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ABSTRACT Notwithstanding the progress that has been made, there is a de-

The database community is on a constant quest for better integra-Sire to operate on the data as well as the knowledge associated with

tion of data management and knowledge management. Recently,the data. The quest has been driving the database community to

with the increasing use of ontology in various applications, the create_ bette_r_datg models, Ianguage_s, ?”d system_s. Rec_:ently, it has
quest has become more concrete and urgent. However manipulat_been intensified in several new application areas, including the se-
ing knowledge along with relational data in DBMSs is not a trivial Mantic Web, for which the paramount interest lies in data semantics
undertaking. In this paper, we introduce a novel, unified frame- understanding and knowledge inferencing rather than simple trans-

work for managing data and domain knowledge. We provide the actiorf1a| or analllytical data processir|1bg.. . db
user with a virtual view that unifies the data, the domain knowledge Unfortunately, current DBMSs, albeit improved by many exten-

and the knowledge inferable from the data using the domain knowl- slons ove_rrt]hl? paslt é/ears, are no:jready to n?_anlpulate da(;a |nlcon-
edge. Because the virtual view is in the relational format, users can N€Ction with knowledge. More and more applications are develop-
query the data and the knowledge in a seamlessly integrated man

ing ad-hoc systems that deal directly with ontologies. Still, since
ner. To facilitate knowledge representation and inferencing within dgta 1S manageddby DEMSS* it |fs deswabLe that:]he domain know-
the database engine, our approach leverages XML support in hy-e ge IS managed In the same framework, so that USETS can query
brid relational-XML DBMSs (e.g., Microsoft SQL Server & IBM the data, the domain knowledge, and the knowledge inferred from
DB2 9 PureXML). We provide a query rewriting mechanism to the data in the same way as querying just relational data. We call
bridge the difference between logical and physical data modeling, such an efforsemantic data management )
so that queries on the virtual view can be automatically transformed In or_der to support semantic data management in DBMSs, new
to components that execute on the hybrid relational-XML engine in EX{€Nsions are required to bridge the gap between data representa-
a way that is transparent to the user. tion and knowledge representation/inferencing. Towards this goal,

we propose a framework that extends a DBMS to operate on data

and their semantics in a seamlessly integrated manner. To insulate
1. INTRODUCTION the users from the details of knowledge representation and infer-

Since the introduction of the relational data model, and its suc- €ncing, we present the users with a unified view, through which

cess in managing transactional data, various extensions have beeknowledge appears to be no different from data — it is manipulated
proposed in the past decades so that data in different domains oy relational operators, and is fully incorporated and supported
applications of different nature can be brought into the relational Within the DBMSs. Before diving into the details of our method,
world to be managed in the same rigorous and elegant manner. Fowe use an example to illustrate the task we are undertaking.
example, the need to model object-oriented data relationships even- A Motivating Example. Consider a relational table for wines,
tually gave birth to the Object-Relational DBMSs, which has since as shown in Table 1. Every row in the wine table is associated with
become the industry standard for database vendors. In the 19903?. specific instance of wine. Each wine has the fO”OWing attributes:
on-line analytical processing (OLAP) distinguished itself from tra- type, origin, maker, andprice. Arelational DBMS al-
ditional transaction processing by providing support for better de- lows us to query wines through these attributes. The expressive
cision making. This brought the mechanism of data cubes, which power of such queries is known to be relational complete, which in
enabled the data to be viewed from many different business per-a certain sense, is quite limited.
spectives. Recently, data mining has become increasingly impor- Human intelligence, on the other hand, operates in a quite differ-
tant in day-to-day business, and as a result, various data miningent way. Humans have the ability to combine data with the domain
oriented language and system extensions have been introduced bjnowledge, and this process sometimes takes place subconsciously.

major database vendors. Let us consider the following two examples.
Id Type Origin Maker Price
- . . - ) 1 | Burgundy | CotesDOr | ClosDeVougeot| 30
Permission to copy without fee all or part of this material srded provided el
h ot . f 2 Riesling | NewZealand Corbans 20
that the copies are not made or distributed for direct commlediantage, 3 | zinfandel | Ednavalley Elyse 15

the VLDB copyright notice and the title of the publicatiortdts date appear,
and notice is given that copying is by permission of the VerygeaData
Base Endowment. To copy otherwise, or to republish, to postervers
or to redistribute to lists, requires a fee and/or speciahjgsion from the
publisher, ACM. . . _ .
VLDE ‘07, September 23-28, 2007, Vienna, Austria. e When asked which wine originates from the United States

Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/G%/0 (US), one would answer Zinfandel because its origin Ed-

Table 1: The Wine base table
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Figure 1: The wine ontology consists of a class hierarchy, implicatits
or rules, and properties.

naValley is located in California. The fact that EdnaValley
is in California, and California is in the US, is not explicitly
represented in the data shown in Table 1, but belongs to the
domain knowledge of geographical regions.

e When asked which wine is a red wine, one would answer
Zinfandel and Burgundy. It is a known fact that Zinfandel is
red, and although Burgundy can be either red or white, the
Burgundy wines originating from CotesDOr are always red.

Clearly, the domain knowledge required to answer such queries is
not present in the relational table.

Ontology. The first step toward solving the problem is to make
domain knowledge machine accessible. In Fig. 1, we show the
well-known wine ontology [25], which is used in the OWL guide [18].
For more information on the data model and syntax of the OWL on-
tology language, please consult [19, 18].

The wine ontology consists of i) a class hierarchy of objects, ii)
properties associated with each object class, and iii) rules govern-

herits one propertyl (0cat edl n) from its superclass owl:Thing.
Each property is associated with a range class: values of the prop-
erty are restricted to instances of the range class. For example, the
hasMaker property takes values that are instances of the Winery
class. Fig. 1(b) shows a subset of the rules in the wine ontology.
The first rule prescribes that all instances of wine in the CotesDOr
subclass have moderate favor. Fig. 1(c) showsl theat edl n
property for all region object instances. Note thatltibeat edl n
property is a property of the owl:Thing class and takes values that
are instances of the Region class. The wine ontology also specifies
thel ocat edl n property to be transitive; hence, all the locate-
din relations on region instances form a tree (or a directed acyclic
graph).

Although the ontology as shown in Fig. 1 contains enough in-
formation to answer the two queries we mentioned before, they are
unfortunately not in the relational form. Hence, relational DBMSs
cannot make use of such information while evaluating the above
gueries. Nevertheless, an increasing number of applications require
interaction with domain knowledge during data processing. It is
much desirable if domain knowledge can be managed in DBMSs.
The benefits are two-fold. First, in many cases, the data already
resides in the DBMS, and the DBMS provides a wide range of
transactional and analytical support that is indispensable in data
processing. Second, a declarative query language such as SQL can
insulate the users from the details of data representation and ma-
nipulation, while offering much opportunity in query optimization.
This is a critical requirement in handling domain knowledge, which
has flexible forms.

Our Whimsical Approach. Before we present our method for
supporting semantic queries in RDBMSs, we ask, what is the most
desirableway to express a semantic query in SQL? If possible, we
would like to express the queries in the following way.

Example 1 (Semantic Query on Location)To find wines that orig-
inate from the US, we may heely issue the following SQL query:

SELECT Wid
FROM W ne AS W
WHERE W Origin

US
Example 2 (Semantic Query on Wine Color) To find red wines,
we may névely issue the following SQL query:

SELECT WId
FROM W ne AS W
WHERE W hasCol or

= ‘red;

Of course, neither of the above queries will return the intended
results. For Example 1, none of the wines in the relational table
has “US” as the value in thér i gi n column, thus no tuples will
be returned. In order to provide semantically correct answers, the
DBMS must know not only tha®r i gi n denotes a location but
also location’s semantics, which is illustrated in Fig. 1(c). For Ex-
ample 2, we engage an imaginaigs Col or attribute for the wine
table in the query. Howeveas Col or is notin the schema of the
wine table. This is even more challenging than the previous query.
In order to support the query in Example 2, first, both the user and
the DBMS must know whatlas Col or stands for when it appears
in a query, and how to derive the value fdasCol or for any
given wine.

The above examples in SQL are nothing more than our whim-
sical desires to marry domain knowledge and SQL, which seem to
be as highly incompatible as it could be. In essence, this reflects a

ing the objects, their properties, and the values these properties maysituation that has been long bothering the database community: on

take. Fig. 1(a) shows part of the class hierarchy in the wine ontol-
ogy. The wine class is associated with five propertiesSugar ,
hasBody, hasCol or, hasMaker , madeFr omG ape) and in-
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the one hand, we want to extend our arena as far as possible, but
on the other hand, we are not ready to give up the comfort we have
enjoyed in the spartan simplicity of SQL and the relational model.
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Figure 2: A schematic diagram of our framework for querying base
table data with meaning from an ontology.

In this paper, we present a framework to support the queries we
have shown above in the relational framework. Our endeavor fo-
cuses on making the transition from query-by-value to query-by-
meaning as smooth as possible.

Other Challenges.Before we start working on a new modeling

approach in order to accommodate the above queries in RDBMSs,
we must first address two issues: how to store and access the do

main knowledge or the ontology, and how to infer new knowledge.
Ontology data is of very different form from relational data. Be-
cause of this difference, XML-based protocols including RDF [11],
RDFS [1], DAML+OIL [2], and OWL [19], have emerged as stan-
dards for encoding ontology. In other words, ontology is currently

represented as semi-structured data. The relational data model re

mains ill-suited for storing and processing the semi-structured data
efficiently. The flexibility of the XML data model, on the other

hand, appears to be a good match for the required schema flexibil-

ity. However, the flexibility of XML in modeling semistructured
data usually comes with a big cost in terms of storage and query
processing overhead, which to a large extent has impeded the de
ployment of pure XML databases to handle such data.

Knowledge inferencing is an even more daunting challenge. It
can be highly complicated as it engages a lot of details of the do-
main ontology. For instance, an ontological relationship can be
transitive, and transitive relationships are involved in many useful

Overview of our approach. We introduce a framework that
aims at supporting a rich class of semantic-related queries within
DBMSs in an easy-to-express and potentially efficient-to-process
manner. A schematic diagram of our framework is shown in Fig. 2.

As shown in the figure, we create a relational virtual view on
top of the data and the domain knowledge. A virtual view is cre-
ated by specifying how the data in relational tables relate to the
domain knowledge encoded as ontologies in the ontology reposi-
tory. Through this virtual view, data and knowledge can be queried
together, new knowledge can be derived, and our whimsical ideas
in Example 1 and Example 2 can be realized. The virtual view is an
interface through which users can query data, domain knowledge,
and derived knowledge in a seamlessly unified manner.

In order to support the virtual view, we augment a DBMS with
an ontology repository for managing ontological information. Be-
fore ontologies can be used in the DBMS, users must first reg-
ister ontology files with the ontology repository. These ontology
files are then pre-processed into a representation more suitable for
query processing: class hierarchies and transitive properties-are ex
tracted into trees, and implications are extracted into an implication
graph. These trees and graphs are encoded and stored as XML data.
Clearly, RDBMSs cannot meet this challenge, which is the reason
we base our framework on DBMSs with native XML support.

Once the virtual view is created, SQL queries can be written
against it just like against any other relational table. Our framework
processes the queries on the virtual view by re-writing them into
queries on both the base table and the ontological information in
the ontology repository. Our query re-writing uses the implication
graph to expand the predicates and then leverages on SQL/X [7]
and XPath for subsumption checking. The re-written queries can
be processed natively by the DBMS query engine and the results
returned to the user with minor re-formatting.

Paper Organization. In Section 2, we introduce virtual views
that aim at unifying data and the domain knowledge. Section 3
briefly introduces the key features of a hybrid relational-XML DBMS.
Section 4 describes how we support ontology data in a hybrid DBMS.
Section 5 describes how we express semantic queries. We review
some related work on ontology-based semantic queries in Section 7.
Conclusions are drawn in Section 8.

2. VIRTUAL VIEWS

In order to support semantic queries, the RDBMS must be fur-
ther extended so that knowledge representation can be incorporated
into the relational framework, and the manipulation of knowledge
can be conducted no differently from the manipulation of data. To

queries (such as Example 1, which in essence, queries locationssatisfy these requirements, we propose the conceyttagl view.

based on theubr egi onOF relationships). However, transitivity

We adopt a minimalist's approach to provide the user with a unified

is difficult to express and costly to execute: In RDBMSs, we often  view of the data and the knowledge. Through the virtual views, we
have to resort to recursive SQL queries and this approach has beemffer a rich set of functionalities for knowledge inferencing out of

studied in [4]. Currently, to provide efficient support for ontology-
based semantic queries in a DBMS, a well-known approach pre-

the spartan simplicity of SQL.

processes the ontology and materializes the transitive closures for2.1 ~ Knowledge is a View

all transitive relationships in the ontology. For instance, materi-
alizing thesubr egi onOf relationship will result in a table that
contains every pair of locatior{s, y) as long a is a subregion of
y. The main problem with this approach is its huge time and stor-

Our goal is to express semantic queries in SQL with little di-

vergence from our whimsical desires as shown in Example 1 and

Example 2. In this section, we continue to use the wine table as an
example.

age overhead. Furthermore, once the transitive closures have been |magine the wine table shown in Fig. 1 is appended by two vir-
materialized, it makes update of ontology data almost impossible. tual columnsLocat edl n andHasCol or, as shown in Table 2.
In view of these challenges, we argue that neither pure relational The meanings of the two virtual columns are as follows.

nor pure XML databases can accomplish the task alone. In our
framework, we support ontology-based semantic queries in a hy-
brid relational-XML DBMS, i.e., a RDBMS with support for XML
data and XML queries.
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e For every wine ofOri gi n z, its Locat edl n value is a
set of locationgy1, - - - , y» }, such that is a sub-region of
vi, as prescribed by the location property shown in Fig. 1(c).



Id Type Origin Maker Price LocatedIn HasColor
1 | Burgundy | CotesDOr | ClosDeVougeot| 30 {Bourgogne, French red

2 | Riesling | NewZealand Corbans 20 {} white

3 | Zinfandel | EdnaValley Elyse 15 {California, US red

Table 2: WineView: A Virtual View

For instance, win®ur gundy originates fromCot esDCOr In fact, a user can imagine that thecat edl n column is cre-
which is a sub-region oBour gogne, which in turn, is a ated by a join operation.

sub-region ofFr ance. As a result, itd ocat edl n value ] ) ) )
is {Bour gogne, France}. Example 5 (User’s Viewpoint) From a user’s point of view, the

] o virtual view can be seen as the result of joining the wine table with
e The other virtual columnHasCol or, is introduced from a “knowledge” table.

the wine ontology. The ontology includes a set of rules. For CREATE VI EW W neVi ew(Id, Type, Origin,
example, the following rules are present: Maker, Price, Locatedin) AS

SELECT W*, R super Regi ons

FROM Wne AS W Regi onKnow edge AS R
(type = Riesling) = (hasColor = white) WHERE W Origin = R region

(type = Zinfandel) = (hasColor = red)

Thus, for wines of typeZi nf andel , we can derive the

value of itsHas Col or column ag ed. In Example 5, we assume there is a “knowledge” table called

Regi onKnowl edge(regi on, super Regi ons),which stores

We can append as many virtual columns as we like onto the original for eachr egi on all of its super regions as a set. For exam-
table. The virtual view incorporates both the data and the domain ple,( Cot esDOr, {Bour gogne, France}) is atuple of this
knowledge that associated with the data. However, it is a virtual knowledge table. We can also create tHaes Col or column in the
view, which means none of the values in the virtual columns are same way. Thus, from a user’s view point, the view we introduced
materialized. The purpose of introducing this virtual view is (a) in Table 2 is just a shorthand for specifying the joins.
to inform the user what data can be queried, and (b) to inform the  Example 5 shows how the user thinks what the view represents.
system how to derive values for the virtual columns from the raw However, the view never exists in the system as a materialized ta-
data and the ontology when needed. In this section, we focus onble. In addition, the join operations shown above will never take
the first issue, and leaves the second issue to later sections. place, not even in query time. A virtual view is different from tra-

With this unified view of the data and the domain knowledge, itis ditional views in that the “knowledge” tables used in creating the
no longer difficult for us to ask queries that manipulate both the data view as shown by Example 5 does not exist in real life.
and their meaning. In the following, we revisit the two queries in Instead, the system must remember how to derive the values of
Example 1 and Example 2, but this time we ask the queries againstthe virtual columns from the values in the base table. This may
the virtual view instead of the original wine table. involve reasoning over the ontology, which will be carried out au-
tomatically when a query is issued against the virtual view. Thus,
the process of creating a virtual view is the process of informing
the system of how to derive such values when needed. We describe

Example 3 (Semantic Query on Location)To find wines that orig-
inate from the US, we issue the following SQL query against the

Vlégﬁlc\T“?NV\fd this in detail in Section 2.3.
FROM W neVi ew AS W . .
VHERE ‘US' IN W Locat ed n; 2.3 Marrying Relational Tables and Ontology

Beneath the virtual view lie the data and the ontology, which,

when properly integrated, produce knowledge queryable through
the virtual view. The integration is carried out byCREATE VIR-
P AS W TUAL VIEW statement. It is part of the language extension we in-
VWHERE W HasCol or= ‘red’ : troduce to support semantic queries in DBMSs.
In essence, theREATE VIRTUAL VIEW statement introduces a

We can see that Example 4 is the same as Example 2 except thatapping between relational schema and the hierachy of the ontol-
HasCol or is a valid (virtual) column in the view, and the only  ogy. Following a minimalist's approach, we use the join syntax of
difference between Example 3 and Example 1 is the use of the set-SQL to express the mapping.
valued virtual columrLocat edl n.

Example 4 (Semantic Query on Wine Color) To find red wines,
we issue the following SQL query against the virtual view:

Definition 1 Create a Virtual View
2.2 The Virtuality of the View CREATE VI RTUAL VI EW MV ew( Col ummy, -+, Col umyy)  AS

. SELECT head;, ---, heady

At the first look, one may argue a schema of the form as shqwn FROM BaseTabl e AS T, Ontol ogy AS O
in Table 2 violates relational normal forms. For example, a location  \were const r uct or
can be a sub region of many other locations. For any wine, the set of AND p; AND --- AND py
its Locat edl n values only depends on tl@ i gi n of the wine, AND m AND --- AND ny
which means the two columr@ i gi n andLocat edl n should
be isolated and made into a table on their own. Same argument According to the above definition, a virtual view is derived from
goes againdtlas Col or , which depends on thEype of the wine. a base table (or a set of base tables) and an ontology, which are

We argue that this is not a concern because Table 2 is a virtual specified in theerOM clause. If we regard an ontology hierarchy
view. The introduction of such a view is solely for the database as a class hierarchy in an object-oriented programming language,
user, so that she can query the data and the domain knowledge as ithe join operation can be regarded as using data from the base tables
they are both in relational tables. to instantialize specific ontological types. The integration between
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Figure 3: Creating a virtual view

the data and the ontology is specified by theeRE clause, through from classow : Thi ng), and themaker column corresponds to
its use of predicates of three different types. wine’'shasMaker attribute. Note here th&@ hasMaker is only

(1) Constructor. EachCREATE VIRTUAL VIEW statement has meaningful wherDis an instance of the Wine class.
one and only one constructor in the form@ft ype = expr, . o . )
which instantiate ontology instance of ty@et ype for a record Example 6 To create a virtual viewV neVi ewfor integrating the
in the relational table. For example, the construciot ype = wine table and the wine o_ntol_ogy, t_he following SQL_statement_ is
"W ne' creates a Wine object, and as another example, the con-invoked. After the virtual view is reglste_re_d, users can issue queries
structorO. t ype = T. t ype creates an object whose type is spec- such as Example 3 and Example 4 as if it were a relational table.

- f CREATE VI RTUAL VI EW W neVi ew(
ified by the type column in the base table. Id, Type, Qrigin, Maker, Price,

(2) Constraints: p1, ---, Ppx. Eachp; can be a traditional Locatedin, HasCol or) AS
boolean predicate on the relational tatile For example, with SELECT W,
T. pri ce>30 we exclude tuples whose price is less than 30 in the O locatedln,
virtual view. Eachp; can also be an ontological constraint, which O hasCol or
is a triplet in the form of Obj ect ;, Rel ation, Objects). ;HRS;:'EWO"E AS W WneGntol ogy AS O

. . - , N . type=Wtype /*constructorx/

For example, the constraifO. t ype i sA " W ne’ ) prescribes AND (Q.type i SA ’ Wne') /% const raint */
that the instance we have contrusted must be of type Wine or a sub- AND Worigin — O locatedln /+mapping*/
type of Wine, and O. t ype madeFr onr ape ' Barbera’) AND W neker — O hasMaker  /nmappi ng*/
prescribes that the wine instance we created must be made from
grapeBar ber a. Note that thecREATE VIRTUAL VIEW statement The result of thecREATE VIRTUAL VIEW statement is a schema

is only responsible for expressing such contraints; the enforcing of that includes two virtual columnd:ocat edl n andHasCol or .
such constraints may require knowledge inferencing, and is han-This is prescribed by theeL ECTlist, which has three items.
dled by rule rewriting at query time.

(3) Mapping: m;, ---, m. Inthe ontology, an instance can e |ltem W * indicates that the schema of the virtual view con-
have many properties, for example, a wine may have such proper- tains all the columnd d, Type, Ori gi n, Maker ,Pri ce)
ties as price, color, origin, etc. The integration enables properties to in the original wine table.

take values from the relational data. To do this, we create a mapping
between the schema of the base table and the properties in the on-
tology. For instanceT. ori gin — O. | ocat edl n maps the

ori gi n column of the base table to thecat edl n property.

Note that a mapping is different from a constructor. A constructor . .
associates a record in the relational table to an instance of a spe- ® temO. | ocat edI n specifies another virtual column. Note

e ItemQ. hasCol or specifies avirtual column, which is based
on the hasColor property of the wine object in the ontology.
The attribute value is to be derived using implication rules
during query time.

cific type in the ontology, while a mapping associates attributes of that unlikehas Col or , thel ocat edl n property is transi-

the record to properties of the instance created for the record. tive, which is indicated in the ontology. Thus, conceptually,
We study an example of tiEREATE VIRTUAL VIEW statement. the values returned by tleeLECTwiIll be the transitive clo-

In Example 6, the sources of the virtual view aretii@e table and sure of the ocat edI n property, which is a set of locations

theW neOnt ol ogy. They are specified in theroM clause. The that contain the region specified By or i gi n.

predicates in th&/HERE clause specify how the wine table and the

wine ontology are integrated. The construdibit ype=Wt ype tat t Clearly. th istrati f the virtual vi |
instantiates an ontology instance whose type is giveWhyype. statement. Liearly, the registration of the virtual view merely cre-
ates a mapping between values in a relational table and concepts

Take the first tuple in the wine table as an example. The construc- .
tor O. t ype=" Bur gundy’ creates a Burgundy instance, which in the °T‘t°'°9y- Th|s enal_)Ies the §ystem_ to perform knowledge
is a subtype of Wine in the ontology. The second li(©, t ype inferencing for queries against the virtual view.

"isA” ' Wne'), prescribes that the newly created instance must

be an instance of the Wine class. Thus, if the data in the wine table 3. HYBRID RELATIONAL-XML DBMSS

contains non-wine items, it will not be instantiated. The nexttwo  The modeling described in Section 2 needs physical level support
conditions specify that ther i gi n column of the wine table cor-  in a DBMS. In particular, the ontology is modeled as semistruc-

responds to Burgundyisocat edl n attribute (which is inherited  tured data, which traditional RDBMSs cannot handle directly.

Fig. 3illustrates the functionality of theREATE VIRTUAL VIEW
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Figure 5: Internal schema of the ontology repository. We use text as
identifiers for readability. The Ont ol ogyDocs table stores a copy of the
original ontology files registered by the user. Thent ol ogyl nfo and
Transi tiveProperty tables store the information extracted from the
ontology files for query processing.

Figure 4: Ontology files are registered in the ontology repository be-
fore use and the ontology repository extracts several typesf infor-
mation from the ontology files including class hierarchiesjmplication
rules, transitive properties etc.

We leveragehybrid relational-XML DBMSdor physical level (ontIDs). Besides being a storage system for ontology files, an-
support. Some commercial RDBMSs such as IBM DB2 9 PureXML other important purpose of an ontology repository is to hide the
[10, 20] now support XML in its native form. For concreteness, the complexity of ontology related processing from the user.
examples in this paper will be based on IBM’s DB2. ] Our ontology repository provides a simple user interface. The

In a hybrid relational-XML DBMS, XML is supported as abasic yser supplies a unique ontology identifier (ontID) to identify a log-

data type. Users can create a table with one or more XML type ; ; ; ;
columns. A collection of XML documents can therefore be de- ical ontolo_gy. Each logical pntology is usually en_coded n several
fined as a column in a table. For example, a user can create a tabl@ntology files. The user registers each ontology file that is part of a

ClassHierarchy with the following statement: logical ontology with a unique identifier (ID) via the stored proce-
CREATE TABLE O assH er ar chy durer egi st e(O_nt ol o_gy( onti d,_ ont ol og)_/,F| le ).

(id integer, name VARCHAR(27), hierarchy XM): When an existing logical ontology in the repository needs to be
removed, the stored procedude opOnt ol ogy( ontid ) is

To insert an XML document into a table, it must be parsed, called with the ontology ID. All the ontology files and extracted in-

placed into the native XML storage, and then indexed. We use

the SQL/X function, XMLParse, for this purpose: formation asspciated with the_ specified ontology ID Wi|! be deleted.

: : ) R Preprocessing Ontology Files After the user has finished reg-

'xﬁfg;s;?t 0,0 asst erarchy wal ues(1, "Wne', istering the ontology files, the ontology files associated with the

<wi ne> same ontlD are pre-processed in order to extract a variety of in-
<Whi t eW ne> _ formation that could be used in query processing (see Fig. 4). In
Ly seBurgundy> ... </ VT teBurgundy> .. particular, we highlight several pieces of key ontology information

</wine>)); that are extracted and stored to facilitate query processing: the class

) hierarchies, the transitive properties, and the implication graph.
Users can query relational columns and XML column together These three pieces of key ontology information that we extract
by issuing SQL/XML query [5, 6]. For example, the following  gre organized around three tables, ol ogyDocs, Ont ol ogyl nf o,
query returns class ids and class names of all class hierarchies tha; ;i 1 vepr operty, in the ontology repository (see Fig. 5). In an

contain the XPathh W ne/ Desser t W ne/ Sweet Ri esl i ng: actual system, more ontology information may be extracted: some
SELECT id, nane ifi i _
FROM Ol as5H or ar chy AS C to support specific query types, others for optimizing query pro
WHERE XMLExi sts(‘ $t/ W ne/ Dessert W ne/ Sweet Ri esl i ng’ cessing. _ _
PASSI NG BY REF C.order AS "t") Conceptually, the three types of information that we extract cor-

] ] respond to three types of rules encoded in the ontology. In particu-
The SQL/XML [7] functionXMLEXi st s evaluates an XPath ex- |51 gl three types of rules atéorn rules (defined next).

pression on an XML value. If XPath returns a nonempty sequence A Horn rule or clauses a logic expression of the form
of nodes, thetXMLEXi st s is true, otherwise, it is false.
H<—A1/\.../\Am/\NAnl+1/\.../\NAn

4. ONTOLOGY REPOSITORY whereH, A; are atoms or atomic formulae, and> m > 0. H

In order to support ontologies as first class citizens of the DBMS, 5 .5jied thehead (or consequent) of the rule and the righ-hand-
we augment the DBMS with aontology repository An ontology side (RHS) of— is called the body (or antecedent) of the rule.
repository consists of a collection of tables that store all the infor- 11,0 operatok— is to be read as “if” and- stands for negation-as-
mation associated with the ontologies registered by the users. INgy e Each rule is implicitly viewed as universally quantified. A
this section, we describe how users can manage ontologies withjefinite Horn ruleis a Horn rule where the RHS does not contain
the ontology repository and how these ontologies are preprocessed,,, nagatioh The implication rules that we consider in this paper
internally to extract various information such as class hierarchies, 5.4 acyclic Horn rules without negations.
transitive properties, implication graph from the ontology files. For Atoms or atomic formulae are represented in two ways in this

the sake of concreteness, we use OWL qntologles for our d|scus-paper' For example, the atom representing the predicate “wine X
sion. Our framework, however, is not restricted to the OWL format.

. . ! . !In the case of Datalog [24], definite Horn rules are often further
Managing Ontology Files.From the user’s perspective, the on-  restricted to non-recursive rules and “safe” rules where all vasable
tology repository is a table of ontology files and their identifiers that occur in the head also occur in the body.
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has color red” can be written in the following two ways, <ow : Obj ect Property rdf:ID="1ocatedl n">
<rdf:type rdf:resource
hasColor (X, red) or (hasColor=red), ="&ow ; Transi tiveProperty" />

where variable identifiers begin with capital letters, and constants </ ow : Obj ect Property>
begin with small letters. The first representation is used in the con-  once we know that the locatedin property is transitive, we scan
text of logical inference: atoms are represented as logical func- for all the instances of the property and construct a tree (or forest)
tions with any arity. The latter representation is used in the context from them. For example, suppose the following instances of the
of SQL predicates in a SQL where-clause: atomic formulas are locatedin property are found,
more conveniently written as attribute-operator-value expre_ssions <Regi on rdf: | D=" USRegi on" />
or triples. In the above example, the operatodenote an equality <Regi on rdf: 1 D="CaliforniaRegi on">
test and the implicit object is a row of the base table associated with < ;leocat Sdl n rdf:resource="#USRegion" />
the SQL _query' . X . <Regiglognr df : | D="TexasRegi on" >

Providing the mapping of the entire OWL syntax into the three  <jocatedi n rdf: resour ce=" #USRegi on" />
types of rules considered in this paper is beyond the scope and</ Regi on>
space limitations of this paper. Instead we provide a few examples
to illustrate the mapping.

Class Hierarchies. The class hierarchies that we extract from

The following transitive tree is constructed.

the ontology corresponds to subsumption rules dealing with the USRegion
specialsubClassOfelationship, California TexasRegion
subClassOf (A, C) «— subClassOf (A, B) N\ subClassOf (B, C) Implication Rules. Both the class hierarchies and the transi-

tive properties are a type of recursive rules. The implication graph,

andisArelationship, on the other hand, captures non-recursive rules encoded in the on-

isA(B, X) «— isA(A, X) A subClassOf (A, B). tology. These non-recursive rules are represented internally as an
implication graph
The subClassOfrelationship relates two classes. Tk relation- An implication graphG is a directed acyclic graph consisting
ship relates an instance to its class. Note thastif®ClassOfand of two types of vertices and two types of edges. The vertex and
isA relationships are special “builtin” relationship that not defined edge set of+ is denoted byV (G) and E(G) respectively. The
by the ontology-author. set of nodes adjacent to a given verteis defined asAdj(v) =

For OWL ontologies, thessubClassOfelationships that define
the class hierarchy can be expressed in several ways. If strict tree
structure is required for persistence, non-disjembClassOfrela-

{u|(v,u) € E(G)}. Animplication graph has two types of nodes.
Predicate node®(G) are associated with atoms in Horn clauses.

tionships can be flattened into tree structure. In most casiss, ~ Conjunction nodeg’(() represent the conjunction of two or more
ClassOfrelationships are explicitly specified insubd assCf atoms in the body of a Horn clause. For a verteg P(G), the
construct and in some cases via restrictions. For example, predicate name (object property name) associatedwiglienoted
b d(v), the predicate value byal(v), the operator that relates
<ow : Cl ass rdf:|D="Dessert Wne"> Y pre (v) P biya (U) P
<rdfs: subC assOf rdf:resource="#Wne" /> the predicate name to the predicate valuepgw).
o For example, Figure 6 shows the implication graph for the fol-
</ow : O ass> lowing set of implication rules:
<owl : O ass rdf: | D="Vhit eW ne"> A=vl «— G=v7
<ow :intersectionOf rdf:parseType="Coll ection"> _ _ _
<owl : Cl ass rdf:about ="#Wne" /> A=vl — B=v2AC=v3
<ow : Restriction> B=v2 «— H=uv8
<owl : onProperty rdf:resource="#hasCol or" /> _ _
<owl : hasVal ue rdf:resource="#Wite" /> C=v5 « D=vd
</ ow : Restriction> C=v5 «— F=uv6
</ow :intersectionCf >
</ow:Q ass> The construction of the implication graph for an ontology is straight-

forward. We start with an empty implication graph and scan the
ontology files for all implications. After filtering out recursive im-
plications, such as those associated with class hierarchies and tran-
sitive properties, we are left with the non-recursive implications.
We iterate through each non-recursive implication and insert ver-

Wi
/K tices and edges into the implication graph.

DessertWine WhiteWine For OWL ontologies, standard logical equivalences can be used
. . - . to convert definitions into implication rules. Complex implications
Transitive Properties. Transitive properties corresponds to sub-  whose consequent is a conjunction of atoms can in most cases be
sumption rules dealing with transitive relationships defined in the decomposed into Horn rules. Consider the following OWL frag-
ontology by the ontology-author. For example, thecat edl n ment from the definition of the Zinfandel class:

property in the wine ontology corresponds to the following rule,

where the WhiteWine class is defined to be all wines whose has-
Color attribute has the value white. The class hierarchy for the
above OWL fragments is:

<ow : C ass rdf: about ="#Zi nf andel ">

locatedIn(A, C) < locatedIn(A, B) A locatedIn(B, C). = gg\jﬁ s;l;;:lt ?Isitolf Zn>

The facts associated with these transitive relationships can be Soul:onProperty rdr:resour ce= rasColor” />

extracted from the ontology into a tree representation to facilitate </ow : Restriction>
query re-writing and processing. In OWL, transitive binary rela- </rdfs: subd assCf >
tionships (owl:ObjectProperty) are specified using the following  <rdfs: subd assof >
construct: <owl : Restriction>
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<owl : onProperty rdf:resource="#hasSugar" /> an ontology need only a renaming of the view column name to
< ;\(/)\AN Rg:tsylf’"cffo;gf tresource="#Dry" /> the column name in the base table, and (2) predicates on virtual
</rdfs: subd assCf > columns need to be re-written using rules that are restricted to def-
o inite Horn rules in our system.
</ow : O ass> Algorithm 1 outlines the rewriting algorithm for a WHERE-clause
The OWL fragment specifies that all instances of the Zinfandel Q in a SQL query on a virtual view. The algorithm takes as input
class must also belong to the sub-class of all wines whose hasColorthe set of atoms from the WHERE-clau§ethe implication graph
property takes the value red and to the sub-class of all wines whosec;, the set of recursive relationships (predicate identifiers of all

hasSugar property takes the value dry, i.e., transitive OWL properties and class hierarchies), and the virtual
(isA(Zinfandel, X) — [(hasColor(X, Red) A (hasSugar(X, Dry)] view definitionV, and outputs a rewritten query expressigh The
which can be decomposed into a collection of Hom rules (the proof &lg0rithm loops through each atom @ and rewrites each atom
using a truth table is trivial): independently. Each atom is viewed as an column-operator-value

(isA(Zinfandel, X) — hasColor(X, Red)] Itrlple. The get\/_lewTr_lpIe proce_dure re_trleves from the_ DBMS cata
: i og tables the view triple associated with the column in the atom. If
AlisA(Zinfandel, X) — hasSugar(X, Dry)]. the column in the atom is not a virtual column, the atom is rewrit-

Encoding Extracted Information in XML. After the class hi-  ten using the base table column from the view triple. Otherwise,
erarchy, transitive properties, and implication graph are extracted we call the EXPAND procedure to expand the atom. If th&®BAND
from the ontology, they are serialized into XML and stored in the procedure returns an empty result, there is no rule that could satisfy
ontology repository. the atom and we rewrite the atom to ‘false’.

The class hierarchy and transitive properties all contain subsump-
tion relationships in a tree data structure. Because our query pro-Algorithm 1 REWRITE(Q, G, R, V)
cessing component will be relying on XPath for subsumption check-
ing, these tree data needs to be serialized into XML in a way that
preserves their tree structure in XML. For example the transitive
tree shown previously can be encoded into XML as

Input: Q is a set of atomic predicates, G is the implication graph, Res t
set of recursive implicationd/is the view definition

Output: Q’is the set of expanded predicate expression

1: LetQ = {A1, Az, A3, ...}

<USRegi on> 2:Q 10
<Cal i forni a/ > 3: forall A; € Qdo
<TexasRegi on/ > 4:  LetA; = (vcol, op, value)

</ USRegi on> 5: (b, 7, vcol) < getViewTriple, vcol)

On the other hand, there is much more flexibility for serializing 6: if r = ¢ then .
the implication graph, because we do not need any kind of sub- [* weol is not a virtual column */

sumption testing on it at all. Any standard method for encoding g els%l — Q" UA{(b, op, value)}
graphs to XML can be used. 10: I* weol is a virtual column */
11: a < findRuleNode@, R, (7, op, value))
5. QUERY PROCESSING 125 if alnotfoulnd then
In this section, we describe how queries written against the vir- %?1 elscg = Q"U{false}
tual view can be processed by re-writing into equivalent queries 15: Al — ExPAND(a, G, R, V)
that run on both the base table and the information in the ontology. 16: if A} = e then
When describing algorithms in a formal setting, we will Ugdo 17: [* if rewritten predicate is empty */
denote the set of recursive relationships, where each relationshipl8: Q' — Q" U {false}
is either a class hierarchy or a transitive property in the ontology. eISQe, —Qua

From the logic inferencing point of view, the class hierarchies and 51. return@’
the transitive relationships are both a type of recursive rule. We will
also use a set ofiew triplesto refer to the mapping information in
the create-virtual-view statement. These view triple information ~ Note that RWRITE(Q, G, R,V) only rewrites the predicate ex-
will typically be stored in the catalog tables of a DBMS. In general pression in the WHERE-clause of a SQL query. Additional post
aview triple(b, , v) encodes a binary association between any pair processing is required to add in the retrieval operations for the on-
of a base tablé, a property or relationshipin the ontology, and a  tology information needed by the rewritten predicates. For exam-
columnu in the virtual viev?. ple, if the rewritten WHERE-clause consists of the subsumption-
Consider a SQL query with a WHERE-clause that consists of check operatoisSuBsuMED('USRegion’, ‘locatedIn’, Wine.Origin),
conjunctions and disjunctions of atomic predicates. The conjunc- postprocessing will need to add in the appropriate arguments to
tion and disjunction operators need no re-writing. The atomic pred- the FROM-clause and the WHERE-clause to retrieve the transitive
icates in the WHERE-clause can be re-written independently, be- property ‘locatedin’ from the ontology repository.
cause (1) predicates on view columns that are not associated with For hybrid relational-XML DBMS, a straight-forward implemen-
tation of theisSuBSUMED boolean operator is to use the SQL/XML
function XMLEXi st s [7, 14]. Another possibly less efficient im-

2For example, the view triples associated with Example 6 are
relational view triples W .id, ¢, V.Id),

(W .type, €, V. Type), plementation is to use a recursi\(e SQL statement as alluded to in
(W .origin, €, V.Origin), Das et al [4]. For the rest of the discussion, we will assume that the
(W.maker, €, V.Maker), ISSUBSUMED boolean operator can be implemented by re-writing
. _ (W .price, €, V.Price), to the SQL/XMLXM_Exi st s function.

virtual column triples ¢, 8'200%6‘11]”' ‘é'%"c%@‘fm)' The heavy-lifting in the inferencing work is actually performed

ontology triples (E’IV type, O-type, 9, o) in the EXPAND procedure outlined in Algorithm 2. Predicate ex-
(W .origin, O.locatedIn, ¢), pansion work that is similar in spirit has been done in [21] for a dif-
(W .maker, O.hasMaker, €). ferent type of rules, but our algorithm is original in the way it deals
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with virtual columns and recursive rules. Th&®AND procedure
performs inferencing by exploring the implication graph and any
relevant recursive relationships. To elaborate on the algorithm, we
first define some required concepts.

Algorithm 2 EXPAND(h, G, R, V)

Input: h is the node in implication grap&' to be expandedr is the set of
recursive relationships, andis the virtual view definition
Output: e is the expanded predicate expression

1. if his a ground nodénhen

2: (b, 7, v)« getViewTriple, pred(h)) Implication graph Tree for transitive property C
3. e« {(b,op(h),val(h))}
g’ if }eL Iiaer(\e/cﬂrsssl\()eggad,\f;? val(h), pred(h), by Figurg 6: The i‘mplication graph and the tree for the_transiFive ‘rela‘-
6: /* R-Expansion */ tionship C used in Example 7. The twg sha.de.d nodes in the implication
7: if his a recursive nodéhen graph denote ground nodes. Dotted lines indicate traversaif the Ex-
8: forall s € subsumedAtoms(R, h) do PAND algorithm.
9: if se€ P(G) then
10: for all rulebody € dependentExp(s,G) do
1L tmp <—,@ (possibly empty) set of all the atoms subsumedhby\Ve then re-
%g forall i € rulebody do cursively call EPAND on each atom in the subsumed set that has
: tmp — tmpAEXPAND(:, G, R, V) . . . .
14 ¢ e\ tmp a node m_G. SL_Jch expansions via the recursive rules are called
15: /* G-Expansion */ R-expansions (line 6-7).
16: for all rulebody € dependentExp(h,G) do In addition to handling expansion via recursive rules, we need
170 tmp — 0 to expandh with non-recursive rules contained in the implication
18: forall i € rulebody do graphG, i.e. G-expansions (line 15-16). We iterate over
%(9) tmp — tmpAEXPAND(i, G, R, V) dependentExp(h, G), the (possibly empty) set of all rules @@
. e—eVimp
21- returne that hash as the head. Each elementi{ebody) of
dependentEzp(h, G) represents the body of a rule and consists of
a set of atoms (implicitly joined by conjunction) XBAND is called
Definition 2 (Recursive nodes)A predicate noderc P(G) from on each of these atoms. The re-written expressions of the atoms
the implication graphG is a recursive node if and onlyjifred(n)cR, ~ in a single rule body are joined with a conjunction, and the re-
whereR is the set of predicate identifiers of all recursive relation-  Written expressions of different rules are joined with a disjunction
ships. in accordance of the semantics of Horn rules.

The ExPAND procedure always terminates because there are no
Definition 3 (Ground nodes) For a given virtual view definition cycles in the implication graph and the transitive trees (by defini-
V, a predicate nodexc P(G) from the implication graphG is a tion).
ground node if and only if there exists some view triggler, v)eV
such thatr=pred (n) andb#e, i.e., the predicate is associated with ~ Theorem 1 With respect to the fragment of horn rules that we sup-

a base table column in the virtual view definition. port, the view definition, and the query types that are supported,
our rewriting procedure is sound and complete.

The ExpPAND procedure works as follows. Given a predicate
nodeh, if h is a ground node (line 1), it means ttats associ- Proof sketchThe EXPAND procedure rewrites an atom either by
ated with a base table column and the predi¢atan be checked  traversing paths within the implication graph or by traversing paths
against the base table column directly. If in addition to being a in the trees used to store the transitive properties and class hierar-
ground node, the nodk is also recursive, then an additional sub- chies. Each outgoing edge of a predicate node in the implication
sumption check needs to be added to the rewritten predicate. AngraphG denotes a logical implication and each conjunction node
example of a non-recursive ground node for the virtual view in Fig- is processed without violating the semantics. Each path in the trees
ure 3 would be “hasMaker=ClosDeVougeot”, and an example of a denotes recursive application of the transitive rple:d (A, C)
recursive ground node would be “locatedin=USRegion”. pred(A, B) A pred(B,C). Since each step is an application of
For the case wherk is not a ground node, it is clear that the al-  some implication rule, the rewriting is sound. For proving com-
gorithm needs to traverse the implication graph. For the case wherepleteness, note that our data structures encode each unique atom
h is a ground node, the algorithm still needs to continue traversing exactly once. If there is any path from the query predicate to a
the implication graph so as to ensure completeness of the inferenc-ground node, our algorithm will discover it. Since our rewriting
ing. A ground node is an atom that can be checked against the baselgorithm examines all rules that could be satisfiable, the rewriting
table, but does not ensure that the atom is true against the base tais complete.
ble; hence, the expansion cannot stop at ground nodes unless there
are no more ground nodes reachable from the current ground nodeExample 7 Consider the following SQL query on the virtual view
To further traverse the graph, recursion is used (note that we WineView(id, hasColor)
expressed the traversal using recursion for clarity, a stack can be SELECT V.Id
used for a non-recursive implementation)alis recursive, then all CngSEV\(/nﬁrs% ﬁ?:\\//l-
atoms subsumed by, denoted bysubsumedAtoms(R, h), will ’ '
also safisfy the predicate The subsumedAtoms(R, h) function  \here the virtual view definition consists of the following triples,
is computed by retrieving the tree associated Wwiflom R (either
a class hierarchy or a transitive property) and finding in the treethe  {(id, ¢, id), (¢, A, hasColor), (type, B, €), (origin, D,€).}
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Further suppose that the implication grapghand the recursive tree are only dependent on the ontology and the schema of the base
for transitive propertyC' € R are as shown in Figure 6. Rewriting  table. Updates to the base table data after the creation of view will
the query using y line 20 is executed, because the query predicatenot affect the correctness of the optimization strategies.

does not involve recursive relationships and there exists a rule in

G for the query predicate. Algorithm 1 calls ti&xXPAND proce- 6. EXPERIMENTS

dure (Algorithm 2) to expand the query predicate. OBBtv2 and
D=v4 are ground nodes iii7, sSo EXPAND (Algorithm 2) tries to
traverseG and the tree forC' towards the ground nodes. In this

The usefulness of our virtual view framework will depend in part
on the performance of the queries against the virtual columns in the
case satisfying paths are found and the re-written query is: yirtual v_iew. We have shc_)wed that such queries can be re-written

SELECT Wi d into plam SQL/XML queries on th'e base table_ gnd the Qntology

FROM W ne AS W data in the ontology repository using the re-writing algorithms in

VWHERE W type=v2 AND Wori gi n=v4; Section 5. The performance of the re-written queries are indepen-
dent of the algorithms proposed in this paper and entirely depen-

Optimization. Algorithm 2 has two sources of complexity : ex- dent on the data and the DBMS engine. The performance of com-
pansion via each dependent rule body from the set mercial DBMS engine is not the focus of this paper; hence we focus
dependentEzp(G, h), and expansion via the recursive relation- on the performance of the re-writing algorithms in this section.
ships fromsubsumedAtoms(R, h) (G-expansions and R-expansion  We prototyped our query re-writing algorithms in C++ and mea-
respectively). Many of these expansions can be avoided if we know sured its performance over synthetic implication graphs and trees.
that the atoms do not lead to any ground or recursive nodes. ThisThe choice of synthetic data is intentional so as to investigate the
section discusses several ideas for pruning the expansion. performance of our rewriting algorithms under different data sets

The notion of live or dead nodes (defined next) captures the in- with different characteristics. With real publicly available ontolo-
tuition for whether a node can ever be satisfied from some ground gies, we would only be able to show single performance numbers
nodes downstream in the inference process. that would not shed light on how the rewriting algorithms scale
with the complexity of the data.

Data Generation. Random implication graphs are generated by
specifying the number of relationshipsar, the number of values
nval each relationship can take, the deptlevels of the impli-
cation graph, the maximum number of rulésnsity to generate
between consecutive levels in the graph and the maximum number
of atomsfanout in a rule body. For our experiments the number
of valuesnwal is fixed at 10. The maximum number of atoms or

The first optimization is that we mark nodes in the implication nodes in the graph isvar x nval. The atoms are partitioned uni-
graphG that are dead because there is no path from those nodes tdormly into nlevels groups. The groups are randomly ordered and
any recursive or ground nodes. Note that whether a node is alive orsome number of rules are generated for each consecutive pair of
dead is dependent on the view definition. It is clear that if a node groups. The number of rules-ule generated between two consec-
does not contain any ground nodes downstream, the expansion alutive groups is randomly chosen between one éngkity. Each
gorithm can safely skip it. If a recursive node exists downstream, rule is generated as follows. Randomly pick one atom from group
the algorithm still need to expand to the recursive node and pro- g as the head. Randomly choogeghe number of atoms in the
cess the recursive node, because the indirect nodes in the recursivbody between one anfdnout. Randomly pickf atoms from group
relationship tree can trigger G-expansions. g + 1 for the rule body.

The second optimization deals with the atoms within a rule body, = Generating tree data for transitive relationships and class hier-
i.e., a conjunction node in the implication graph. The expansion of archies is somewhat simpler. Each generated tree is specified by
the atoms in a rule body can be safely skipped if at least one of the the number of valueawval and the maximum fanoytnout. The
atoms is dead. This pruning criteria will still preserve soundness, number of atoms or nodes in the tree is the same as the number of
because atoms in a rule body are joined by logical conjunction that values, because each tree is associated with one relationship. The
requires every atom to be true. generation procedure uses a randomized stack that initially con-

The third optimization applies to R-expansions. To prune the tains only the root node. At each iteration, a node is popped from
number of expansions due to R-expansion, we can either marka random position in the stack for expansion. A random number
nodes in the recursive trgethat are not associated with live nodes of children nodes are generated subject to the specified maximum
in G, or we can check if the subsumed atoms are live before call- and pushed onto the stack. The procedure terminates when the tree
ing EXPAND recursively. The former is more efficient because the contains the required number of nodes. the stack.

Definition 4 (Live and dead nodes)For a given virtual view def-
inition, a noden € V(G) from the implication graplG is a live
node if

(1) n € P(G) andn is a ground node or a recursive node, or
(2)n € C(G) andVv € Adj(u),v is a live node, or

(3) there exists some € Adj(n) such that is a live node.
Conversely, a node that is not a live node is called a dead node.

pruning is done earlier whetubsumed Atoms(h, R) is computed Measuring performance. We measured the performance of the

resulting in a much smaller set of subsumed atoms. BASELINE algorithm (Algorithm 1 and Algorithm 2) and therdi-
The fourth optimization uses memoization techniques to avoid MizeD algorithm, in which memoization (the fourth optimization

traversing nodes in the implication graph more than once. described in Section 5) is used to optimize the?END procedure.

The fifth optimization deals with pre-computation of the predi- Each run consists of generating an implication graph, generating
cate re-writing. If the set of values associated with a virtual column zero or more trees, measuring the average time to rewrite a query
(eg. the hasColor property in the wine ontology) is small, then we in a workload consisting of all the head atoms of the rules in the
can pre-compute the re-writing for each possible value predicate implication graph. Such a workload ensures that the rewriting per-
on the virtual column and store these re-written predicates with the formance on all parts of the implication graph are measured. For
view definition in the system catalog tables. During query process- each implemented algorithm, and for each setting of the parame-
ing, the system catalog will be consulted first to determine if pre- ters, the performance is averaged over five runs, i.e., five random
computed rewriting exists before calling our rewriting procedures. data sets, to eliminate fluctuations due to randomness. The per-

Note that our optimization strategies on the expansion algorithm formance measure is therefore the time to rewrite a single atom or
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predicate averaged over the atoms in the implication graph and fivean external middle-ware (wrapper) layer built on top of a DBMS

random runs.
Varying number of relationships in the implication graph.

Figure 7(a) show the rewriting performance as the number of rela-

tionships, i.e.nvar, in the generated implication graphs is varied.
The number of groups is fixed at 5, thlensity at 1600, and the
number of trees is zero. Observe tha21MIZED is signficantly

engine. Two key limitations of this loosely-coupled approach are:
(1) DBMS users cannot reference ontology data directly, and (2)
query processing of ontology-related queries cannot leverage the
the query processing and optimization power of a DBMS.
Description logic (DL) and Datalog systems have also been well-
studied [8, 9]. These systems are based on translating a subset of

more efficient when the number of relationships is small and the DL to Datalog so that efficient Datalog inferencing engines can

performance of BSELINE approaches that of @IMIZED as the

number of relationships becomes large. The reason for this un-

be used. Efficient Datalog inferencing algorithms have been thor-
oughly investigated by [24]. Our framework differs from these ef-

expected result is because increasing the number of nodes whileforts in that we focus on the integration of relational data and do-

density is fixed, increases the sparsity of the implication graphs. A
sparse implication graph less expansion in our rewriting algorithm
hence the performance improvement.

Varying the density of rules. To confirm the above-mentioned
intuition, we fixed the number of relationships to 100 and the num-
ber of groups to five, and varied the maximum number of rules

main knowledge within the DBMS engine; expressivity of the logic
fragment is not our focus, even though Datalog optimization tech-
niques can be adapted for our rewriting algorithm. Our rewriting
algorithm also differs from previous work on semantic query opti-
mization [13] in that our focus is not on integrity constraints, but
on rewriting queries on virtual view into queries on the base tables

generated between consecutive groups. Figure 7(b) and Figyre 7(cand the ontology information.
show the average rewriting time when 16 trees and zero trees are A recent advance in ontology management in DBMSs was in-
associated with the implication graph respectively. Observe that troduced by Oracle. Das et al. [4] proposed a method to support

as thedensity increases, the performance oASELINE degrades
exponentially, whereas €XI1MIZED scales almost linearly. As the

ontology-based semantic matching in RDBMS using SQL directly.
Ontology data are pre-processed and stored in a set of system-

implication graph becomes more densely connected, the opportu-defined tables. Several special operators and a new indexing scheme

nity for exploiting duplicate expansions increases; hence the su-

perior performance of ©riMizED. Comparing Figure 7(c) and

Figure 7(b), we also observe that inferencing via the transitive re-

lationships adds an order of magnitude to the rewriting time; how-
ever, QPTIMIZED scales very reasonably in both cases.
Varying the tree sizes. To further understand how the number

are introduced. A database user can thus reference the ontology
data directly using the new operators. Compared to the loosely-
coupled approach, this method opens up the possibility of combin-
ing ontology query operators with existing SQL operators such as
joins. The ability to manipulate ontology data and regular rela-
tional data directly in the DBMS greatly simplifies and facilitates

of trees and the size of the trees affect the rewriting time, we fixed the development of ontology-driven applications.

the implication graph and varied the size of the 16 trees associated However, due to the “mismatch” between the relational schema
with it. We found that varying the number of trees has an effect and the graphical model of ontology data, this relational-model
very similar to varying the size of the trees, so only one set of re- based approach is still quite limited in its expressing and process-
sults will be presented. Figures 7(d) and 7(e) show the results for ing power. From the expressivity aspect, an ontology can encode
two different density values. Observe that both algorithms scale a broad spectrum of semantics over the base data. The semantics
linearly with the tree size. The running time oP@MIZED grows can range from a simple nickname for a value in the base table to
more slowly with tree size compared taBELINE. The superior some derived values obtained through very complicated reasoning,
performance of ®TIMIZED is especially dramatic for denser im-  and the semantic matching operation studied in [4] is just one in-
plication graphs. stance of such semantics. From processing aspect, inference is one

Varying the depth of the implication graph. In general, we of the most expensive operations on ontology data. All the pre-
do not expect real ontologies to have implication graphs with a vious approaches except [14] need to pre-compute and materialize
large number of levels. Nevertheless, we investigated how the num-all (or a big part of) the inference results (i.e., transitive closures) to
ber of groups of levels in the implication graph affects the rewrit- achieve reasonable performance at query execution time. This pre-
ing performance by varying the number of groups from three to processing not only incurs serious time and storage overhead, but
eleven. Figure 7(f) shows the performanceaSBLINE is signifi- also makes the update of the pre-computed data infeasible when
cantly more sensitive to the number of levels: increasing the num- the underlying ontology data change. As an alternative, the au-
ber of levels could increase the search space for the expansion exthors of [14] proposed using XML trees to encode subsumption re-
ponentially in the number of rules. @@IMIZED uses memoization lationships and using theM_Exi st s SQL/XML [7] operator to
to avoid this exponential explosion: it never expands a rule more perform subsumption checking. Our framework leverages on the
than once per query. technique in [14] for subsumption checking.

From a theoretical point of view, our framework can be classi-
fied as a type of global-as-view (GAV)[12] algorithm. However,
our framework has two interesting features: the mapping between
global schema (virtual view) and the local schema (base table) is

knowledge-base editor that allows the user to construct a domaincompletely determined only at query _tlme, and th_e mapping is de-
pendent on the data value that is being constrained by the query.

ontology, customize data entry forms, and enter data [23]. RStar is Only when the querv is specified. does our rewriting alaorithm
an RDF storage and query system for enterprise resource manage- Y he query IS sp ' ; g aigontf
o - . search the implications in the ontology in order to determine if a
ment [15]. Other ontology building systems include OntoEdit [17], mabbing exists and if it exists. to compute the maopin
OntoBroker [16], OntologyBuilder and OntologyServer [3], and (g)l?r frgamework sets the baéis for ul?ar in avar?ept gf semantics
KAON [22]. Most systems use a file system to store ontology data over the relational data through a si?n Ieyre?ational viyew We lever-
(.g., Ontokdit). Others (e.g., RStar and KAON) allow the ontol- age a relational-XML DBMS?‘or manip ulating ontolo .data and
ogy data to be stored in a relational DBMS. However, processing 9 P 9 9y

of ontology-related queries in these systems is typically done by for processing semantic queries all within the DBMS engine.

7. RELATED WORK

Several tools have been developed for building and manipulat-
ing ontologies. For example, P&gg is an ontology editor and a
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Figure 7: The average rewriting time over different configurations ofthe implication graph and the transitive trees. The plots fo BASELINE have

been truncated where the running time is prohibitively long

8. CONCLUSION

[11]

In this paper, we propose a framework that aims at supporting a
rich class of semantic-related queries within DBMSs in an easy-to-
express and potentially efficient-to-process manner. We provide a1
unified view of data and knowledge so that they can be queried us-
ing relational operators. Our framework leverages the recent devel-[13]
opment in ontology languages and native XML support in DBMSs:
the former lays the foundation for semantic representation, and the
latter makes it possible to manipulate data semantics with relational [14]
data in a DBMS. Our framework opens up new avenues towards

supporting efficient semantic data management in DBMSs.
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