Automatic Categorization of Query Results

SIGMOD ’04

F. Kaushik Chakrabarti ¹ S. Surajit Chaudhuri ¹ T. Seung-won Hwang²

¹Microsoft Research
²Univ. of Illinois, Urbana Champaign

February 22, 2008
Motivation

- *Exploratory queries* are increasingly becoming a common phenomenon in database systems.
 - e.g. search for a book on a given *subject* on Amazon.com
- These queries return *too-many results*, but only a small fraction is relevant
 - the user ends up examining all or most of the result tuples to find the interesting ones.
- Can happen when the user is unsure about what is *relevant*
 - e.g. user shopping for a home is often unsure of the exact neighborhood, price range ...

This phenomenon is commonly referred to as *information-overload*
Motivation

- Exploratory queries are increasingly becoming a common phenomenon in database systems.
 - e.g. search for a book on a given subject on Amazon.com
- These queries return too-many results, but only a small fraction is relevant
 - the user ends up examining all or most of the result tuples to find the interesting ones.
- Can happen when the user is unsure about what is relevant
 - e.g. user shopping for a home is often unsure of the exact neighborhood, price range . . .

This phenomenon is commonly referred to as information-overload.
Motivation

- *Exploratory queries* are increasingly becoming a common phenomenon in database systems.
 - e.g. search for a book on a given *subject* on Amazon.com
- These queries return *too-many results*, but only a small fraction is relevant
 - the user ends up examining all or most of the result tuples to find the interesting ones.
- Can happen when the user is unsure about what is *relevant*
 - e.g. user shopping for a home is often unsure of the exact neighborhood, price range . . .

This phenomenon is commonly referred to as *information-overload*.
Motivation

Exploratory queries are increasingly becoming a common phenomenon in database systems.

- e.g. search for a book on a given *subject* on Amazon.com
- These queries return *too-many results*, but only a small fraction is relevant
 - the user ends up examining all or most of the result tuples to find the interesting ones.
- Can happen when the user is unsure about what is *relevant*
 - e.g. user shopping for a home is often unsure of the exact neighborhood, price range . . .

This phenomenon is commonly referred to as *information-overload*
COMMON APPROACHES TO AVOID INFORMATION-OVERLOAD from the IR scenario

- Ranking
- Categorization
COMMON APPROACHES TO AVOID INFORMATION-OVERLOAD
from the IR scenario

- Ranking
- Categorization
Categorization in database systems

- Category structures are decided in advance.
- Categories of a result tuple is decided in advance.
 - Examples: Amazon, Walmart, e-Bay . . .
- Problem: Susceptibility to skew - defeats the purpose of categorization
 User still experiences information-overload.
CATEGORIZATION IN DATABASE SYSTEMS

- Category structures are decided in advance.
- Categories of a result tuple is decided in advance.
 - Examples: Amazon, Walmart, e-Bay ...
- Problem: Susceptibility to skew - defeats the purpose of categorization

User still experiences information-overload.
Category structures are decided in advance.

Categories of a result tuple is decided in advance.
 Examples: Amazon, Walmart, e-Bay . . .

Problem: Susceptibility to skew - defeats the purpose of categorization
User still experiences information-overload.
Previous categorization techniques were query *independent* - the category structure were decided *apriori*.

Solution: Generate the category structure based on the *contents of tuples* in the *answer set*.

Ensure “even” distribution of query results across the category.
Previous categorization techniques were query *independent* - the category structure were decided *apriori*.

Solution: Generate the category structure based on the *contents of tuples* in the *answer set*.

Ensure “even” distribution of query results across the category.
Previous categorization techniques were query *independent* - the category structure were decided *apriori*.

Solution: Generate the category structure based on the *contents of tuples* in the *answer set*.

Ensure “even” distribution of query results across the category.
Automatic Categorization of Query Results

Example:

```
All
  \--- Neighborhood Redmond
        \- Price 200-225K
            \- Price 225-250K
                \- Price 250-275K
  \--- Neighborhood Issaquah
        \- Price 200-275K
            \- Price 275-300K
    \--- Neighborhood Seattle
        ..
 0 1 2 ..
```

Example of hierarchical categorization
Table of Contents

- Categorization basics
- Exploration Model - simulating a “typical” user
- Cost estimation - probabilistic
- Estimating probabilities using workload
- Heuristics
- Categorization algorithm
- Experimental evaluation
A hierarchical categorization of R is a recursive partitioning of the tuples in R defined inductively as follows:

- **Base Case:** Given a ALL node containing all tuples in R, partition R using a single attribute.
- **Inductive Step:** Given a node C at level $l - 1$, partition (level 1) set of tuples $tset(C)$ using a single attribute for all nodes in for all nodes at level $l - 1$ iff C contains more than a “certain” number of tuples.

Associated with each category C is:

- $tset(C)$: Set of tuples contained in a category C.
- $label(C)$:
 - For categorical attribute A is of the form $A \in B$ where $B \subset dom_R(A)$
 - For numeric attribute A is of the form $a_1 \leq A \leq B_2$ where $a_1, a_2 \in dom_R(A)$.
To generate a particular instance of hierarchical categorization:
At each level l:

- Determine the categorizing attribute A for level l
- Determine the partition of domain of values of A for $tset(C)$

Objective: Choose the attribute-partition combination at each level such that the resulting instance T_{opt} has least possible information overload on the user.
Categorization Model

To generate a particular instance of hierarchical categorization:
At each level l:
- Determine the categorizing attribute A for level l
- Determine the partition of domain of values of A for $tset(C)$

Objective: Choose the attribute-partition combination at each level such that the resulting instance T_{opt} has least possible information overload on the user.
CATEGORIZATION MODEL

EXPLORATION MODEL: scenarios

Common exploration scenarios:

- **ALL** User explores the result set R until she finds *every* tuple $t \in R$ relevant to her.
- **ONE** User explores the result set R until she finds *one (or few)* tuple(s).
Common exploration scenarios:

- ALL User explores the result set R until she finds every tuple $t \in R$ relevant to her.
- ONE User explores the result set R until she finds one (or few) tuple(s)
Model of exploration of node C in \texttt{ALL} scenario:

\textbf{Algorithm 1 Explore C}

1: \textbf{if} \ C \ \text{is a non-leaf node} \ \textbf{then}
2: \quad \text{Choose one of the following:}
3: \quad (1) \ \text{Examine all tuples in } \texttt{tset}(C) \ \{\text{Option SHOWTUPLES}\}
4: \quad (2) \ \{\text{Option SHOWCAT}\}
5: \quad \textbf{for} \ i = 1; \ i \leq n; \ i++ \ \textbf{do}
6: \quad \quad \text{Examine the label of ith subcategory}
7: \quad \quad \text{Choose one of the following}
8: \quad \quad (2.1) \ \text{Explore } C_i
9: \quad \quad (2.2) \ \text{Ignore } C_i
10: \quad \textbf{end for}
11: \ \textbf{else}
12: \quad \text{Examine all tuples in } \texttt{tset}(C)
13: \ \textbf{end if}
Model of exploration of node C in ONE scenario:

\textbf{Algorithm 2} Explore C

1: \textbf{if} C is a non-leaf node \textbf{then}
2: \hspace{1em} Choose one of the following:
3: \hspace{2em} (1) Examine tuples in $tset(C)$ till the first relevant tuple found
4: \hspace{3em} \{Option SHOWTUPLES\}
5: \hspace{2em} (2)\{Option SHOWCAT\}
6: \hspace{1em} \textbf{for} ($i = 1; i \leq n; i++$) \textbf{do}
7: \hspace{2em} Examine the label of ith subcategory
8: \hspace{2em} Choose one of the following
9: \hspace{3em} (2.1) Explore C_i
10: \hspace{3em} (2.2) Ignore C_i
11: \hspace{2em} \textbf{if} choice = Explore \textbf{then}
12: \hspace{3em} break
13: \hspace{2em} \textbf{end if}
14: \hspace{1em} \textbf{end for}
15: \hspace{1em} \textbf{else}
16: \hspace{2em} Examine tuples in $tset(C)$ till the first relevant tuple found
17: \hspace{1em} \textbf{end if}
Define *cost* as the total number of items, both tuples and category labels, examined by the user.

Minimizing the *cost* also minimizes the information-overload a user encounters.

The choices for a *given* user for a given query is not known *apriori*

but the aggregate-knowledge of previous user behavior is known!

Use the previous knowledge to estimate the *cost* for the *average* case.
Cost Model

- Define \textit{cost} as the total number of items, both tuples and category labels, examined by the user.
- Minimizing the \textit{cost} also minimizes the information-overload a user encounters.
- The choices for a \textit{given} user for a given query is not known \textit{apriori}.
 - but the aggregate-knowledge of previous user behavior is known!
- Use the previous knowledge to estimate the \textit{cost} for the \textit{average} case.
Cost Model

- Define **cost** as the total number of items, both tuples and category labels, examined by the user.
- Minimizing the **cost** also minimizes the information-overload a user encounters.
- The choices for a *given* user for a given query is not known *apriori*
 - but the aggregate-knowledge of previous user behavior is known!
- Use the previous knowledge to estimate the **cost** for the *average* case.
Cost Model

- Define cost as the total number of items, both tuples and category labels, examined by the user.
- Minimizing the cost also minimizes the information-overload a user encounters.
- The choices for a given user for a given query is not known apriori
 - but the aggregate-knowledge of previous user behavior is known!
- Use the previous knowledge to estimate the cost for the average case.
Define *cost* as the total number of items, both tuples and category labels, examined by the user.

Minimizing the *cost* also minimizes the information-overload a user encounters.

The choices for a *given* user for a given query is not known *apriori*

- but the aggregate-knowledge of previous user behavior is known!

Use the previous knowledge to estimate the *cost* for the *average* case.
Cost Model

Probabilities

- Re-define *cost* as the total number of items, *on average*, both tuples and category labels, examined by the user.
- The user choices in either exploration model are non-deterministic and not equally likely.
- This *uncertainty* and *preference* is captured by the following two probabilities:
 - **Exploration Probability** $P(C)$: Probability that the user explores category C, using either SHOWCAT or SHOWTUPLES.
 - **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes for the option SHOWTUPLES, given that she explores C.
 - $P_w(C) = 1$ for a leaf category.
 - $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT option given that she explores C.

Re-define cost as the total number of items, on average, both tuples and category labels, examined by the user.

The user choices in either exploration model are non-deterministic and not equally likely.

This uncertainty and preference is captured by the following two probabilities:

- **Exploration Probability** $P(C)$: Probability that the user explores category C, using either SHOWCAT or SHOWTUPLES.
- **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes for the option SHOWTUPLES, given that she explores C.

- $P_w(C) = 1$ for a leaf category.
- $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT option given that she explores C.
Re-define cost as the total number of items, *on average*, both
tuples and category labels, examined by the user.

The user choices in either exploration model are
non-deterministic and not equally likely.

This *uncertainty* and *preference* is captured by the following two
probabilities:

- **Exploration Probability** $P(C)$: Probability that the user explores
category C, using either SHOWCAT or SHOWTUPLES.
- **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes
for the option SHOWTUPLES, given that she *explores* C.
 - $P_w(C) = 1$ for a leaf category.
 - $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT
 option given that she explores C.
Cost Model
Probabilities

- Re-define *cost* as the total number of items, *on average*, both tuples and category labels, examined by the user.
- The user choices in either exploration model are non-deterministic and not equally likely.
- This *uncertainty* and *preference* is captured by the following two probabilities:
 - **Exploration Probability** $P(C)$: Probability that the user explores category C, using either SHOWCAT or SHOWTUPLES.
 - **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes for the option SHOWTUPLES, given that she explores C.
 - $P_w(C) = 1$ for a leaf category.
 - $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT option given that she explores C.

Cost Model

Probabilities

- Re-define *cost* as the total number of items, *on average*, both tuples and category labels, examined by the user.
- The user choices in either exploration model are non-deterministic and not equally likely.
- This *uncertainty* and *preference* is captured by the following two probabilities:
 - **Exploration Probability** $P(C)$: Probability that the user explores category C, using either SHOWCAT or SHOWTUPLES.
 - **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes for the option SHOWTUPLES, given that she *explores* C.
 - $P_w(C) = 1$ for a leaf category.
 - $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT option given that she explores C.
Cost Model

Probabilities

- Re-define *cost* as the total number of items, *on average*, both tuples and category labels, examined by the user.
- The user choices in either exploration model are non-deterministic and not equally likely.
- This *uncertainty* and *preference* is captured by the following two probabilities:
 - **Exploration Probability** $P(C)$: Probability that the user explores category C, using either SHOWCAT or SHOWTUPLES.
 - **SHOWTUPLES Probability** $P_w(C)$: Probability that the user goes for the option SHOWTUPLES, given that she explores C.
 - $P_w(C) = 1$ for a leaf category.
 - $(1 - P_w(C))$ is the probability that the user goes for the SHOWCAT option given that she explores C.
For the ALL scenario,

- For a given node a user chooses to explore, she can either:
 - execute SHOWTUPLES with cost: $P_w(C) \times |tset(C)|$
 - execute a SHOWCAT with cost:
 $\left(1 - P_w(C)\right) \times \left[|C_t| + \sum_{i=1}^{\left|C_t\right|} P(C_i) \times Cost_{All}(C_i)\right]$

$Cost_{All}(C) = P_w(C) \times |tset(C)| + \left(1 - P_w(C)\right) \times \left[|C_t| + \sum_{i=1}^{\left|C_t\right|} P(C_i) \times Cost_{All}(C_i)\right]$

where C_t is the set of sub-categories of C
Cost Model

Cost : ONE

- For the ONE scenario,
 - For a given node a user chooses to explore, she user can either:
 1. execute SHOWTUPLES with cost: \(P_w(C) \times \text{frac}(C) \times |tset(C)| \)
 2. examine some(i) category labels until the relevant label is found and then explore that category further.
 3. The probability that \(C_i \) is the first category explored:
 \[
 (\prod_{j=1}^{i-1} (1 - P(C_j))) \times P(C_i)
 \]
 4. The cost of exploring \(C_i = |C_t| + \text{Cost}_{All}(C_i) \))

- \(\text{Cost}_{One}(C) =
 P_w(C) \times \text{frac}(C) \times |tset(C)| + (1 - P_w(C)) \times \sum_{i = 1} |C_t| P(C_i)

 (\prod_{j=1}^{i-1} (1 - P(C_j))) \times P(C_i) \times [|C_t| + \text{Cost}_{All}(C_i)]\)

- where \(C_t \) is the set of sub-categories of \(C \) and, \(\text{frac}(C) \) is the fraction of tuples the user needs to examine before finding the first relevant tuple.

$P(C)$ and $P_w(C)$ are needed for the $Cost_{One}(T)$ and $Cost_{All}(T)$

- Use aggregate knowledge of previous user behavior
- Specifically, infer user behavior from the queries executed previously by users of a given application - DBMS query Log
Using Workload to Estimate Probabilities

Computing SHOWTUPLES Probability

Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in all or most values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- W_i: Workload Query
- C_A: The categorizing attribute of C.
- N: total number queries in query log
- If W_i has a selection condition on C_A, then user is interested in a few categories of A.
- $\frac{N_{Attr}(C_A)}{N}$: the probability that the user executes SHOWCAT
- $\frac{1-N_{Attr}(C_A)}{N}$: $P_w(C)$, the probability that the user executes SHOWTUPLES.
Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in *all or most* values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- W_i: Workload Query
- C_A: The categorizing attribute of C.
- N: total number queries in query log
- If W_i has a selection condition on C_A, then user is interested in a few categories of A.
- $\frac{N_{Attr}(C_A)}{N}$: the probability that the user executes SHOWCAT
- $\frac{1-N_{Attr}(C_A)}{N}$: $P_w(C)$, the probability that the user executes SHOWTUPLES.
Using Workload to Estimate Probabilities
Computing SHOWTUPLES Probability

Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in all or most values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- W_i : Workload Query
- C_A : The categorizing attribute of C.
- N : total number queries in query log
- If W_i has a selection condition on C_A, then user is interested in a few categories of A.
- $\frac{N_{Attr}(C_A)}{N}$: the probability that the user executes SHOWCAT
- $\frac{1-N_{Attr}(C_A)}{N}$: $P_w(C)$, the probability that the user executes SHOWTUPLES.
Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in all or most values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- W_i : Workload Query
- C_A : The categorizing attribute of C.
- N : total number queries in query log
- If W_i has a selection condition on C_A, then user is interested in a few categories of A.

$$\frac{N_{\text{Attr}}(C_A)}{N}$$: the probability that the user executes SHOWCAT

$$\frac{1 - N_{\text{Attr}}(C_A)}{N}$$: $P_w(C)$, the probability that the user executes SHOWTUPLES.
Using Workload to Estimate Probabilities
Computing SHOWTUPLES Probability

Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in *all or most* values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- \(W_i \): Workload Query
- \(C_A \): The categorizing attribute of C.
- \(N \): total number queries in query log
- If \(W_i \) has a selection condition on \(C_A \), then user is interested in a few categories of A.
- \(\frac{N_{Attr}(C_A)}{N} \): the probability that the user executes SHOWCAT
- \(\frac{1-N_{Attr}(C_A)}{N} \): \(P_w(C) \), the probability that the user executes SHOWTUPLES.
Intuition:
A user does a SHOWTUPLES on a category C, if the user is interested in all or most values of C, or if a user is interested in only a few results (or sub-categories) of C, then she chooses the SHOWCAT option.

- W_i : Workload Query
- C_A : The categorizing attribute of C.
- N : total number queries in query log
- If W_i has a selection condition on C_A, then user is interested in a few categories of A.
- $\frac{N_{Attr}(C_A)}{N}$: the probability that the user executes SHOWCAT
- $\frac{1-N_{Attr}(C_A)}{N} : P_w(C)$, the probability that the user executes SHOWTUPLES.
Using Workload to Estimate Probabilities

Computing Exploration Probability

P(C), probability that the user explores a category **C**, either by **SHOWCAT** or **SHOWTUPLES**

\[
P(C) = P(\text{User explores } C \mid \text{User examines the label of } C) \\
= P(\text{User explores } C) \div P(\text{User examines the label of } C) \\
= P(\text{User explores } C) \div P(\text{User explores parent(C) and User examines the label of parent(C)}) \\
= P(\text{User explores } C) \div (P(\text{User explores parent(C)}) \times P(\text{User chooses SHOWCAT for parent(C) } | \text{ User explores parent(C)}))
\]

Now,

\[
P(\text{User chooses SHOWCAT for parent(C) } | \text{ User explores parent(C)}) = \frac{N_{Attr}(\text{parent(C)})}{N} \\
P(\text{User explores C} \div P(\text{User explores parent(C)}) = P(\text{User interested in label of C}) \\
P(\text{User interested in label of C}) = \frac{N_{overlap}(C)}{N} \\
P(C) = P(\text{User interested in label of C}) \times \left(\frac{N_{Attr}(\text{parent(C)})}{N} \right)
\]

\[
P(C) = \frac{N_{overlap}(C)}{N_{Attr}(\text{parent(C)})}
\]
P(C), probability that the user explores a category C, either by SHOWCAT or SHOWTUPLES

\[P(C) = P(\text{User explores C} \mid \text{User examines the label of C}) \]
\[= P(\text{User explores C}) \div P(\text{User examines the label of C}) \]
\[= P(\text{User explores C}) \div P(\text{User explores parent(C) and User examines the label of parent(C)}) \]
\[= P(\text{User explores C}) \div (P(\text{User explores parent(C)}) \times P(\text{User chooses SHOWCAT for parent(C) \mid User explores parent(C)})) \]

Now,

\[P(\text{User chooses SHOWCAT for parent(C) \mid User explores parent(C)}) = \frac{N_{\text{Attr}}(\text{parent}(C_A))}{N} \]
\[P(\text{User explores C}) \div P(\text{User explores parent(C)}) = P(\text{User interested in label of C}) \]
\[P(\text{User interested in label of C}) = \frac{N_{\text{overlap}}(C)}{N} \]
\[P(C) = P(\text{User interested in label of C}) \times (\frac{N_{\text{Attr}}(\text{parent}(C))}{N}) \]

\[P(C) = \frac{N_{\text{overlap}}(C)}{N_{\text{Attr}}(\text{parent}(C)_A)} \]
P(C), probability that the user explores a category C, either by SHOWCAT or SHOWTUPLES

\[P(C) = \frac{P(\text{User explores } C \mid \text{User examines the label of } C)}{P(\text{User explores the label of } C)} \]

\[= \frac{P(\text{User explores } C)}{P(\text{User examines the label of } C)} \]

\[= \frac{P(\text{User explores } C)}{P(\text{User explores parent(C) and User examines the label of parent(C)})} \]

\[= \frac{P(\text{User explores } C)}{P(\text{User explores parent(C)}) \times P(\text{User chooses SHOWCAT for parent(C) } | \text{ User explores parent(C))})} \]

Now,

\[P(\text{User chooses SHOWCAT for parent(C) } | \text{ User explores parent(C)}) = \frac{N_{Attr}(\text{parent}(C))}{N} \]

\[P(\text{User explores C}) = P(\text{User interested in label of C}) \cdot \frac{N_{Attr}(\text{parent}(C))}{N} \]

\[P(C) = \frac{N_{\text{overlap}}(C)}{N_{Attr}(\text{parent}(C))} \]
BUILDING THE CATEGORY TREE

Naive Algorithm:

- Enumerate all possible category trees and the $\text{Cost}_{\text{All}}(T)$ for each Tree T.
- Choose the tree T_{opt} with the minimum cost

Exponential, in $|A| \times |C_A|!$

Apply heuristics to

- Eliminate “uninteresting” attributes.
- For every remaining attribute, obtain a “good” partitioning instead of enumerate all possible partitioning
- Level-wise partitioning - at each step choose the attribute and its partitioning that has the least cost.
Naive Algorithm:

- Enumerate all possible category trees and the $Cost_{All}(T)$ for each Tree T.
- Choose the tree T_{opt} with the minimum cost

Exponential, in $|A| \times |C_A|!$

Apply heuristics to

- Eliminate “uninteresting” attributes.
- For every remaining attribute, obtain a “good” partitioning instead of enumerate all possible partitioning
- Level-wise partitioning - at each step choose the attribute and its partitioning that has the least cost.
Building the Category Tree

Naive Algorithm:
- Enumerate all possible category trees and the $Cost_{All}(T)$ for each Tree T.
- Choose the tree T_{opt} with the minimum cost

Exponential, in $|A| \times |C_A|!$

Apply heuristics to:
- Eliminate “uninteresting” attributes.
- For every remaining attribute, obtain a “good” partitioning instead of enumerate all possible partitioning.
- Level-wise partitioning - at each step choose the attribute and its partitioning that has the least cost.
Presence of a selection condition on an attribute reflects user’s interest in that attribute.

Eliminate an attribute if it occurs infrequently in the workload queries i.e. \[
\frac{N_{Attr}(C_A)}{N} \leq X_{\text{threshold}},
\]
Presence of a selection condition on an attribute reflects user’s interest in that attribute.

Eliminate an attribute if it occurs infrequently in the workload queries i.e. \(\frac{N_{\text{Attr}}(C_A)}{N} \leq X_{\text{threshold}} \),
Building the Category Tree

Partitioning for categorical attributes

For a query Q that contains a selection condition of the form: “A in v_1, v_2, \ldots, v_k”:

- v_1, v_2, \ldots, v_k are potential categories
- Consider only single-value partitioning
- For single-value partitioning, only the presentation order (for categories) matters.
- $Cost_{All}(T)$ is not affected by the order.
- So, minimize for only $Cost_{One}(T)$

Theorem

$Cost_{One}(T)$ is minimum when the categories are presented to the user in increasing order of $\frac{1}{P(C_i)} + Cost_{One}(C_i)$

Heuristic: $Cost_{One}(C_i)$ as a constant (drop it)

The categories are presented in decreasing order of $N_{overlap}(C_i)$, or $occ(v_i)$.
BUILDING THE CATEGORY TREE
PARTITIONING FOR CATEGORICAL ATTRIBUTES

For a query Q that contains a selection condition of the form: “A in v_1, v_2, \ldots, v_k”:

- v_1, v_2, \ldots, v_k are potential categories
- Consider only single-value partitioning
- For single-value partitioning, only the presentation order (for categories) matters.
- $Cost_{All}(T)$ is not affected by the order.
- So, minimize for only $Cost_{One}(T)$

Theorem

$Cost_{One}(T)$ is minimum when the categories are presented to the user in increasing order of $\frac{1}{P(C_i)} + Cost_{One}(C_i)$

Heuristic: $Cost_{One}(C_i)$ as a constant (drop it)
The categories are presented in decreasing order of $N_{overlap}(C_i)$, or $occ(v_i)$
Let V_{min} and V_{max} be the minimum and maximum values that the tuples in R can take in attribute A.

Consider a point v ($V_{min} < v < V_{max}$):
 - If a significant number of query ranges in the workload begin or end at v, it is a good point to split as the workload suggests that most users would be interested in just one bucket,
 - If none of them begin or end at v, hence v is not a good point to split, if we partition the range into m-buckets then (m-1) points should be selected where queries begin or end splitpoints.

the other factor is the number of tuples in each bucket.

Define a goodness score, as $SUM(start_v, end_v)$, where
 - $start_v$ is the number of query ranges in the workload starting at v
 - end_v is the number of query ranges in the workload ending at v

Precomute the goodness score for all potential split-points.
Building the Category Tree
Partitioning for Numeric attributes

Let V_{min} and V_{max} be the minimum and maximum values that the tuples in R can take in attribute A.

Consider a point v ($V_{\text{min}} < v < V_{\text{max}}$):

- If a significant number of query ranges in the workload begin or end at v, it is a good point to split as the workload suggests that most users would be interested in just one bucket,
- If none of them begin or end at v, hence v is not a good point to split, if we partition the range into m-buckets then $(m-1)$ points should be selected where queries begin or end splitpoints.

- the other factor is the number of tuples in each bucket.

- Define a *goodness* score, as $\text{SUM}(\text{start}_v, \text{end}_v)$, where
 - start_v is the number of query ranges in the workload starting at v
 - end_v is the number of query ranges in the workload ending at v

- Precompute the *goodness* score for all potential split-points.
BUILDING THE CATEGORY TREE
Partitioning for Numeric Attributes

(a)

(b)

<table>
<thead>
<tr>
<th>Splitpoint</th>
<th>start<sub>v</sub></th>
<th>end<sub>v</sub></th>
<th>SUM (start<sub>v</sub>, end<sub>v</sub>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2000</td>
<td>10</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>3000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5000</td>
<td>40</td>
<td>90</td>
<td>130</td>
</tr>
<tr>
<td>6000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8000</td>
<td>80</td>
<td>20</td>
<td>100</td>
</tr>
<tr>
<td>9000</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10000</td>
<td>30</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Building the Category Tree
Multilevel Categorization

Greedy Algorithm:

1. For multilevel categorization, for each level \(l \), determine the categorizing attribute \(A \) and for each category \(C \) in level \((l-1)\), partition the domain of values of \(A \) in \(\text{tset}(C) \) such that the information overload is minimized.

2. The algorithm creates the categories level by level all categories at level \((l-1)\) are created and added to tree \(T \) before any category at level \(l \). \(S \) denote the set of categories at level \((l-1)\) with more than \(M \) tuples.

3. For each such candidate attribute \(A \), we partition each category \(C \) in \(S \) using the partitioning for Categorical Attributes and Numerical attributes.

4. Compute the cost of the attribute-partitioning combination for each candidate attribute \(A \) and select the attribute \(A \) with the minimum cost. For each category \(C \) in \(S \), we add the partitions of \(C \) based on \(A \) to \(T \).

5. This Completes the node creation at level \(l \).
Algorithm CategorizeResults(R)
begin
Create a root ("ALL") node (level = 0) and add to T
l = 1; // set current level to 1
while there exists at least one category at level l-1 with $|tset(C)| \geq M$
 $S \leftarrow \{ C | C \text{ is a category at level (l-1) and } |tset(C)| \geq M \}$
 for each attribute A retained and not used so far
 if A is a categorical attribute
 $SCL \leftarrow \text{list of single value categories in desc order of } \text{occ}(v_i)$
 for each category C in S
 $\text{Tree}(C,A) \leftarrow \text{Tree with } C \text{ as root and each non-empty cat}$
 $C' \in SCL \text{ in same order as children of } C$
 else // A is a numeric attribute
 $SPL \leftarrow \text{list of potential splitpoints sorted by goodness score}$
 for each category C in S
 Select (m-1) top necessary splitpoints from SPL
 $\text{Tree}(C,A) \leftarrow \text{Tree with } C \text{ as root with corr. buckets in}$
 $\text{ascending order of values as children of } C$
 $\text{COST}_A \leftarrow \sum_{C \in S} P(C) \cdot \text{Cost}_{\text{All}}(\text{Tree}(C,A))$
 Select $\alpha = \arg\min_A \text{COST}_A$ as categorizing attribute for level l
 for each category C in S
 Add partitioning $\text{Tree}(C,\alpha)$ obtained using attribute α to T
 $l = l + 1; // finished creating nodes at this level, go to next level$
end
Empirical studies to:

- Evaluate the accuracy of the cost-model
- Comparison of the cost-based categorization model and compare it “other” models
Experimental Evaluation

Methodology

- **Dataset**
 - A single *ListProperty* table, with about 1.7m tuples
 - Attributes include *Location*, *price*, *year-built*, *square-footage* …

- **Workload**: Over 176,000 query strings representing searches on the “MSN House and Home” web-site.

- **Comparison Models**
 - *No Cost* Categorization attribute and partitioning selected arbitrarily.
 - *Attr-Cost* Attribute selection is cost-based but partitioning is arbitrary.
EXPERIMENTAL EVALUATION

RESULTS

Figure 7: Correlation between actual cost and estimated cost

Table 1: Pearson’s Correlation between estimated cost and actual cost

Figure 8: Cost of various techniques
Experimental Evaluation

Conclusion

- Accurate Categorization model
- Better Categorization Algorithm