A Compositional Framework for Programming Stochastically
Interacting Robots

Nils Napp, Eric Klavins
Electrical Engineering
University of Washington
Seattle, WA
fnnapp,klavins  g@uw.edu

November 2, 2010

Abstract as con ict-avoidance, the resolution of non-commutative
robot operations, and the maintenance of a consistent in-
Large collections of simple, interacting robots can be difsrmation state arise.

cult to program due to issues of concurrency and inter- Programming techniques to address these problems
mittent, probabilistic failures. Here, we pres@uarded gpan 5 spectrum of different approaches. On one end are
Command Programming with Ratesformal framework |5 iqus approaches based on centralized control, in which
for programming such multi-robot systems. Within thigenging and actuation are performed directly in a high di-
framework, we model robot behavior as a stochastic Pifensional global state space. For example, chain type
cess and express concurrency and program composifaiy,iar robotic systems ( [35]) are generally treated as
using simple operations. In particular, we show hoW conro| problem of a high degree of freedom manipula-
composition and other operations on programs can ¢ These approaches essentially remove concurrency via
used to specify increasingly complgx behaviors of mu'@'equential programming on thglgbal) state space forc-
robot systems and how stochasticity can be used 10 Gigy o)) rohots in a system to move in lock-step regardless

ate programs that are robust to module failure. Finallyneter such coordination is necessary for the task at hand
we demonstrate our approach by encoding algorithms fgr,, ¢

routing parts in an abstract model of the Stochastic Fac- .
tory Floor testbed [10]. On the other end of the spectrum, are behavior-based

programming techniques that specify tloeal reactive
behavior of individual robots [3, 15, 29, 33]. Here, the
1 Introduction control actions by robots are taken in response to spe-
ci ¢ environmental conditions and only affect well de-
Modeling and programming multi-robot systems is chared subset of the state space. Local reactive behav-
lenging primarily due to the inherenbncurrencyof such ior means that the robots have limited direct access to
systems. Multiple robots can modify the system sta@éobal information. In general, specifying reactive behav
simultaneously , and communication and, hence, cooriit places no restrictions on what type of environmental
nation is necessarily local. Consequently, problems sunditions can trigger actions. This restriction is meant t
- " o by NSE Grant 0735953 EREONtrol explicitly model the limited sensing and communication
is work is supported by rant : ntrol- o~ :
ling the Autonomously Recon guring Factoand AFOSR via the 2006 capacities .Of robots. We argue that all multi-robot SySt.emS
MURI Award Speci cation Design and Verifcation of Distributed Em-3r€ e;sent{ally concurrent and presenta way to exploit the
bedded Systems situation with a speci ¢ programming framework.




The main challenge with programming local reactivié to be interpreted by a set aftochastically interact-
behavior is understanding the map from local robot bieg robots Randomness either arises from a speci ca-
haviors to global behavior. Although special cases hatien choice where robots “ip coins” to decide what to
been described, writing programs that control individudb [2, 4, 7], or from the stochastic behavior of the under-
behaviors so as to achieve some speci ¢ global behaviging physics of the system [14, 32, 34].
along with a rigorous proof of correctness is dif cult. For We are particularly interested in situations wherein
a speci c task it is often possible to writead hocbe- each robot may communicate only with a small number of
haviors in a low-level programming language such asdther robots in itdocal neighborhood in order to perform
and tune parameters until the system performs well. Hotasks. A robot in this setting does not need to wait for
ever, accidentally adding spurious errors or reaching unstructions from a central scheduler or information pro-
desirable global states due to unforeseen interactions seasing unit. For a formal de nition of local interactions
serious risk. for multi-robot system see, for example [25, 29]. Here we

In this paper, we describe a formalism caltédarded use an approach similar to [6, 24] based on chemical re-
Command Programming with Ratd&CPR) for pro- actions to describe the local reactive behavior of individ-
graming and modeling concurrent systems. This framgal robots. The result is a convenient way to write down
work is an extension dbuarded Command Programmingguarded command progranf&CPs) (Sec. 2.2).
borrowed from the theoretical computer science litera-A considerable amount of work has been done to apply
ture [9, 17]. formal veri cation methods to robotic systems [13, 19—

The main feature of GCPR used in this paper is tl22, 31]. The goal is to coordinate a set of given low-
notion of composition Composed programs execute slevel controllers as to generate trajectories conforming
multaneously, just as the behaviors of multiple robots a high-level speci cation of desired global behavior.
are composed by running the robots concurrently. Here, we take a slightly different approach. We similarly
this manner, composition can be used to build large aassume that a set of low-level controllers implementing
complex programs from smaller subprograms (Sec. 2.8)e basic ingredients of a GCP can be written, but are
While composition itself does not solve the dif cult probnot as concerned with veri catioper se Instead, we fo-
lem of mapping local to global behavior, it allows breakeus on the compositional nature of a GCP and how it re-
ing down the global behavior into more manageablates to writing high-level programs for concurrent multi-
chucks. For example, recon guration can be broken dowobot systems. This approach is more like traditional pro-
into disassembly, routing, and assembly (Sec. 4). Forgmamming — with an application speci ¢ programming
algorithmic approach of mapping local to complex globédnguage — than it is like approaches in which programs
behavior, see, for example [15] are automatically generated from compact speci cations,

Although composition can be expressed in the traditich as nite state machines (FSM) or linear temporal
tional formalism of guarded command programming, wegic (LTL) formulas [8, Ch 3]. The most similar ap-
extend the idea to a guarded command programming wittoaches are formal modeling languages such as [1] and
stochastic rates . The result has the desirable properthes compositional approach of [16]. In contrast, we use
that: it allows thescaling(Sec. 2.2) of programs by ex-stochastic instead of non-deterministic semantics, which
pressing the relative rate at which two programs can esmpli es scalable composition and allows for a richer set
cute ; itallows modeling stochastic failures of subsysteragbehaviors s to be represented.
as composed guarded command programs (Sec. 2.5) ; it i1 particular, the contribution of this paper is to present
a natural means for modeling of uncertainty (Sec. 2.3.8)formal way to exploit the inherent concurrency in multi-
Scaling in this context refers to algebraic operation ofbot systems from a programming perspective. Concur-
scaler multiplication (as opposed to the scaling of preency provides a natural, physically grounded way to in-
gram size or input size). And it is precisely the algebraierpret the composition of programs, which we formal-
interpretation of operations on programs that make GCk4 in GCPR. This approach gives a stochastic interpreta-
an attractive tool. tion to the traditional non-determinism of concurrent sys-

Using GCPR to describe a multi-robot system alloviems. Together, concurrency and stochasticity enable us



to pose control problems as GCPs. As an example of uti-

lizing GCPR, we describe a methodrabustifyprograms. . { { {

The example highlights how our approach can be used to

rigorously address interesting control problems for multi

robot systems. . 2 3 4
In Sec. 2, we describe GCPR for programming dis-

tributed stochastically interacting multi-robot systesmsl

show how GCPR can be used to address the idea of r@y

bustness and other control problems. In Sec. 3, we focus

on robustness and describe a way to create robust pro-

. . . . . 1 2 3 4
grams by carefully adding stochastic choices in appropti- ) . . .
ate places. Finally, in Sec. 4 we demonstrate our aIE'|gure 1: Example multi-robot system. Four identical

i ; ) r%botic modules that can each independently hold a brick
fi(r:olgacc?tc?rr;/ ilzirrt;ggtlggaobotlc platform [10], tBéochas shown at two different times. a) State in which robotic

module 1 holds a brick. b) State in which robotic module
2 holds a brick.

2 Guarded Command Program- _ _
mands aretomic; they are instantaneous and cannot be

ming with Rates interrupted by other commands. In contrast, commands
. _ . in physical systems are never truly atomic as they take
GCPR is a formal way to specify the local reactive bgme to execute. However, by appropriately designing

havior of robots. Deferring a detailed description untihyy-level controllers to arbitrate con icts this assunpti
Section 2.1, the idea is as followSuardsare conditions js reasonable for abstract representations.

on the environment of a robot. When these conditionsanother bene t of GCPR that this speci cation is sim-
arise, a robot can execute commands cadletibnsthat jjar to models used in formal veri cation. For example,

modify its local environment at a speci adte. Because the modeling language of the model checker PRISM
multiple guards can be true on multiple robots, multiplegn pe thought of as a GCP [23]. For mission critical
commands can be executed simultaneously. In conGgfograms such a formal description is important because
rency, this situation is modeled by allowing commands {oofs about the reliability and/or correctness of such pro
be eXeCUted one at atime, but W|th arbitrary Ordering [1@Fams is h|gh|y desirable. Typ|ca||y’ trans'ating opera_
We are obliged to reason about every possible orderingighal code into a formal language that can be veri ed
such executions. is tricky because what is veri ed is an abstract model of
Inthe GCPR programing framework, an individual prahe operational code. Correctness proofs are not actually
gram is called aGuarded Command PrograGCP). about the code itself. While not simplifying the veri -
Each robot is represented by a GCP. Multiple prograrmation of the low-level code that implements sensing and
running in parallel can result in interesting and compleictions, using a high-level GCP for specifying behavior
behavior due to the way they interact, representing the gaves the way for eliminating this translation step [1, 20].
teresting interactions of multi-robot systems. New GCPs that use existing guards and actions can be
From the programmer perspective GCPR can also pveri ed without redoing the abstraction.
vide a layer of abstraction between low-level controllers
and high-level behavioral programming. By carefull 1 Notation
choosing the level of detail of the guards and commands,
GCPR can be a high-level programming language. Low-multi-robot system evolves on a state sp&geahat in-
level embedded code only needs to implement the guactigles all the relevant information. For example, the po-
and commands, such as recognizing and rewriting snetions, orientations, and internal variables of all r@bot
parts of a graph in [14]. In the GCPR framework, conwould be inS. We are interested in programming the dy-



namics of a multi-robot system so that when the systéviodule 1 can transition between its two occupancy states
starts from a set of possible initial states, it ends in a speithout affecting the other modules. The physical restric-
ci ¢ set of nal states, thetarget Using sets in this speci-tions of the system are given by
cation allows a programmer to incorporate uncertainty.

Any physical system has limitations about which states A = Apass| A 10ad[A unload

are immediately accessible from a given state. For eXalgraphical representation & is shown in Fig. 2a. Each
ple, robots with limited speed cannot reach distant 10Cgq,y corresponds to an elemefsts9) 2 A, starting
tions in short time, and robots cannot occupy the samgm s and pointing tcs°. ' )
point in space. We model such restrictions by specifying

the set of possible transitiods S S, where the rst
coordinate indicates the state before a transition and %@ Syntax of Guarded Command Pro-

second the state after a transition. gramming with Rates

Example 1. The rst step to modeling the robotic systenA GCP is asetof rulesf ;g. Each rule is a triple

depicted in Fig. 1 is to decide the level of detail statég;a;r) whereg Sis called theguardof , a predicate
should contain. To keep things simple and to illustrate tkigue/false condition) on the state spaae,A is called

abstraction GCPR can provide, I8tbe the occupancytheactionof , andr 2 R* (including 0) is called the
state of the system. The state will indicate which robotigteof . For each rule, whegis true, thera is applied

modules are holding bricks. In this model each modu#é a rate of , in a way that is made precise in Sec. 2.2.
can only be in one of two states: It can be empty (denOtEQample 2. Aprogram = f(g;a;r)g for the exam-
by 0) or it can hold a brick (denoted_ by 1). As a resulﬁle system from Fig. 1 that speci es passing bricks to the
statess 2 S can be expressed as binary numbers. T

ht is given b
state in Fig. 1a corresponds to 1000. Given a S&eS, 8 IS gV y

si =1 means that thith digit of sis 1, correspondingto g f sjsi=1;si+1 =0g (4)
a state where thigh _robot mod_ule is holding a brick. a f (589 jsi=1;84 =0;0=0;8%, =1;

Due to geometric constraints, robots can only pass O g0 84l 5
bricks to their immediate neighbors. These restrictions S =S8 LSl 9 ©)
can be captured by r k: (6)

Apass = f(s:892S Sj Figure 2b shows a graphical representation of u
si=1;5=0;5=0;s"=1; Using set-builder notation is cumbersome even for

ji jj=1;sx=s);k6ik6jg (1) such a small example and does not highlight that the reac-
tive behavior of the robotic modules is local. To highlight
Each element oA passrepresents modulepassing a brick this fact, we borrow notation from chemistry and write
to an adjacent moduje Because the action is local, noneules as chemical reactions [6]. Reactants represent the
of the other modulesk(6 i;k & j) change. Although guards, they need to be present for a reaction to occur.
not illustrated in Fig. 1, we also allow robotic module in the chemical reaction notation, the action is to replace
to exchange bricks with an external feeding mechanisgtates in the guard with the product. The rate associated
The loading and unloading restrictions can be written agith a guarded command is written over the reaction ar-
A - f(s92S Sj row. Earts of the state that do qot §how up in the product
load (s J remain unchanged. This notation is both more compact
s1=0;8) =1;5 = s{;k61g (2) and emphasizes the local nature of guarded commands.

and Example 3. Using chemical reaction notation the pro-

) gram from Ex. 2 can be written as
Aunioad = f(S;SO) 2S Sj

s1=1;87=0;s¢ = si;k61g (3) SiSis1 ¥ SiSi1;



O n

_—a —a —a LG LA LN LU _n
— . = Sen Yan o Yan
— San o\ Tan
OO Il SO QLN
. Yo Tdn
/'% S PO R N T NN
— = San Y Tan
a) <> b) c)

Figure 2: Transition system from Fig. 1. a) Transitions esgnted by arrows show the physical limitations of the
system given byA. Any program can only induce a subset of these transitidnsgghey represent the physical
limitations of the system. b) Rates give rise to a Markov pesadescription, programmed with ¢) Markov process
when the reverse is added,[ a R.

wheres; = 1 is simply written ass; while's; = 0 is writ- The actions inaR correspond to physical transitions
ten ass;, similar to boolean algebra, note the signi cantvhenevema® A .
simpli cation compared to (4)—(6) in Ex. 2. N
Example 4. A program for the system in Fig. 1 that

For the remainder of the paper we use chemical reg@asses bricks both left and right, but passes left at a slower
tion notation whenever possible. With the basic notatioate can be written as
in place , the reset of this section is dedicated to de ning
operations on GCP. [a ®;

De nition 1. Compositiomallows two programs to oper-with a 2 (0;1). A graphical representation of this new
ate at the same time. The composition of two GCRend program is shown in Fig. 2c. ]

is de ned as :
[ ) A program can have several different representa-

tions. It could consist of many rules that each contain
the union of the two programs. a singleton fromA as actions or contain a single rule that
Qas a large guard and action set. In order to com-
pare two programs, de ne the function that maps GCPs
to GCPs on the same state sp&ce

De nition 2. Scalingspeeds up or slows down program
Given a program and a positive scaler

flgar)g (8) De nition4. The function maps GCPs to representations
(giar) 2 where each rule only contains a singleton action and a

each rate in a program is scaled by the same number trivial guard,

De nition 3. Thereverseof a program , denoted R, () (fsgf(s;89g;r) | (11)

is the program that includes all the backward transitions (g;ar)2 ;s2g(s;sH)2a :

of the transitions from . For a given rul€g; a; r) de ne

A o N Two programs are said to leguivalentif maps them

f sj9s’s.t.s"2 g” (s7s) 2 ag (9) to the same program. That is, they induce the same tran-
f (s:99)j9s%s.t.s92 g~ (s%s) 2 ag: (10) sitions with the same rates.

R

g

aR



2.3 Semantics of Guarded Command Pro- work with, and as a result there are many tools for simulat-
gramming with Rates ing and analyzing them [11, 12, 26, 30]. Section 4 shows

) ) ) how some of these tools apply to an example multi-robot
The semantic meaning of a GCP is that of a Markov prgysiem.

cess. This section gives a brief de nition of Markov pro-
cess in Sec. 2.3.1 and collects some of the relevant resyl .
and notation in Sec. 2.3.2. Readers familiar with the su%-g'2 Properties of Markov Processes
ject matter can safely skim these sections for notationTiis section collects some of the key results about nite-
skip ahead to Sec. 2.3.3 where the connection betwegste Markov processes. For a more complete treatment ,
GCP and Markov processes is made. see for example, [30].

Thehitting timefor some seh S is de ned as

2.3.1 Markov Processes
h Iinfftj X 2 hg;
Consider a nite-state, continuous-time Markov process

X with state spac&. To aid the exposition, assume someand thereturn timeas

arbitrary but xed enumeration d8, and leti 2 S denote

theith element ofS. Given two state§j 2 S, thetran- h o infft  hcjXt 2 hg;

sition ratefrom i to j is denoted byki; 2 R*. When

there is no transition between states, the transition ri{gereh® denotes the complement bf When the pro-
between them is de ned as zero. Thus all pairs have g@ss starts outside ¢f,  and n are the same, but if
associated transition rate. Finally, one can convenientfp 2 h,then , =0 and y is the rsttime that the pro-
write a differential equation for the evolution of probabilCeSs returns tb after leaving it. A staté 2 S is called

ity distributions. Denote probability distributions @by recurrentif P( i < 1j Xo = i) = 1 andtransient

a vectorp(t) with pi(t)  P(X; = i), and letQ be the Otherwise.

matrix given by These probabilistic quantities are closely related to the
structure of possible transitions. Considering a Markov
Qji = kij fori 6 ] process as a grapB(Q) with directed, labeled edges
~_ P ) highlights this connection. De n&5(Q) as the triple
Qi = jei Qii - G(Q)  (V;E;L) where the vertex s&f = S is the
The master equatiofil2] state space of , the edge sef is given byE = f(i;j ) 2
S Sjky > 0g, and the labeling function for edges
p=Qp (12) L:E! R*isgivenbyL(i;j)= ki; .

A statej 2 Sis said to beeachablefrom statd 2 S if

describes the dynamics of a Markov process. By COffere exists a path froimtoj in G(Q). Two states;j are
struction, the columns of th@-matrix in (12) sum 10 gaig tocommunicatewritten asi $ j, wheni is reach-

zero, which has the following important implications fopye fromj andj is reachable fror. The relatior is an

the dynamics of a the probability vectpr Firstly, any gqyivalence relatiotthat partitionsS into a set of equiv-
row of a Q-matrix can be computed from all the othegience classes. If an equivalence classms the property
rows resulting in an at least one dimensional nullspaggat there are no states outsidéhat are reachable from

Secondly, by left mukiplying wigh with a vector of onesates irh, then all states ih are recurrent.
it should be clear that ; p(t) = ; p(0), which should

be identically equal to 1 in order to represent probabilifgzxample 5. Figures 2b and 2c are graphical represen-
distributions over states. In general, by analyzing propéations of Markov processes. In Fig. 2b, each state is
ties of this matrix one can infer properties of the stochasn equivalence class. Figure 2c has equivalence classes
tic process, for example, the steady-state distributjpon(&0000, f 100Q 0100 001Q 0001y, f110Q 101Q 100%

the convergence rate, or the hitting times (Sec. 2.3.211Q0 0101 0011y, f111Q 1101 101% 0Ol1llg, and
Markov processes are convenient stochastic processeislthllg, all of which are recurrent.



graphs and its consequences for Markov processes. For
e’( )e” a more thorough treatment, see, for example, [5, ll1.2]. A
graphG is said to beconnectedf any two vertices have

LI n
an_ ~an . .
W% a path between them. A connected gr&pfs said to be
_ng n
~dan
dn n

LI

~an_

O

< separatecby a set of verticeh  V if the graph induced
n

( > %—/«” bek-connected when there is no setkof 1 vertices that

n

O

dr( )n by removingh is no longer connected. A graph is said to
g
o X < ek separates it. The largest valuekofor which a graptG is
% M k-connected is called thennectivity denoted (G). For
Yan- n Yan two setsh;h® V , we de ne therestricted connectiv-
e'( )e” ity (h;h9 to be the largesk such that no set df 1

vertices removed fronh disconnects vertices in from

hO (i.e., there is a path from eves/2 h to some ver-

Figure 3: Transition system from Fig. 2c with loading__ .~ ¢ . L
program added. The resulting Markov process has a g%x inh"). When comparing the connectivity for graphs

le recurrent eauivalence class induced by differen@Q-matrices, a subscript todenotes
g q ’ the correspondin@®-matrix.

To create a program with a single recurrence classE¥@MPle 6. In Fig. 2b and 2c the graph associated with

loading and unloading program needs to be added tofhe Markov process is not connected. The connectivity

Ex. 4, otherwise the conservation of bricks restricts tﬁ%r the graph in Fig. 3 is one (for example, 1000 sepa-

communicating states to contain states with the saﬁ"i%es the graph), while the restricted connectivigy; h°)
number of bricks. Let be where

0¥ s so¥s o h = £010Q 001q 000%; 1100 101Q 1001g
The program given by h%= £011Q010% 0011g;
[a R[b is 2. ]

has a single recurrence class because all states comméu:éi-3 Tuming Guarded Command Programs Into
cate (Fig 3). |

Markov Processes
For a nite-state process th@-matrix is always sin-

gular and has non-positive eigenvalues. Hence, for
initial distributionp(0), the limit

To de ne a Markov process o8 it suf ces to specify a
a(3¥matrix and an initial probability distribution 08. To
constructQ() , de ne the set of rules

Q [im p(t) Ry = f(g;ar)2 ji2gi(i;j)2ag  (13)

exists. When there is only a single recurrent COmMUR. 1 aye transitions from stait@ S to statg 2 S. The
cating class, this limit is unique , and, is called the entries ofQ() are given by

steady-statelistribution. Only recurrent states have pos- P

itive probability in o. The largest negative eigenvalue Q) ji = or. [ fori 6|
2(Q) is the worst-case convergence rate gofrom any P '
initial condition. Q) i = (e Q) i,

In addition to the standard observations connecting
discrete-state Markov processes with their graphs, tiveerer isthe rate of rule . The dynamics of the system
remainder of this section examines thennectivityof with program are given by the master equation (12).



Example 7. Take the GCP described in Ex. 2 and Ex. $rograms ). The inherent randomness of each program
with the enumeration of states in Fig. 2 from the uppenakes the composition of two programs easy; how ac-
left to lower right (i.e., the enumerati@®0Q 1000 010Q tions interleave is random. Although detailed timing in-
001Q 0001, 110Q 1010 1001, 011Q 0101, 0011, 1110 formation is dif cult to express in this framework, it is
1101, 1011, 0111 1111 the associate@-matrix is the easy to adjust the relative in uence of concurrent pro-

16-by-16 matrix grams by scaling them up or down. Together scaling and
0 1 compositions, are suf cient for expressing a number of
0 0 0 0 0 interesting control problems, Sec. 2.5. Additionally, we
0 Q1 0O 0 0 gain the ability to incorporate statistical failure infaam
Q()= 0 0 Q 0 0 tion and uncertainty, as pointed out in Sec. 1.
0 0 0 Q1 OO
0O 0 O 0 O . .
2.4 Operations on Q-matrices
with 0 1 . _ )
k 0 0 O Composition, scaling, reverse, and operations on GCPs
B % k k 0 O § (Def. 1-4) correspond directly to operations on their asso-
Ql= 0 k k 0 ciatedQ-matrices. Given any two GCPsand on the
0 0 k O same state space, and two positive scalgrs, 2 R*,
and the following equation holds
° K 0o 0 0 o0 o QUi [ 2)= Q0+ 200 : (14)
K 20 0 0 0 Proof. De ne Ri; for andRY for asin (13). For
Q2 = 0 K k0 0 0 the off-diagonal elemenis6 | \';ve have
0 k 0 k 0 0’
0 0 k k k 0 , y
0 0 0 0 K 0 kQ() ji + 2?(() ji
= 1r + 2r0
where0 denotes a matrix of zeros of compatible dimen- 2Rij 2R
sion. The block diagonal structure @f() corresponds = Q(1 [ 2):

to the fact that the number of bricks in the system is con-

served. Each block corresponds to a different number @fecause the diagonal elements are computed from the
bricks. The 0 entries at the top and bottom corresponddff-diagonal entries in each column, (14) follows. O

the state when there are no bricks and when all modules ) )

are holding bricks respectively. In either case, no transi-1 "€ Q-matrix of the reverse of a program is the same

tions are possible with , which does not have loading 0@S the transpose of the generator for the forward program
unloading rules. m exceptthatthe diagonal is different. To highlight thiscon

nection, de ne the matriXA with entries

In a GCP , a programmer can only specify the aver- s} o
age rate at which actions are applied conditioned on the AQ) i = 2Ry T} 6j
guard. Typically, the rate the inverse of the mean comple- I 0 otherwise.

tion time of the assoicated action. The Markov proce L . .
ﬁSA -matrix is the same as th@-matrix except that it

semantics mean robots randomly choose when to exeﬁH i the di L H the di |
commands if their guards are true. This loose timing co as zero entries on the diagonal. However, the diagona
n be computed from the other entries. In particular,

straint is in stark contrast to other ways of programmiﬁ:gf1
multi-robot systems where the timing of actions is care- Q)= A() (AT() 1):

fully specied. These semantics are a compromise be-

tween the ability to specify timing and the ease of operatherel denotes a vector of ones with compatible dimen-
ing on programs (i.e., the ease of composing and scalsign, and’ denotes the transpose of a matrix.



Lemma 1. The reverse of a GCP is given by reusable code. For example, ifis a program that disas-
sembles a structure andtransports raw materials, then
Q( MH=AT() (A 1)

[
Proof. By constructionQ( R)j = A( R); fori 6
j. By the same argument as in the proof in Lem. 2.4, @ Program that does both (Ex. 4). In general, com-

suf ces to consider off-diagonal elements and show thBSing arbitrary concurrent programs, while well de ned,
A( R)isequaltoA () T. Looking atthese two matricesd0€s not yield desirable new programs. A programmer
element wise yields needs to be aware of how the actions of two GCP interact.

One way of ensuring sensible compositions is to construct

A( Ry = X r programs where the sink state of one is the input for an-

i =

other.
2Ry (R
109 Control Input : In a system that has both natural dynam-

= ro=A(Q) j ics  and some other dynamics that we have direct

2R;i () control over , the composition

=AQ

[u;
L' \Wwhereu 2 R* describes a system with a control input.
) _ ) For example, open-loop optimal control in Sec. 4.2.5 or
Lemma 2. A_program and its atomized version have thﬁg] and feedback control [27] can be implemented by
sameQ-matrix using a system description of this form. In the context of
multi-robot construction systems, the control input is-par
ticularly useful for balancing programs that correspond
to different subtasks, such as disassembly, routing, and
building sub-programs.
Disturbances: Similarly, consider a nominal system
and a set of undesirable transitions denoted byThe

Q= Q) :

Proof. This lemma follows directly from the de nition of
, which keeps all elements of each actefrom the orig-
inal program, but creates a new rule for each one. [

The mapping of programs t@-matrices allows us composition [
to reason about new, composed programs by examining '
properties of the corresponding matrices. where" 2 R* describes uncertainty around a nominal

model . The program can either contain disturbances

.., or previously unmodeled transitions. In the latter case,
2.5 Control Problems Expressed with whenS contains failure states, can be used to express

Guarded Command Programs failure statistics (Sec. 4.3).

The ability to scale and compose programs allows uslqja\ccessible StatesDifferent failure scenarios where ap-
frame questions about programming and control of mul lied actions might not cause transitions due to intermit-
robot systems with GCPs.  In the following discussiotr?nt malfunctions or states become inaccessible due to

programs are assumed to have similar rates, so a progpém(en subsystems can also be modeled with GCPs. A

multiplied by a small scaler has lower rates than a prgl_ven GCP can be decomposed into an equivalent pro-

gram that is not scaled. This assumption correspondsg{gm )

the fact that physical robots can only execute actions at a wl e

xed maximal rate and that programs that express behavhere g corresponds to the part of the program that is
iors execute these behaviors as quickly as possible. malfunctioning and  the part of the program that is
Modularity : By composing subprograms which camvorking correctly (Sec. 3.2.1). Intermittent failures can
be separately written and analyzed allows us to credi expressed asyw [ (1 ) B,wWhere 2 (0;1)is



the strength of the intermittent fault. Larger values &.2 Types of Disturbances
correspond to a larger likelihood the faulty behavior. N
Permanent failures of subsystem can be modeled by odfg-1 Program Decomposition

considering working transition v . As described in Sec. 2.5, modeling inaccessible states

can be accomplished by decomposing a prograinto

two parts. Given a set of states that are broggn S,

the set of states that are still accessible or working is
3 Robustifying Programs Sw = SnSg. Given a program and a set of bro-

ken states , we describe how to construct an equivalent

) ] ) ~ program w [ g where the program y only makes
This section presents an approach to combine a high einsitions between states$y, .

formance and a robust GCP to obtain a new program with

the best qualities of both. We refer to this process as “9g nition 5. Eachrulein 2 iseitherin , g,or
busti cation” because it can turn a program that is n@p|it into two parts as follows. Given a= (g;a;r) 2
robust into one that is, while preserving qualities of thg nethe arule g (gg;as;rg) by

original program [28].

A robust program is one that behaves correctly in the s r (15)
face of disturbances. Both correctness and the class of ag a\ (S Ss[Ss 9) (16)
disturbances need to be de ned. We consider a program % 9\ Se)[f sj(s;9)2asg (17)

to becorrectwhen it has probability one of ending up in
a pre-speci ed region in the state space calledttrget, The working part of the rule is the complemeng, =
T. In the language of stochastic processes, only processes. aw:fw) = (ghgs:anag:r). Whether a rule
where the recurrent states are contained in the target h /2 bélongs 0 g, W”m is S'plit according to (15)—
correct bghawor. This de n_lt_lon of is motivated by our17) is decided as follows:

constructive approach to writing modular programs.
choosing the target of one program as the input to the next
several programs can be strung together. A description of
the disturbances is given in Sec. 3.2.

Ifag = ;,thenthe 2 .
Ifay =;,then 2 5.
Ifag 6 ;"aw 6 ;,then g 2 pand w2 w.

3.1 Program Performance A program can be split into two parts by applying the
above procedure to all its rules.

The performanceof a program is the rate at which

arbitrary initial probability distributions converge tolheorem 3. Givena GCP and setSg, the construction

the steady-state distribution. If distributions converdé Def. 5 results in two programsg and w with the

quickly, a program is said to have good performance .Rfoperty that g [ w is equivalentto .

distributions take a long time to converge , it has poor per-

formance. Numerically, the performance of a program Proof. By construction, the elements afor each 2

is bound by the second largest eigenvaluedgf) , de- appear in arule of eitherg or \y with the original rate.

noted »(Q). It is a measure of convergence rate in tHfds a result

master equation (12). The greater the magnitude (more O=(C wl B8);

negative) the second eigenvalue the faster the conver-

gence rate. Multiple zero eigenvalues, correspond to tigd so the decomposition produces an equivalent pro-

case of multiple recurrent equivalence classes. gram. O

10



3.2.2 Intermittent Failures 3.3 The Performance and Robustness of

There are two different types of intermittent failures. Composed Programs

Firstly, imagine there are some transitions in a given GQfis section gives two theorems about the composition
that depend on faulty hardware. Maybe the gripper ob# programs. Both are about the continuity of composi-

robot has a loose screw and occasionally drops an obj&ein. Adding a small amount of an arbitrary program

A low-level controller recovers from the error and putg a nominal program means that the composition will

the system back into the state before the transitions. Have a similar steady state and convergence rate aie

general, sometimes when a command corresponding t@@rems are stated in terms of fBematrices associated

faulty transition executes, it does not work. Instead, thgth GCPs.

system remains in the original state. As described in the

discussion of inaccessible states in Sec. 2.5, a progra@mma 4. Given twoQ-matricesA andB with the same

with intermittent faults of this type can be written as ~ dimension, the8 > 0, 9" > 0such that

wl @ ) s j 2(A)  20A+"B)j<:

where 2 (0;1) is the intensity. Proof. The eigenvalues of + "B are the solutions of

Secondly, instead of returning to the original state aft}e characteristic polynomiadet(1 (A +"B))=0:
an intermittent fault the system could end up in a state tH4te roots of a polynomial are continuous functions of the
is neither the rst nor the second coordinate of the actiof?€f cients, which in turn are continuous functions'of
For example, a gripper could occasionally drop an objdY composition on continuous function the eigenvalues of

that is not recovered by a low lever controller. This typ® * "B depend continuously ch O
of intermittent failure can be expressed as a disturbance ) )
(Sec. 2.5) Lemma 5. Q|ven Q-matricesA and B of two correct
[ programs with the same targht S, then forC = A +
; B
where the disturbance program contains intermittent c. Coin. Corn
and unintended transitions occurring with intengity c(h®;h) maxf a(h~;h); s(h™;h)g:
Proof. Adding two Q-matrices can only increase the

3.2.3 Permanently Inaccessible States number of (vertex) independent paths frofmto h; there-

_ _ _ fore, ¢(h®;h) is at least as large asa(h®;h) and
Modeling a speci c permanent failure where states be—B (hC: h). O

come inaccessible is simpler. Given a progranand a

set of proken stateSg, by Thm. 3, can be decom- thegrem 6. Given aQ-matrix A with a single recurrent
posed into an equivalent progranyy [ g . The work- communicating class and some ott@¢matrix B, then
ing part w only makes transitions iy . Usingitasa ¢ = A + "B where0 " has a single recurrence class
new program orBy, models the behavior of the Systém and the entries ofc depend continuously dh
where some of the states have become permanently in-
accessible. The permanent failure case is the limit of tReoof. By assumption abowk, C also has a single recur-
recoverable failure case when 1. rence class and thus a unique steady-state distribution
By construction all the states iBg are recurrent and Furthermore, . is the intersection of the one dimensional
do not communicate, when considering only the workirgybspace given by the ux balance equat©p = 0 and
program , because all transitions to and from stateéke hyper plane given by the probability vector constraint
in Sg_have been removed from,y . One must take carel™p = 1. Since these are linear constraints with coef -
in any subsequent analysis to considering questions abmants that vary continuously dh the entries of ¢ also
the connectivity of  only onSy . depend continuously ch O

11



Hence, varyind' cannot produce a bifurcation in equi-
librium points when addingB to theQ-matrixA . How-
ever, in general when A does not have a single recurrence
class im((A)) > 1) adding"B to A can make steady-
state solutions disappear. In particular, a transitioB in
may connect two different recurrent equivalence classes,
and the steady state from a given initial condition might
not be continuous in. Including the condition on the
number of recurrent classes in Thm. 6 is necessary.

Theorem 7. Given twoQ-matricesA and B with the
same, unique recurrent stage, then forany > 0; 9" >
OsuchthatforC = A+ "B,

i 2(A)  2(C)j<
c(fsg®fsg g(fs g fs Q)

cC= A
a)

Theorem 7 follows directly from applying Lemmas 4
and 5. Both Thm. 6 and 7 are about composing a nominal
program (represented byA) with other programs. By
Lem. 4 ,if is composed with some suf ciently small
amount of an arbitrary program , then the the conver-
gencerate oft " isclose to the convergence rate of
By Thm. 6 , the steady-state distribution ofand + "
are also close element wise.

Thm. 7 is about composing programs that are both cor-
rect (with respect to the same target statebut can have d)
different performance and robustness. It states that one

b)

e)

can add a robust (high relative connectivity) program wifrigure 4: The Factory Floor testbed [10]. a) Schematic
a high performance prograr ¢j large) and obtain a pro-rePresentation of a Factory Floor module. b) Picture of

gram that has both good performance and robustness{russ type raw material. c) Picture of node type raw ma-
terial. d) Picture of four modules assembling a two layer

structure. e) Picture of same structure in simulation. For
clarity, module components are omitted, and only the raw

4 The Factory Floor Testbed materials are shown.

This section describes an extended example demonstrat-
ing how to apply Thm. 7 to the Factory Floor testbed, a
multi-robot system that can assemble, disassemble, and
recon gure structures [10]. The goal of this testbed is to
aid development of robust algorithms and hardware that
can autonomously build structures in uncertain environ-
ments.

12



a) b)
c) d)
e) f)

4.1 Description

The testbed [10] consists of an array of identical robotic
modules that build structures made from two different
types ofraw material called trussesand nodes(Fig. 4).
Each module has a manipulator with an end effector that
can grab and release nodes and trusses, a temporary stor-
age place for nodes and trusses, and a lifting mechanism.
Assembly and disassembly proceed layer by layer. Mod-
ules manipulate raw materials into place and then coordi-
nate lifting with other modules. At the end of each truss
is a latching mechanism that can be activated by the end
effector and rigidly attach to one of the six node faces.
By this mechanism the Factory Floor testbed can build
arbitrary lattice structures from trusses and nodes. The
sequence of pictures in Fig. 5 shows a typical recon gu-
ration task. A tower is disassembled on one side of the
testbed, the raw materials are routed, and then a tower is
assembled on the opposite side. Figure 5f shows which
modules in the testbed run the three different tasks.

4.2 Routing Programs

This section describes programs for thating portion of
the recon guration task in Fig. 5 in more detail. This sub-
task is performed by the most modules and as a result has
the most redundancy, which is important to the robustness
to module failure. Programs can only be robust to individ-
ual robot failures if there are redundant robots.

Fig. 6a gives the layout of the factory oor testbed for
the con guration task. The hashed modufek 2; 3; 4g
and shaded module$18; 19; 22; 23g correspond to the

Figure 5: Sequence of snap shots from a recon gurgading area(L) and thetarget area(T), respectively.

tion simulation. The sequence a-e) shows the progr&ach module either has a node or not, and so the state
at various stages of progress a) Initial con guration. ©f each module is binary, which is similar to Ex. 1. The
Final goal con guration. f) Image sowing loading area state of a module is 1 when the module contains a node
(hashed), routing areR (white, right), and the target aresand 0 when it does not. In the routing portion of a recon-
T (shaded) of the routing program (Fig. 6). To the lefguration program, what happens in the target area is not
of L a GCP running in the disassembly area (white, leftpportant. During routing, it acts as a sink, and nodes
takes a structure apart and feeds the raw materials to dig@ppear as soon as they get into the target area. As

routing program.

a result, the four modules i can be lumped together
resulting in the state spa@= f1;0g?!, that is, the 21-
fold cross product of the module state, a 21 digit binary
number as in Ex. 1.

Figure 6b and Fig. 6¢c show two different routing
programs. Each arrow represents a rule of a GCP, and

13



1|5|9]13(17|21
2| 6|10|14|18| 22
3| 7|11|15|19(23 a) b) c)
a 4]8|12[16]20] 4 Figure 7: Three different failure scenarios. a) All modules
NN ¢ ¢ ¢ ] ol o el ] are working. b) Module 10 is broken, ¢) Module 10 and
L] 11 are both broken.

4.2.1 Performance Without Failures

oy L[] o Pt

To analyze the performance and robustness of these sys-

Figure 6: Schematic representations of routing prograrﬁpsr.ns we .IOOK at h.OW aprogram route; asingle node. This
The loading ared. is denoted by hashed modules th@ssumption drastically reduces the size of the state space,

routing areaR by white modules, and the target arga yet the connectivity properties governing the robustness i

by shaded modules. a) Layout of the factory oor testbetchet tsr,:_ngle—rgc_)dtg cas\eN(;arry ovler tﬁ th_e general cgse \;v'th'
The numbers in each module position identify the moduf! tlﬁ ref rt|c lon. fet}:: on yta owing or;etrrw]o N a_t_a
when writing programs. b) Deterministic path prograrliﬁme’ € state space of the system IS Simply the position

. Only transitions that provide progress are enabled. oégthat none. When a module_fa|ls and .SFODS routing nodes
Random Program . In each location all possible transi- n.Iy a single state (but multiple transitions) become un-
gallable.

tions are enabled. This program is slow since many of t U
In this simpli ed problem , a node randomly appears

transitions do not provide progress toward the target area., ) X
in the loading area either from an external source or, as

in this example, from a disassembly program. The un-

each module runs a program containing all the rules crtainty in the loading is expressed as a probability dis-
responding to arrows in that location. Using chemical riibution of where the node shows up. The target area is

action notation as in Ex. 3 programs for the Factory FloBtodeled as a single state that only accepts nodes. When
modules can be written as all modules operate correctly , it is easy to see that nodes

will be routed to the single accepting sink statg.(With
Kpass = Kioad = 1sec 1, the rate of convergencg ¢j)
of the two programs and shown in Fig. 6 is1:0 and
S3 foed 3 0:029, respectively. Both programs are correct, buhas
much better performance.

S3,57 s S3;S7

in the case of module 3 in Fig. 6b, for example.

The asso_ciated ratgs are such that the rates of all ryles » Modeling Speci ¢ Failures
corresponding to actions performed by the same module
sum to a constarityass This rate models the speed athe rst step is to consider failures of speci ¢ modules.
which modules perform tasks, in this case how long $imilar to considering only a single node at a time , this
takes to pass raw materials. The average time to pass a@proach yields small, tractable Markov processes and al-
materials isl=kyass If there are multiple arrows, then eactiows us to gain some intuition before tackling a more gen-
of the associated guarded commands has the same fesaat model that incorporates failure statistics. The three
tion of the total ratekpass Also, nodes appear randomlyspeci ¢ scenarios we considered in this section , which
in the loading arealL at a ratekj,ag. In this way , the are shown in Figs. 7a—c, are the cases when there are: no
diagram Figs. 6b and 6c can be turned into guarded cdimiures, a single-module failure, and multiple-module
mand programs with rates. We denote the program frdailure.
Figs. 6b and 6¢c by and , respectively. We apply Thm. 3 to the two failure scenarios. In the

14



case of a single failure (module 10 in Fig. 7b), the set of
broken states is

Sg = fs2 Sjsip=1g:

Applying Thm. 3to  (Fig. 6b) resultsin g,

p— |§(pass, p— Kpass, .
SeS10 SeS10 S10S14 S10S14-
Intermittent faults in Module 10

This decomposition is simple because the rules iare :
written in chemical reaction notation to begin with and
each rule belongs either tog or . The other rules of
arein .
The chemical reaction notation is also applicable to the
broken part of (Fig. 6¢). The broken componeng is

o
®
T

Performace |l 2|
°
b
2

°
=
T

0.2
ass ass
S6S10 s S6S10 S10S6 s S10S6

! L 1 h i h L 1
0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9

p— S?BSS p— p— SpBSS p—
S14S10 S14S10 S10S14 S10S14

—_ ass __ —_ ass __ . .
SoS10 ke S9S10 S1059 ke 51059 ‘ Interm|ttgnt faylts |r? Mosiule 1‘0 anq 11 ‘

—_—Y
ass ass . H
S11S10 % S11S10 S10S511 s S10811° g

The broken componentsg and g for the failure of
multiple modules (Fig. 7c¢) work exactly the same ex-
cept that they contain more reactions. Using these com-
positions , one can model both intermittent and permanent il
failures. DS

Performace || )
‘
;

4.2.3 Performance with Intermittent Faults b) o

By combining the two parts of a decomposed progragy re g: performance §) as a function of fault inten-
(e.g. w and g), one can investigate the performancgy, 4y performance of (solid line), (dashed line),

of  with intermittent failures. The probability of an in-yngq  (gash-dotted line) with a single, intermittent fault
termittent failure is given by 2 (0;1). Because we re- (Fig. 7b). c) Performance of and =0 9 +0 1

strict the failure probability to be less than 1, all statext t (see Sec. 4.2.4) with two intermittent faults (Fig. 7c).
communicate in also communicateinw [ (1 ) .

As a result, programs with intermittent faults have the
same equivalence classes with the same recurrence struc-
ture. If the original program is correct, then the pro-
gram with intermittent faults is also correct. However, the
performance can degrade signi cantly. Figure 8 shows
the second largest eigenvalugof w[ (1 ) g and

wl (@ ) g as a function of for the two different
failure scenarios shown in Fig 7.

15



4.2.4 Performance with Permanent Failures No Malfunctions

In contrast to intermittent failures, permanent failuraa c
change the recurrence structure of a program. These types
of failures can turn a correct program into one that is no
longer correct.

Probablity of Arrival

Section 4.2.1 shows that has better performance in a) B
the absence of failures, but when any routing modules fail 3 LA S
permanently , the resultin@-matrix has multiple recur- time
rent equivalence classes with some recurrent states out-
side the target. In contrast, has the opposite problem, it
has low performance due to the backward passes that do !
not provide progress, but it performs correctly when up to rd
three modules fail because the relative connectivity to the
targetis (L[ R;T)=4.

Module 10 Malfunction

Probablity of Arrival
—

By Thm. 7 , we can combine both programs and obtain
one that i; robust and has good performance. For exam- b) 02 —
ple, choosing = 0:1, the program = (1 "y + S
has , = 0:66 and the same robustness as This ¢ s i B Mo e a0
meansthat w = w [ w should be correct and have
good performance. The reason to choose a convex com- Module 10 and 11 Malfunction
binations of programs instead of other scaled composi- .
tions is to conserve the total rate of passing raw materials e
for each module, which is necessary for a sensible phys-
ical interpretation of the resulting program.  Figure 8
compares the performance of these three programs in the
case of intermittent faults, and here toohas most of the
desirable performance features from ) 0z

Exactly how these programs fair in the failure scenar- R R B B =
ios is shown in Fig. 9. The top of each sub- gure shows tme
which modules have failed. The plot on the bottom shows ) ) )
the probability of arriving as a function of time giverf19ure 9: Program performance with various failure sce-
that a node showed up in the loading area at time 0. Witg"10s- The plots show the probability of a node arriving
no failures (Fig. 9a) , the three different programs beha@kthe target (given it was at the loading ared at 0)
as described in Sec. 4.2.1 ; all programs are correct, &w@ function of time. The solid line corresponds to the

and have good performance while has bad per- program shown in Fig. 6b , the dashed line tq the pro-
formance. Failure scenarios where one and two modu#&m shown in Fig. 6¢, and the dash-dotted line to the
fail are shown in Figs. 9b and 9c. With failures, onlfOmposed program=0 :9 +0 :1 . a) Programs with

w and w behave correctly ; they are robust to fail® module failures, and have similar good perfor-
ure. The program v has good performance and is roMance , and has poor performance. All programs are
bust. This demonstrates how one can use compositiorf®§rect: b.c) Programs with one and two module failures
combine the desirable properties of robust programs dfigPectively. Only and  are correct; they are robust to
high-performance programs. module failure.

Probablity of Arrival

16



Speed vs. e

b)

L L L L
0.4 05 0.6 0.7

e

Performace vs. e

-------
- ~
. by

Figure 10: Quality measures ¢f

of 90% arrival as a function df with two different fail-

ure scenarios (Figs. 7b and 7c) . X s - S
as a function of two different failure scenarios (Figs. Zpentially distributed. More complicated distributionsica

and 7c).

b) Performancg

4.2.5 Optimizing Programs

The robusti cation in the previous section shows that a
convex combination of programs can yield desirable re-
sults. Exactly how programs should be weighted depends
on the particular problem. In the context of the Factory
Floor testbed we look at two different measures of quality.
First, the time of 90% probability of arrival (Sec. 4.2.4).
Figure 10a shows the time it takes for the probability of
routing a node to the target with 0.9 probability of success,
given that it shows up randomly uniformly distributed in
the loading area dt= 0. Depending on the failure sce-
nario, the best choice dfis different. Second, the perfor-
mance , of the convex combination (Fig. 10b), results
in a different optimal of', which again depends on the
failure scenario.

Since the performance depends on the scaler parame-
ter of the convex combination, the problem of choosing it
can be turned into an optimization problem. For a more
detailed description of a particular problem and how to
solve the resulting optimization problem, see, for exam-
ple, [18]. Here, we simply want to point out that GCPR
can be used to pose questions of writing high quality pro-
grams as an optimization problem using convex combi-
nations of GCPs. While the parameter space is convex
these problems are not necessarily easy to solve because
the quality measure of programs can be numerically ex-
pensive to compute.

4.3 Incorporating Failure Statistics

The stochastic nature of GCPR can easily incorporate fail-
ure models based on empirical, statistical information. It
is particularly easy to incorporate failures that are expo-

be approximated by using a series of failure states with
exponential transitions between them.

This section is a slight departure from the previous sec-
tions because it requires expanding the underlying state
spacesS to capture failures. To do so in this particular ex-
ample, we extend the state of each module to include a
failure state, and s& = f0;1;2g?! instead of just in-
cluding two states per module. If a module is in state 2 ,
it has failed and can no longer pass nodes or trusses.

We can still use the old programs, ; and , from
the previous sections embedded into this new higher di-

17



mensional state space. The chemical reaction notation Program Meang5%Cl) STD

makes this embedding easy because it only speci es the 3575 11 16.7
part of the state that changes, and the original states, 0 and 197.7 05 8.3
1, are still in the expanded state space. 09 [ 01 353.7 1.0 16.3
To express failures of modules in chemical reaction no- [ 79.7 2.6 41.0
tation, denote the situation that this component (mod- [ 65.2 17 27.2
ulei) of s 2 Sis broken bys; (i.e.,s = 2). If individual 09 [ 01 [ 96.6 2:9 45.7
modules fail at a rate df,j, a program that models this )
failure can be written as Table 1:  Mean number of routed nodes. Trajecto-
- . ries were simulated for 1000sec with rate parameters
Si * 8 S Kpass= 15€ec !, kioag = 0:1sec 1, andkg = 0:001sec *

This new state space is quite larg8y( 2.8  10') using SSA. The parameters are chosen such that trajec-

, so computing the probability distribution over statd@ries have the same length as the mean time to failure
or the eigenvalues of the transition matrix is dif cult®f modules. The mean and the standard deviation were
However, simulating trajectories and estimating statisfompPuted from 1,000 trajectories.

cal quantities can be done ef ciently using the Stochastic

Simulation Algorithm (SSA) [11]. Table 1 shows SSA rezisq hehaves much better thanwhen incorporating sta-

sults to estimate the expected number of routed nodeg;iicy| fajlure. This extended example shows how GCPR
the rst 100ec for , , , [ , 1[ and [ can be used as a exible tool in programing and reason-
with a failure ratelofkfa” = 0:001sec * , a loading r‘i‘te ing about the behavior of stochastically interacting rebot
of k|0a_d = 0:1sec *, a_nd a passing rall_q)ass_: 1sec . \we created a manageable simpli ed model (single node)
The simulation time is the average life-time of a modg, design a routing program via robusti cation. These

ule I=kei. With this choice a signi cant numbes0%)  gimylation results suggest that this GCP also performs
of the modules are expected to break by the end of sif)| in the non-simpli ed system.

ulation.  Obviously, the number of routed parts is sig-
ni cantly higher for the programs that do not contain the
failure program , and is almost as good as inthe 5 Conclusion
absence of permanent failures, and behaves signi cantly
better when failures are present. Given the simulati@®iochasticity can be used to model concurrency, failures,
time and failure rate of this example, the nal state of ea@nd uncertainty. We use it to give semantic meaning to
trajectory is expected to have half of its modules brokeBCPR and use the resulting framework to create robust
With such a sever fraction of broken modules, it is likelgrograms with good performance. The main contribution
that there is no routing path from the from the loadingf this paper is framing the problem of multi-robot pro-
areato the target. The data re ects this in two ways. Firgiramming formally as GCPR. The operations of compo-
the signi cantly lower mean of the programs that contaisition, scaling, reverse, and decomposition can express
, and second, the much higher standard deviation of th&ariety of control questions related to multi-robot sys-
programs with failures even though the mean is low¢ems. We show that these operations on programs are di-
The increased variance results from the fact that the edetly related to operations on the generators of Markov
fectiveness of the routing program is randomly decreaggbcesses, and so the analysis of composed and scaled
by broken modules. This additional source of randomnga®grams can be drastically simpli ed
increases variance. We expect this source of noise to b&his approach differs fundamentally from other ap-
the least effective in the case of since purely random proaches in which robot behavior is deterministic. Al-
exploration should effectively explore paths around brthough these semantics are restrictive in some sense,
ken modules, where asand do not. GCPR is suf ciently expressive to pose interesting prob-
The GCP created in the previous section to be modems while facilitating composition of programs, some-
robust to failures in the simpli ed, single-node modething that is dif cult to reason about with other ways of

18



programming. We show how composition and scaling {f0] K. Galloway, R. Jois, and M. Yim. Factory oor:
programs can be used to express a variety of control ques- A robotically recon gurable construction platform.
tions and focus on robustness in an extended example of a In Proceedings of IEEE International Conference
routing program that is part of larger recon guration task.

References

[1]

[2]

[3] T.Balch and R. C. Arkin. Behavior-based formatiohl4]

[4]

[5]
[6]

[7]

[8]

[9]

R. Alur, Thao Dang, J. Esposito, Yerang Hur,
F. Ivancic, V. Kumar, P. Mishra, G.J. Pappas, and

on Robotics and Automatippages 2467—2472, An-
chorage, AK, USA, 2010.

[11] D.T. Gillespie. Stochastic simulation of chemical

kinetics. Annual Review of Physical Chemistry
58(1):35-55, 2007.

O. Sokolsky. Hierarchical modeling and analysi[slz] N.G. Van Kampen Stochastic Processes in Physics

of embedded systemsProceedings of the IEEE
91(1):11-28, Jan. 2003.

N. Ayanian, P. White,A. Halasz, M. Yim, and
V. Kumar. Stochastic control for self-assembly of
XBots. INASME Mechanisms and Robotics Confer-
ence New York, August 2008.

control for multirobot teamslEEE Transactions on
Automatic Contrql14(6):926—939, 1998.

S. Berman,A. Halasz, and A. Hsieh. Optimized[15]

stochastic policies for task allocation in swarms of
robots. IEEE Transactions on Robotic25(4):927—
937, Aug. 2009.

B. Bollobas.Modern Graph TheorySpringer, 1998. 1

S. Burden, N. Napp, and E. Klavins. The statisti-
cal dynamics of programmed robotic self-assembly.
In Proceedings of IEEE International Conference on
Robotics and Automatigipages 1469-76, Orlando,
FL, USA, 2006.

(17]

I. Chattopadhyay and A. Ray. Supervised self-
organization of homogeneous swarms using ergodic
projections of Markov chainsIEEE Transactions

on Systems, Man, and Cybernetics, Part B: Cybe{ﬂ-8]

netics 39(6):1505-1515, Dec. 2009.

E. M. Clarke, Jr., O. Grumberg, and D. Pelédbdel
Checking MIT Press, 1999.

[19]

E. W. Dijkstra. Guarded commands, nondetermi-
nacy and formal derivation of program@ommuni-
cations of the ACM18(8):453—-457, 1975.

19

[13]

and ChemistryElsevier, 3rd edition, 2007.

E. Klavins. Automatic compilation of concurrent
hybrid factories from product assembly speci ca-
tions. InProceedings of Hybrid Systems: Compu-
tation and Control number 1790 in LNCS, pages
174-187. Springer-Verlag, 2000.

E. Klavins. Programmable self-assemblyEEE
Control Systems Magazine27(4):43-56, Aug.
2007.

E. Klavins, R. Ghrist, and D. Lipsky. Graph
grammars for self-assembling robotic systems. In
Proceedings of IEEE International Conference on
Robotics and Automatigmpages 5293 — 5300, New
Orleans, LA, USA, 2004.

E. Klavins and D.E. Koditschek. A formalism for

the composition of concurrent robot behaviors. In
Proceedings of IEEE International Conference on
Robotics and Automatigrpages 3395-3402, San
Francisco, CA, USA, 2000.

E. Klavins and R. M. Murray. Distributed algorithms
for cooperative controllEEE Pervasive Computing
3(1):56-65, 2004.

Eric Klavins, Samuel Burden, and Nils Napp. Opti-
mal rules for programmed stochastic self-assembly.
In Proceedings of Robotics: Science and Systems II
pages 9-16, Philadelphia, PA, USA, 2006.

M. Kloetzer and C. Belta. Temporal logic plan-
ning and control of robotic swarms by hierarchi-
cal abstractions. I[EEE Transactions on Robotics
23(2):320-330, April 2007.



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

T.J. Koo, B. Sinopoli, A. Sangiovanni-Vincentelli,
and S. Sastry. A formal approach to reactive system
design: unmanned aerial vehicle ight management
system design example. Rroceedings of IEEE In-
ternational Symposium on Computer Aided Contrif®l
System Desigrpages 522-527, 1999.

H. Kress-Gazit, N. Ayanian, G.J. Pappas, and V. Ku-
mar. Recycling controllers. IRroceedings IEEE In- 30]
ternational Conference on Automation Science and
Engineering CASE 2008pages 772-777, 23-26
Aug. 2008.

[31]
H. Kress-Gazit, G.E. Fainekos, and G.J. Pap-
pas. Temporal-logic-based reactive mission and
motion planning. IEEE Transactions on Robotics
25(6):1370-1381, Dec. 2009.

[32]
M. Kwiatkowska, G. Norman, and D. Parker. Prob-
abilistic symbolic model checking with PRISM: A
hybrid approachinternational Journal on Software
Tools for Technology Transfe8(2):128-142, 2004.

L. Matthey, S. Berman, and V. Kumar. StochastiS3]
strategies for a swarm robotic assembly system. In
Proceedings of IEEE International Conference on
Robotics and Automatigmpages 1953-1958, Kobe,
Japan, 2009.

J. M. McNew and E. Klavins. Locally interacting[34]
hybrid systems with embedded graph grammars. In
Proceedings of IEEE Conference on Decision and
Control, pages 6080—-6087, San Diego, CA, USA,
2006.

. [35]
B. Munsky and M. Khammash. The nite state pro-
jection approach for the analysis of stochastic noise
in gene networkslEEE Transactions on Automatic
Control, 53(Special Issue):201-214, Jan. 2008.

N. Napp, S. Burden, and E. Klavins. Setpoint reg-
ulation for stochastically interacting robots. Pmo-
ceedings of Robatics: Science and SysieSaattle,
WA, USA, 2009.

N. Napp and E. Klavins. Robust by composition:
Programs for multi robot systems. Rioceedings of

20

IEEE International Conference on Robotics and Au-
tomation pages 2459-2466, Anchorage, AK, USA,
2010.

B. Smith, A. Howard, J.M. McNew, and M. Egerst-
edt. Multi-robot deployment and coordination with
embedded graph grammarsAutonomous Robats
26:79-98, 2009.

D. W. Stroock. An Introduction to Markov Pro-
cessesGraduate Texts in mathematics. Springer, 1st
edition, 2005.

P. Tabuada and G.J. Pappas. Linear time logic con-
trol of discrete-time linear systemslEEE Trans-
actions on Automatic Contrpl51(12):1862—-1877,
Dec. 2006.

M.T. Tolley, J. Hiller, and H. Lipson. Evolutionary
design and assembly planning for stochastic mod-
ular robots. InProceedings of IEEE/RSJ Interna-
gional Conference on Intelligent Robots and Sys-
tems pages 73-78, St. Louis, MO, USA, 2009.

P. Varshavskaya, L. P. Kaelbling, and D. Rus. Au-
tomated design of adaptive controllers for modu-
lar robots using reinforcement learningnterna-
tional Journal of Robotics ResearcB7(3-4):505—
526, Mar—Apr 2008.

P. J. White, K. Kopanski, and H. Lipson. Stochastic
self-recon gurable cellular robatics. IRroceedings
of IEEE International Conference on Robotics and
Automation pages 2888-2893, New Orleans, LA,
USA, 2004.

M. Yim, W. Shen, B. Salemi, D. Rus, M. Moall,
H. Lipson, E. Klavins, and G.S. Chirikjian. Modular
self-recon gurable robot systemslEEE Robotics
Automation Magazinel4(1):43 -52, march 2007.



