ǫ, V .Maker ),
(W .price, ǫ, V .Price),

virtual column triples (ǫ, O .locatedIn, V .LocatedIn),
(ǫ, O .hasColor , V .HasColor ),

ontology triples (W .type, O .type, ǫ),
(W .origin, O .locatedIn, ǫ),
(W .maker , O .hasMaker , ǫ).

an ontology need only a renaming of the view column name to
the column name in the base table, and (2) predicates on virtual
columns need to be re-written using rules that are restricted to def-
inite Horn rules in our system.

Algorithm 1 outlines the rewriting algorithm for a WHERE-clause
Q in a SQL query on a virtual view. The algorithm takes as input
the set of atoms from the WHERE-clauseQ, the implication graph
G, the set of recursive relationshipsR (predicate identifiers of all
transitive OWL properties and class hierarchies), and the virtual
view definitionV, and outputs a rewritten query expressionQ′. The
algorithm loops through each atom inQ and rewrites each atom
independently. Each atom is viewed as an column-operator-value
triple. The getViewTriple procedure retrieves from the DBMS cata-
log tables the view triple associated with the column in the atom. If
the column in the atom is not a virtual column, the atom is rewrit-
ten using the base table column from the view triple. Otherwise,
we call the EXPAND procedure to expand the atom. If the EXPAND

procedure returns an empty result, there is no rule that could satisfy
the atom and we rewrite the atom to ‘false’.

Algorithm 1 REWRITE(Q,G, R,V)
Input: Q is a set of atomic predicates, G is the implication graph, R is the
set of recursive implications,V is the view definition
Output: Q’ is the set of expanded predicate expression
1: Let Q = {A1, A2, A3, . . .}
2: Q′ ← ∅
3: for all Ai ∈ Q do
4: Let Ai = (vcol , op, value)
5: (b, r , vcol)← getViewTriple(V, vcol)
6: if r = ǫ then
7: /* vcol is not a virtual column */
8: Q′ ← Q′ ∪ {(b, op, value)}
9: else

10: /* vcol is a virtual column */
11: a← findRuleNode(G, R, (r , op, value))
12: if a not found then
13: Q′ ← Q′ ∪ {false}
14: else
15: A′

i
← EXPAND(a, G, R,V)

16: if A′

i
= ǫ then

17: /* if rewritten predicate is empty */
18: Q′ ← Q′ ∪ {false}
19: else
20: Q′ ← Q′ ∪A′

i

21: returnQ′

Note that REWRITE(Q, G, R,V) only rewrites the predicate ex-
pression in the WHERE-clause of a SQL query. Additional post
processing is required to add in the retrieval operations for the on-
tology information needed by the rewritten predicates. For exam-
ple, if the rewritten WHERE-clause consists of the subsumption-
check operatorISSUBSUMED(‘USRegion’, ‘locatedIn’, Wine.Origin),
postprocessing will need to add in the appropriate arguments to
the FROM-clause and the WHERE-clause to retrieve the transitive
property ‘locatedIn’ from the ontology repository.

For hybrid relational-XML DBMS, a straight-forward implemen-
tation of theISSUBSUMEDboolean operator is to use the SQL/XML
functionXMLExists [7, 14]. Another possibly less efficient im-
plementation is to use a recursive SQL statement as alluded to in
Das et al [4]. For the rest of the discussion, we will assume that the
ISSUBSUMED boolean operator can be implemented by re-writing
to the SQL/XMLXMLExists function.

The heavy-lifting in the inferencing work is actually performed
in the EXPAND procedure outlined in Algorithm 2. Predicate ex-
pansion work that is similar in spirit has been done in [21] for a dif-
ferent type of rules, but our algorithm is original in the way it deals
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with virtual columns and recursive rules. The EXPAND procedure
performs inferencing by exploring the implication graph and any
relevant recursive relationships. To elaborate on the algorithm, we
first define some required concepts.

Algorithm 2 EXPAND(h, G, R,V)
Input: h is the node in implication graphG to be expanded,R is the set of
recursive relationships, andV is the virtual view definition
Output: e is the expanded predicate expression
1: if h is a ground nodethen
2: (b, r, v)← getViewTriple(V, pred(h))
3: e← {(b, op(h), val(h))}
4: if h is a recursive nodethen
5: e← e ∨ ‘ ISSUBSUMED( val(h), pred(h), b)’
6: /* R-Expansion */
7: if h is a recursive nodethen
8: for all s ∈ subsumedAtoms(R, h) do
9: if s ∈ P (G) then

10: for all rulebody ∈ dependentExp(s, G) do
11: tmp ← ∅
12: for all i ∈ rulebody do
13: tmp ← tmp∧EXPAND(i, G, R,V)
14: e← e ∨ tmp
15: /* G-Expansion */
16: for all rulebody ∈ dependentExp(h, G) do
17: tmp ← ∅
18: for all i ∈ rulebody do
19: tmp ← tmp∧EXPAND(i, G, R,V)
20: e← e ∨ tmp
21: returne

Definition 2 (Recursive nodes)A predicate noden∈P (G) from
the implication graphG is a recursive node if and only ifpred(n)∈R,
whereR is the set of predicate identifiers of all recursive relation-
ships.

Definition 3 (Ground nodes) For a given virtual view definition
V, a predicate noden∈P (G) from the implication graphG is a
ground node if and only if there exists some view triple(b, r , v)∈V
such thatr=pred(n) andb 6=ǫ, i.e., the predicate is associated with
a base table column in the virtual view definition.

The EXPAND procedure works as follows. Given a predicate
nodeh, if h is a ground node (line 1), it means thath is associ-
ated with a base table column and the predicateh can be checked
against the base table column directly. If in addition to being a
ground node, the nodeh is also recursive, then an additional sub-
sumption check needs to be added to the rewritten predicate. An
example of a non-recursive ground node for the virtual view in Fig-
ure 3 would be “hasMaker=ClosDeVougeot”, and an example of a
recursive ground node would be “locatedIn=USRegion”.

For the case whereh is not a ground node, it is clear that the al-
gorithm needs to traverse the implication graph. For the case where
h is a ground node, the algorithm still needs to continue traversing
the implication graph so as to ensure completeness of the inferenc-
ing. A ground node is an atom that can be checked against the base
table, but does not ensure that the atom is true against the base ta-
ble; hence, the expansion cannot stop at ground nodes unless there
are no more ground nodes reachable from the current ground node.

To further traverse the graph, recursion is used (note that we
expressed the traversal using recursion for clarity, a stack can be
used for a non-recursive implementation). Ifh is recursive, then all
atoms subsumed byh, denoted bysubsumedAtoms(R, h), will
also satisfy the predicateh. ThesubsumedAtoms(R, h) function
is computed by retrieving the tree associated withh from R (either
a class hierarchy or a transitive property) and finding in the tree the

^

A=v1

B=v2

G=v7

C=v3

D=v4
F=v6

C=v5

C=v1 C=v3 C=v6

C=v8 C=v9 C=v7

C=v2

C=v5

Tree for transitive property CImplication graph

H=v8

Figure 6: The implication graph and the tree for the transitive rela-
tionship C used in Example 7. The two shaded nodes in the implication
graph denote ground nodes. Dotted lines indicate traversalof the EX-
PAND algorithm.

(possibly empty) set of all the atoms subsumed byh. We then re-
cursively call EXPAND on each atom in the subsumed set that has
a node inG. Such expansions via the recursive rules are called
R-expansions (line 6-7).

In addition to handling expansion via recursive rules, we need
to expandh with non-recursive rules contained in the implication
graphG, i.e. G-expansions (line 15-16). We iterate over
dependentExp(h,G), the (possibly empty) set of all rules inG
that hash as the head. Each element (rulebody) of
dependentExp(h,G) represents the body of a rule and consists of
a set of atoms (implicitly joined by conjunction). EXPAND is called
on each of these atoms. The re-written expressions of the atoms
in a single rule body are joined with a conjunction, and the re-
written expressions of different rules are joined with a disjunction
in accordance of the semantics of Horn rules.

The EXPAND procedure always terminates because there are no
cycles in the implication graph and the transitive trees (by defini-
tion).

Theorem 1 With respect to the fragment of horn rules that we sup-
port, the view definition, and the query types that are supported,
our rewriting procedure is sound and complete.

Proof sketch.The EXPAND procedure rewrites an atom either by
traversing paths within the implication graph or by traversing paths
in the trees used to store the transitive properties and class hierar-
chies. Each outgoing edge of a predicate node in the implication
graphG denotes a logical implication and each conjunction node
is processed without violating the semantics. Each path in the trees
denotes recursive application of the transitive rule,pred(A, C) ←
pred(A, B) ∧ pred(B, C). Since each step is an application of
some implication rule, the rewriting is sound. For proving com-
pleteness, note that our data structures encode each unique atom
exactly once. If there is any path from the query predicate to a
ground node, our algorithm will discover it. Since our rewriting
algorithm examines all rules that could be satisfiable, the rewriting
is complete.

Example 7 Consider the following SQL query on the virtual view
WineView(id, hasColor)
SELECT V.Id
FROM WineView AS V
WHERE V.hasColor=v1;

where the virtual view definition consists of the following triples,

{(id , ǫ, id), (ǫ,A, hasColor), (type,B , ǫ), (origin,D , ǫ).}
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Further suppose that the implication graphG and the recursive tree
for transitive propertyC ∈ R are as shown in Figure 6. Rewriting
the query using y line 20 is executed, because the query predicate
does not involve recursive relationships and there exists a rule in
G for the query predicate. Algorithm 1 calls theEXPAND proce-
dure (Algorithm 2) to expand the query predicate. OnlyB=v2 and
D=v4 are ground nodes inG, soEXPAND (Algorithm 2) tries to
traverseG and the tree forC towards the ground nodes. In this
case satisfying paths are found and the re-written query is:
SELECT W.id
FROM Wine AS W
WHERE W.type=v2 AND W.origin=v4;

Optimization. Algorithm 2 has two sources of complexity : ex-
pansion via each dependent rule body from the set
dependentExp(G, h), and expansion via the recursive relation-
ships fromsubsumedAtoms(R, h) (G-expansions and R-expansion
respectively). Many of these expansions can be avoided if we know
that the atoms do not lead to any ground or recursive nodes. This
section discusses several ideas for pruning the expansion.

The notion of live or dead nodes (defined next) captures the in-
tuition for whether a node can ever be satisfied from some ground
nodes downstream in the inference process.

Definition 4 (Live and dead nodes)For a given virtual view def-
inition, a noden ∈ V (G) from the implication graphG is a live
node if
(1) n ∈ P (G) andn is a ground node or a recursive node, or
(2) n ∈ C(G) and∀v ∈ Adj(u), v is a live node, or
(3) there exists someu ∈ Adj(n) such thatu is a live node.
Conversely, a noden that is not a live node is called a dead node.

The first optimization is that we mark nodes in the implication
graphG that are dead because there is no path from those nodes to
any recursive or ground nodes. Note that whether a node is alive or
dead is dependent on the view definition. It is clear that if a node
does not contain any ground nodes downstream, the expansion al-
gorithm can safely skip it. If a recursive node exists downstream,
the algorithm still need to expand to the recursive node and pro-
cess the recursive node, because the indirect nodes in the recursive
relationship tree can trigger G-expansions.

The second optimization deals with the atoms within a rule body,
i.e., a conjunction node in the implication graph. The expansion of
the atoms in a rule body can be safely skipped if at least one of the
atoms is dead. This pruning criteria will still preserve soundness,
because atoms in a rule body are joined by logical conjunction that
requires every atom to be true.

The third optimization applies to R-expansions. To prune the
number of expansions due to R-expansion, we can either mark
nodes in the recursive treeR that are not associated with live nodes
in G, or we can check if the subsumed atoms are live before call-
ing EXPAND recursively. The former is more efficient because the
pruning is done earlier whensubsumedAtoms(h, R) is computed
resulting in a much smaller set of subsumed atoms.

The fourth optimization uses memoization techniques to avoid
traversing nodes in the implication graph more than once.

The fifth optimization deals with pre-computation of the predi-
cate re-writing. If the set of values associated with a virtual column
(eg. the hasColor property in the wine ontology) is small, then we
can pre-compute the re-writing for each possible value predicate
on the virtual column and store these re-written predicates with the
view definition in the system catalog tables. During query process-
ing, the system catalog will be consulted first to determine if pre-
computed rewriting exists before calling our rewriting procedures.

Note that our optimization strategies on the expansion algorithm

are only dependent on the ontology and the schema of the base
table. Updates to the base table data after the creation of view will
not affect the correctness of the optimization strategies.

6. EXPERIMENTS
The usefulness of our virtual view framework will depend in part

on the performance of the queries against the virtual columns in the
virtual view. We have showed that such queries can be re-written
into plain SQL/XML queries on the base table and the ontology
data in the ontology repository using the re-writing algorithms in
Section 5. The performance of the re-written queries are indepen-
dent of the algorithms proposed in this paper and entirely depen-
dent on the data and the DBMS engine. The performance of com-
mercial DBMS engine is not the focus of this paper; hence we focus
on the performance of the re-writing algorithms in this section.

We prototyped our query re-writing algorithms in C++ and mea-
sured its performance over synthetic implication graphs and trees.
The choice of synthetic data is intentional so as to investigate the
performance of our rewriting algorithms under different data sets
with different characteristics. With real publicly available ontolo-
gies, we would only be able to show single performance numbers
that would not shed light on how the rewriting algorithms scale
with the complexity of the data.

Data Generation.Random implication graphs are generated by
specifying the number of relationshipsnvar , the number of values
nval each relationship can take, the depthnlevels of the impli-
cation graph, the maximum number of rulesdensity to generate
between consecutive levels in the graph and the maximum number
of atomsfanout in a rule body. For our experiments the number
of valuesnval is fixed at 10. The maximum number of atoms or
nodes in the graph isnvar × nval . The atoms are partitioned uni-
formly into nlevels groups. The groups are randomly ordered and
some number of rules are generated for each consecutive pair of
groups. The number of rulesnrule generated between two consec-
utive groups is randomly chosen between one anddensity . Each
rule is generated as follows. Randomly pick one atom from group
g as the head. Randomly choosef the number of atoms in the
body between one andfanout . Randomly pickf atoms from group
g + 1 for the rule body.

Generating tree data for transitive relationships and class hier-
archies is somewhat simpler. Each generated tree is specified by
the number of valuesnval and the maximum fanoutfanout . The
number of atoms or nodes in the tree is the same as the number of
values, because each tree is associated with one relationship. The
generation procedure uses a randomized stack that initially con-
tains only the root node. At each iteration, a node is popped from
a random position in the stack for expansion. A random number
of children nodes are generated subject to the specified maximum
and pushed onto the stack. The procedure terminates when the tree
contains the required number of nodes. the stack.

Measuring performance.We measured the performance of the
BASELINE algorithm (Algorithm 1 and Algorithm 2) and the OPTI-
MIZED algorithm, in which memoization (the fourth optimization
described in Section 5) is used to optimize the EXPAND procedure.
Each run consists of generating an implication graph, generating
zero or more trees, measuring the average time to rewrite a query
in a workload consisting of all the head atoms of the rules in the
implication graph. Such a workload ensures that the rewriting per-
formance on all parts of the implication graph are measured. For
each implemented algorithm, and for each setting of the parame-
ters, the performance is averaged over five runs, i.e., five random
data sets, to eliminate fluctuations due to randomness. The per-
formance measure is therefore the time to rewrite a single atom or
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predicate averaged over the atoms in the implication graph and five
random runs.

Varying number of relationships in the implication graph.
Figure 7(a) show the rewriting performance as the number of rela-
tionships, i.e.nvar , in the generated implication graphs is varied.
The number of groups is fixed at 5, thedensity at 1600, and the
number of trees is zero. Observe that OPTIMIZED is signficantly
more efficient when the number of relationships is small and the
performance of BASELINE approaches that of OPTIMIZED as the
number of relationships becomes large. The reason for this un-
expected result is because increasing the number of nodes while
density is fixed, increases the sparsity of the implication graphs. A
sparse implication graph less expansion in our rewriting algorithm
hence the performance improvement.

Varying the density of rules. To confirm the above-mentioned
intuition, we fixed the number of relationships to 100 and the num-
ber of groups to five, and varied the maximum number of rules
generated between consecutive groups. Figure 7(b) and Figure 7(c)
show the average rewriting time when 16 trees and zero trees are
associated with the implication graph respectively. Observe that
as thedensity increases, the performance of BASELINE degrades
exponentially, whereas OPTIMIZED scales almost linearly. As the
implication graph becomes more densely connected, the opportu-
nity for exploiting duplicate expansions increases; hence the su-
perior performance of OPTIMIZED. Comparing Figure 7(c) and
Figure 7(b), we also observe that inferencing via the transitive re-
lationships adds an order of magnitude to the rewriting time; how-
ever, OPTIMIZED scales very reasonably in both cases.

Varying the tree sizes.To further understand how the number
of trees and the size of the trees affect the rewriting time, we fixed
the implication graph and varied the size of the 16 trees associated
with it. We found that varying the number of trees has an effect
very similar to varying the size of the trees, so only one set of re-
sults will be presented. Figures 7(d) and 7(e) show the results for
two differentdensity values. Observe that both algorithms scale
linearly with the tree size. The running time of OPTIMIZED grows
more slowly with tree size compared to BASELINE. The superior
performance of OPTIMIZED is especially dramatic for denser im-
plication graphs.

Varying the depth of the implication graph. In general, we
do not expect real ontologies to have implication graphs with a
large number of levels. Nevertheless, we investigated how the num-
ber of groups of levels in the implication graph affects the rewrit-
ing performance by varying the number of groups from three to
eleven. Figure 7(f) shows the performance. BASELINE is signifi-
cantly more sensitive to the number of levels: increasing the num-
ber of levels could increase the search space for the expansion ex-
ponentially in the number of rules. OPTIMIZED uses memoization
to avoid this exponential explosion: it never expands a rule more
than once per query.

7. RELATED WORK
Several tools have been developed for building and manipulat-

ing ontologies. For example, Protéǵe is an ontology editor and a
knowledge-base editor that allows the user to construct a domain
ontology, customize data entry forms, and enter data [23]. RStar is
an RDF storage and query system for enterprise resource manage-
ment [15]. Other ontology building systems include OntoEdit [17],
OntoBroker [16], OntologyBuilder and OntologyServer [3], and
KAON [22]. Most systems use a file system to store ontology data
(e.g., OntoEdit). Others (e.g., RStar and KAON) allow the ontol-
ogy data to be stored in a relational DBMS. However, processing
of ontology-related queries in these systems is typically done by

an external middle-ware (wrapper) layer built on top of a DBMS
engine. Two key limitations of this loosely-coupled approach are:
(1) DBMS users cannot reference ontology data directly, and (2)
query processing of ontology-related queries cannot leverage the
the query processing and optimization power of a DBMS.

Description logic (DL) and Datalog systems have also been well-
studied [8, 9]. These systems are based on translating a subset of
DL to Datalog so that efficient Datalog inferencing engines can
be used. Efficient Datalog inferencing algorithms have been thor-
oughly investigated by [24]. Our framework differs from these ef-
forts in that we focus on the integration of relational data and do-
main knowledge within the DBMS engine; expressivity of the logic
fragment is not our focus, even though Datalog optimization tech-
niques can be adapted for our rewriting algorithm. Our rewriting
algorithm also differs from previous work on semantic query opti-
mization [13] in that our focus is not on integrity constraints, but
on rewriting queries on virtual view into queries on the base tables
and the ontology information.

A recent advance in ontology management in DBMSs was in-
troduced by Oracle. Das et al. [4] proposed a method to support
ontology-based semantic matching in RDBMS using SQL directly.
Ontology data are pre-processed and stored in a set of system-
defined tables. Several special operators and a new indexing scheme
are introduced. A database user can thus reference the ontology
data directly using the new operators. Compared to the loosely-
coupled approach, this method opens up the possibility of combin-
ing ontology query operators with existing SQL operators such as
joins. The ability to manipulate ontology data and regular rela-
tional data directly in the DBMS greatly simplifies and facilitates
the development of ontology-driven applications.

However, due to the “mismatch” between the relational schema
and the graphical model of ontology data, this relational-model
based approach is still quite limited in its expressing and process-
ing power. From the expressivity aspect, an ontology can encode
a broad spectrum of semantics over the base data. The semantics
can range from a simple nickname for a value in the base table to
some derived values obtained through very complicated reasoning,
and the semantic matching operation studied in [4] is just one in-
stance of such semantics. From processing aspect, inference is one
of the most expensive operations on ontology data. All the pre-
vious approaches except [14] need to pre-compute and materialize
all (or a big part of) the inference results (i.e., transitive closures) to
achieve reasonable performance at query execution time. This pre-
processing not only incurs serious time and storage overhead, but
also makes the update of the pre-computed data infeasible when
the underlying ontology data change. As an alternative, the au-
thors of [14] proposed using XML trees to encode subsumption re-
lationships and using theXMLExists SQL/XML [7] operator to
perform subsumption checking. Our framework leverages on the
technique in [14] for subsumption checking.

From a theoretical point of view, our framework can be classi-
fied as a type of global-as-view (GAV)[12] algorithm. However,
our framework has two interesting features: the mapping between
global schema (virtual view) and the local schema (base table) is
completely determined only at query time, and the mapping is de-
pendent on the data value that is being constrained by the query.
Only when the query is specified, does our rewriting algorithm
search the implications in the ontology in order to determine if a
mapping exists and if it exists, to compute the mapping.

Our framework sets the basis for querying a variety of semantics
over the relational data through a simple relational view. We lever-
age a relational-XML DBMS for manipulating ontology data and
for processing semantic queries all within the DBMS engine.
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(a) Average rewriting time versus number of re-
lationships in the implication graph.
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(b) Average rewriting time versusdensity .
Number of trees = 16.
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(c) Average rewriting time versusdensity .
Number of trees = 0.
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(d) Average rewriting time versus the number of
nodes in each tree. Rule density = 100.
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(e) Average rewriting time versus the number of
nodes in each tree. Rule density = 800.
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(f) Average rewriting time versus the number of
groups in the implication graph.

Figure 7: The average rewriting time over different configurations ofthe implication graph and the transitive trees. The plots for B ASELINE have
been truncated where the running time is prohibitively long.

8. CONCLUSION
In this paper, we propose a framework that aims at supporting a

rich class of semantic-related queries within DBMSs in an easy-to-
express and potentially efficient-to-process manner. We provide a
unified view of data and knowledge so that they can be queried us-
ing relational operators. Our framework leverages the recent devel-
opment in ontology languages and native XML support in DBMSs:
the former lays the foundation for semantic representation, and the
latter makes it possible to manipulate data semantics with relational
data in a DBMS. Our framework opens up new avenues towards
supporting efficient semantic data management in DBMSs.
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