Semantic Caching of XML Databases

Vagelis Hristidis Michalis Petropoulos
Computer Science and Engineering Dept. Computer Science and Engineering Dept.
University of California, San Diego University of California, San Diego
vagelis@cs.ucsd.edu mpetropo@cs.ucsd.edu
Abstract

We present a novel framework for semantic caching of XML databases. The cached XML data are
organized using a modification of the incomplete tree [ASV01], which has many desirable properties, as
incremental maintenance, containment decidability and remainder queries generation in PTIME. The
modification we propose alleviates the exponential blowup observed in [ASV01] by partitioning the do-
mains of the XML schema nodes in domain ranges. We also provide an upper bound on the total size of
the conditional tree type of the modified incomplete tree (MIT), which describes the data stored in the
MIT.

XCacher operates on top of XML databases and intercepts the query requests from a web server. We
show how the MIT is maintained and how queries are answered by sending a complete and non-redundant
set of remainder queries to the XML database. Finally we present a replacement algorithm for the MIT.

1 Introduction

A considerable amount of work has focused on the problem of semantic caching for database-backed web
applications [DFJT96, LN01, GG99, LC99, Sel88]. These works focus on relational databases. As the number
of web applications that are backed by XML databases increases, so does the need to provide efficient caching
mechanisms that are suitable for the nature of the XML queries. However, the semantic caching approaches
available, focus on specific classes of SQL queries [DFJT96, LN01], which do not capture the navigational
nature of the XML queries. XCacher is a system that facilitates semantic caching of XML databases for a
subset of XQuery [W3CO01], which is enough to support most reasonable applications.

In particular, XCacher operates on XML trees and supports XQuery queries that do not contain nested
FOR-WHERE-RETURN expressions. Each query consists of an extract (FOR-WHERE clauses) and a
construct part (RETURN clause). The extract part, which is cached by XCacher, is equivalent to a prefiz-
selection query (ps-query), as defined in [ASVO01], which selects a prefix of the source XML tree. The cache
is organized as a modified incomplete tree (MIT), which is based on the idea of the incomplete tree presented
in [ASVO01] and is an incomplete copy of the source XML tree. The representation of the cached data as
an incomplete tree offers more flexibility and containment opportunities for subsequent queries than the
traditional overlapping boxes [DFJT96] employed so far to organize a semantic cache.

The MIT offers considerable advantages over the incomplete tree, i.e., more efficient maintenance and
bounded size. Furthermore, the MIT retains the desirable properties described in [ASV01], i.e., incremental
maintenance, containment decidability and remainder queries generation are in PTIME.

This work has the following contributions:

e A novel architecture is presented for performing semantic caching for applications backed by XML
databases.

e A modification of the incomplete tree [ASV01] is presented and we show how the cache can be organized
as a modified incomplete tree. The main drawback of the incomplete tree [ASV01] is the exponential
blow-up of its size. We alleviate this problem by a modification that groups the range conditions of
the queries into pre-specified domain ranges as described in Section 3.

seller seller

seller cat= name cat="cars"

name color cat name - color “cars" color
. rating>3
rating>3 name
name price rating $7.5K<price<$8K $7.5K<price<$8K
(a) Schema tree (b) Query Q1 (€) To1
Figure 1: Schema and Q1
catalog
seller
specialized
‘ type
seller “Oseller .
name= color= cat= name cat="cars" -
"Honda" "red" "cars" color : y
. rating>3:
rating=4 ‘name ’
price=$7.8K ~$7K = price<$8K -
(a) Ty (b) 7= Tgl

Figure 2: MIT after Q1

e An algorithm is described that creates in PTIME the remainder queries, which are guaranteed not to
retrieve any data already in the cache.

e The MIT is stored in main memory, which bounds its size. A replacement algorithm is presented that
removes the least recently used piece of data and its corresponding description from the MIT, when it
gets full.

The paper is structured as follows. In Section 2 we present the framework and the architecture of
XCacher. Section 3 describes the process of refining a MIT when a query arrives to the system. Section 4
explains how XCacher creates the remainder and the refinement queries for a query. An overview of the
replacement algorithm is presented in Section 5. Finally in Section 6 we conclude and present future work
directions.

2 Framework and Architecture

The architecture of XCacher is shown in Figure 3. XCacher operates on top of an XML database server
that exports a view V. V is defined as a labeled tree [ASV01], whose structure is described with a schema
tree S. The ordering of the children of V' is unimportant and there is no distinction between attributes and
subelements. Each node of V' is assumed to have a unique id. The schema tree of Figure 1(a), that will be
used as a running example, shows the schema of an auction database, where the catalog contains products
that have a name, an optional color, a category they belong to, and a list of sellers. Each seller has a name,
a price he/she is selling the product for, and a rating according to the customers’ feedback.

XCacher runs as an application in the application server and a web server operates on top of the applica-
tion server. Each web page p consists of a set of XQuery [W3C01] queries q1,. .., ¢, that do not contain any
nested FOR-WHERE-RETURN expressions. Each query ¢ consists of an extract part ¢ (FOR-WHERE
clauses), which is served by the XML database, and a construct part ¢¢ (RETURN clause), which is executed
at the query composer. When ¢© is executed against the result of ¢, it constructs a result equivalent to the
result of the initial query g, that is, ¢“ (¢ (V)) = q(V). ¢ is a prefiz-selection query (ps-query) [ASVO1].
A ps-query browses the input tree V' down to a certain depth starting from the root, by reading nodes with
specified element names and possibly selection conditions on data values. The answer to a ps-query is a

prefix of V. For example the query of Figure 1(b) returns the products with category “cars”, which have a
seller, who sells the product between $7.5K and $8K and has a rating greater than 3.

XCacher is responsible for the efficient execution of

‘ the extract queries ¢. The modules of XCacher shown
Browser in Figure 3 are the following: The query decomposer

WTTP Response| | HITP Request takes as input an XQuery expression ¢ and outputs ¢
Web Server and ¢©. The query rewriter module takes as input the

extract query ¢© and determines if ¢ can be answered
entirely from the data stored in the cache, i.e., with-

Application Application
Response Request

Application Server o amRor out accessing the XML database. If it can, the query
xHm] g rewriter outputs a refinement query ¢, which is the

- . .
XCacher 3 same as ¢ and is executed on the data stored in cache.

Otherwise, a refinement query ¢’ and a set S¥ of re-
mainder queries ¢® are created and sent to the query
composer and the XML database respectively, as de-
scribed in Section 4.
a* The answers to the remainder queries are input to
the query composer and to the replacement controller,
which is the only module that has a “write” privilege on
the cache. If the new piece of XML data does not fit in
the cache, the replacement controller decides, applying
JX,‘V,L& the replacement algorithm described in Section 5, which
Database XML data fragment(s) to remove from the cache.
The query composer “merges” the results of the re-
mainder queries and ¢, executes ¢¢ on the result, and
passes the output to the web server, as described in

XHTML

Query
Composer [¥]

Schema|lncomplete

27 %

X

Replacement
Controller |+
h

Query
Rewriter

XML

Figure 3: System Architecture

Section 4.

The cache is organized as a modified incomplete tree (MIT) T, which consists of a data tree Ty which is
a prefix of V' and a conditional tree type 7 which describes the information stored in Ty. In particular, a
conditional tree type 7 is a specialization of the schema tree S, i.e., a mapping of conditions to the schema
nodes of S, where some schema nodes (which are called clonable below) are cloned to denote disjunction
between their conditions. That is, the information stored in 7y for a node s of S is described by the union
of all instances of s in 7. The conditions applied to the schema nodes in 7 are equivalent to those of
the ps-queries. Figure 2 shows (a) the data tree T; and (b) the conditional tree type 7 of the MIT after
executing Q1. The generation of the conditional tree type is performed by the replacement controller module
by applying the RefineM IT algorithm presented in Section 3. The size of T is bound by the available main
memory to provide fast access times.

The MIT differs from the incomplete tree defined in [ASV01] in the following ways: First, the conditional
tree type of a MIT describes the information contained in Ty, in contrast to the incomplete tree, where the
conditional tree type describes the missing information. This change was made because the em replacement
controller, shown in Figure 3, needs the information of what is currently stored in the MIT to decide what
to replace. Second, the specialized types' of an element s in 7, i.e., the descriptions of the data of type
s contained in Ty, are disjoint. That is, there cannot be an element of T; conforming to two different
specialized types. This property simplifies the process of generating the remainder queries as it is shown
below. Third, there is no mapping between the elements of the data tree of a MIT and the specialized
types of the conditional tree type, because the specialized types are disjoint and the data tree is considered
a “queryable” data source for the underlying query processor. In contrast, the incomplete tree generates a
unique label [(t) for each specialized type s’ and all elements in T,; that conform to ¢ have the same label
[(t). Hence the overhead imposed to maintain this mapping in a caching system with frequent replacements
is avoided. Finally each specialized type t of 7 is annotated with a timestamps list of the [last timestamps,
when a query ¢, overlapping with ¢, arrived to the system. The timestamps lists are used by the replacement
algorithm as described in Section 5.

IThe specialized types are defined formally in Section 3

seller seller

name color cat="cars’,

name color cat="cars’ name color cat="cars"

rafing>4 rating>4 rating>3 name rating>4

$7.5K<price<$8.8K $7K= price<$9K $7K = price<$8K $8K = price<$9K
(a)Query Q2 (b) 75, (c) Refined 7/
Figure 4: Refine process for ()2

The MIT is simpler and easier to maintain than the incomplete tree, but the desirable complexity results
of the later still hold. In particular, the refine algorithm and the remainder queries’ generation for a MIT
T are more efficient because they do not access the data tree of T, but only its conditional tree type.
Furthermore the size of the MIT is bounded as it is shown below. Also, similarly to the incomplete tree,
the following problems are in PTIME: incremental maintenance, containment decidability and remainder
queries’ generation. A drawback of the MIT is that it does not infer the emptiness of ps-queries with respect
to the schema tree in order to avoid their execution. The performance overhead that is imposed though
is minor since these queries are executed against the data tree of T that is kept in main memory and not
against the XML database server that exports the view V.

3 Refine MIT

The RefineMIT algorithm takes as input the schema tree S, the conditional tree type 7 of the MIT T and
a ps-query ¢ and outputs a refined conditional tree type 7' that describes ¢ in addition to the queries already
described in 7.

RefineMIT proceeds in three steps. The first step constructs the conditional tree type 7, of ¢, by
applying the conditions of ¢ on the input schema tree S. Figure 1(c) shows 7g1. In the second step, the
range conditions of 7, are normalized according to the domain partitions, which are partitions of the active
domains of the node values into domain ranges. For example, in 7, the range condition on the price has
changed from ($7.5K,$8K) to [$7K, $8K), because the domain partition of price has domain ranges of 1K
each.

The normalized conditional tree type T;V of 74 is defined as a conditional tree type, where each condition
specifies a continuous set of domain ranges, which contains the range specified in ¢. According to this
definition, the data tree represented by the initial conditional tree type 7, is always a prefix of the data tree
represented by the normalized conditional tree type TqN . Figure 2(b) shows Tgl, which is the same as 7 of
T, since Q1 is the first query that arrived to the system.

The third step of RefineMIT computes the union of the input conditional tree type 7 of T and the
normalized conditional tree type TqN of the query ¢, and outputs the refined conditional tree type 7':

=7U Tév (1)

In order to compactly and efficiently merge the two conditional tree types, we must decide which nodes of
7 will be further specialized, i.e., what parts of 7 will be cloned to represent the overlap between the conditions
of 7 and Tév . Specializations occur on clonable nodes, that are defined as a subset of the repeatable nodes
of S. For example, in the schema tree of Figure 1(a), product and seller are clonable. A specialized type t
is a specialization of a subgraph G of the schema tree S in 7, that is, an annotation of G with conditions.
The root of G is a clonable node and the leaves of G are either clonable nodes or leaves of S. For example
a seller specialized type is marked in Figure 2(b).

The basic idea of the algorithm that merges the two conditional tree types, which is not described in
detail due to lack of space, is the following: We traverse 7 and Tév top-down until we find the first clonable
node and if there is no specialized type t in 7 that contains the corresponding specialized type t, of T(;V , the
current node of 7 is cloned and annotated with the conditions of ¢,. If ¢, is contained in a specialized type

pointer to V

rating>4
$8K = price<$9K

Figure 5: Local ps-query

t of T, we continue with the first clonable descendant of ¢. If ¢, overlaps with ¢ then the current node of 7 is
cloned and annotated with the conditions of ¢; such that the new specialized type does not overlap with ¢.

For example, Figure 4(a) shows a query @2 submitted after the query Q1 of Figure 1(a). If 7 and Tg2
are the ones in Figures 2(b) and 4(b) respectively, then the RefineMIT algorithm generates the 7' that
is shown in Figure 4(c). Traversing ng and 7 top-down, and comparing their specialization, no difference
is observed until the seller specialized type. The seller specialized type tse of 7 overlaps with the seller
specialized type 92 of Tg2, so seller is cloned and a new specialized type describing the difference of s

sel

from tst is created in 7. Note that the specialized types of 7' are non-overlapping.
Finally, the current timestamp is added to the timestamp lists of all specialized types that overlap with
the current query q. When a specialized type t is cloned, then all the clones inherit the timestamps list of t.
If we define a finite domain partition for each node of the schema tree S, we can show that the size of the
conditional tree type is bound, in contrast to [ASV01], where no domain partitions are used. Assume that S
has n schema nodes and each node s; is partitioned into m; domain ranges. Then in the worst case, where
there is exactly one repeatable node s’ under the root and s’ is the only clonable node in S, the maximum
number of specialized types is H?:l m; and the maximum size in number of nodes of the conditional tree

type Tis n - H?Zl m;, since each specialized type will have at most n nodes.
4 Remainder and Refinement Queries

Given a MIT T, with conditional tree type 7, and a ps-query ¢, the remainder query ¢, which is expressed
as a set ST of local remainder queries, is equivalent to the query g — 7, that is, ¢ retrieves from V' the data
not stored in T. The navigation of the XML view V starts from the nodes that correspond to the suitable
leaf nodes of the data tree Ty of T and not from the root of V', to avoid navigating on nodes already in Tj.
We call such queries local ps-queries [ASV01], which are ps-queries that operate on the subtree rooted at
a node n different than the root of V. Local ps-queries are possible because for each node in Ty we keep
a pointer to the corresponding node of V. For example, consider the MIT of Figure 2 and the normalized
query Q2" corresponding to the conditional tree type 75, in Figure 4(b). The remainder query Q2% is the
local ps-query shown in Figure 5.

The local remainder queries are generated in PTIME by the following procedure: First the normalized
conditional tree type Tév is rewritten such that each specialized type refers to single domain ranges, that is,
Tév is split into minimal specialized types. These are either completely contained or disjoint to a specialized
type of 7 of T. Then, each minimal specialized type of TqN is checked for containment against 7. The
specialized types of TqN , which are not contained in 7, form a minimal and complete set of remainder queries
for ¢q. Finally, they are merged into a smaller number of local ps-queries and sent to the XML database
server.

Due to the normalization process with domain ranges in the RefineM IT, the number of local queries is
small, in contrast to [ASV01], by an analysis similar to the one about the maximum conditional tree type
size in Section 3. This property considerably improves the performance because it avoids the overhead of
executing many “small” queries on the XML query engine.

The results of the remainder queries arrive at the query composer, where they are filtered to remove any
data retrieved due to the normalization of the range conditions. At the same time, the refinement query ¢
extracts the data in the data tree Ty that are in the answer of ¢. It is:

¢ =¢"nr (2)

The filtered results g7 (V') of the remainder queries are merged with the results of ¢!, and ¢ is executed
on their result. It is

a(V) = ¢“(¢"(T)) U™ (V) (3)
5 Replacement Algorithm

The replacement algorithm selects one specialized type t of the conditional tree type 7 of the MIT T and
removes it along with the data in the data tree T; of T that conform to ¢. The decision is based on the
timestamps lists of the specialized types. We use LRU, although other more sophisticated approaches [RV00]
can be employed. Only the leaf specialized types are candidates for removal, to retain the coherence of T.

For example, the candidate specialized types for the conditional tree type of Figure 4(c) are the two seller
specialized types. Both of them have the latest timestamp in their timestamps lists, since they overlap with
@2, so the replacement algorithm selects arbitrarily one of them. Without loss of generality, suppose that
the second specialized type is selected. An update extended XQuery [TTHWO1] ¢¥ is generated that deletes
the data that are relevant to the selected specialized type, and g% is executed against Ty. In particular, g©’
is:

FOR $p IN document(“catalog.xml”)/catalog/product, $s IN $p/seller

WHERE $p/cat = “cars” AND $s/price >= 8000 AND $s/price < 9000 AND $/rating > 4

UPDATE $p { DELETE $s }

If the space emptied is not enough to insert the data of the new query to T, another specialized type is
selected and removed in the same way.

6 Conclusions and Future Work

We presented a system for the efficient caching of a broad class of XML queries on XML databases, where
the cache is organized as a MIT. We are working on implementing the system to measure the improvement
in the response time for a query workload and experiment with replacement policies other than LRU. Also,
we are working on an algorithm, that will be executed periodically on the incomplete tree, to compact the
conditional tree type’s representation. Finally, we work on the pipelining opportunities that the system
presents in order to increase its throughput.

7 Acknowledgements

We wish to thank Yannis Papakonstantinou for the ideas he proposed and Victor Vianu for the discussions
we made regarding the properties of the incomplete tree.

References

[ASVO01] Serge Abiteboul, Luc Segoufin, and Victor Vianu. Representing and Querying XML with Incomplete
Information. In Symposium on Principles of Database Systems, 2001.

[DFJ*96] Shaul Dar, Michael J. Franklin, Bjorn T. Jonsson, Divesh Srivastava, and Michael Tan. Semantic data
caching and replacement. In The VLDB Journal, pages 330-341, 1996.

[GGI9] Parke Godfrey and Jarek Gryz. Answering queries by semantic caches. In Database and Ezpert Systems
Applications, pages 485-498, 1999.

[LC99] Dongwon Lee and Wesley W. Chu. Semantic caching via query matching for web sources. In CIKM, pages
77-85, 1999.

[LNO1] Qiong Luo and Jeffrey F. Naughton. Form-based proxy caching for database-backed web sites. In The
VLDB Journal, pages 191-200, 2001.

[RV00] Luigi Rizzo and Lorenzo Vicisano. Replacement policies for a proxy cache. IEEE/ACM Transactions on
Networking, 8(2):158-170, 2000.

[Sel88] T. Sellis. Intelligent caching and indexing techniques for relational database systems, 1988.

[TIHWO1] Igor Tatarinov, Zachary G. Ives, Alon Y. Halevy, and Daniel S. Weld. Updating XML. In SIGMOD
Conference, 2001.

[W3C01] W3C. XQuery: A query language for XML, 2001. W3C Working Draft available at
http://www.w3c.org/XML/Query.

