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one for each person. Each one would contain calls to many others, thus
creating a virtual cloud of ATN's around each ATN. Calling one would
create calls on others, and this process might cascade arbitrarily far, until it

bottomed out.

Mumon on MU

Let us conclude this brief excursion into Zen by returning to Mumon. Here
is his comment on Jéshi's MU:'3

To PEalize Zen one has to pass through the barrier of the patriarchs. En-
; lightenment always comes after the road of thinking is blocked. If you do not
i pass the barrier of the patriarchs or if your thinking road is not blocked,
whatever you think, whatever you do, is like a tangling ghost. You may ask:
“What is a barrier of a patriarch?” This one word, ‘MU’, is it.

This is the barrier of Zen. If you pass through it, you will see Jasha face to
face. Then you can work hand in hand with the whole line of patriarchs. Is
this not a pleasant thing to do?

If you want to pass this barrier, you must work through every bone in your
body, through every pore of your skin, filled with this question: “What is
M. C. Esc ; “MU’” and carry it day and night. Do not believe it is the common negative

her (llthogmph,.1946). symbol meaningynothizg. Itis iot nothingness, the opposite of existen%:e. 1f
you really want to pass this barrier, you should feel like drinking a hot iron

Indra’ ball that you can neither swallow nor spit out.
ra’s Net ) Then your previous lesser knowledge disappears. As a fruit ripening in
season, your subjectivity and objectivity naturally become one. It is like a
dumb man who has had a dream. He knows about it but he cannot tell it.

When he enters this condition his ego-shell is crushed and he can shake the
heaven and move the earth. He is like a great warrior with a sharp sword. If a
Buddha stands in his way, he will cut him down; if a patriarch offers him any
obstacle, he will kill him; and he will be free in his way of birth and death. He
can enter any world as if it were his own playground. I will tell you how to do
this with this koan: :

Just concentrate your whale energy into this MU, and do not allow any
discontinuation. When you enter this MU and there is no discontinuation,
your attainment will be as a candle burning and illuminating the whole

universe.
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\ From Mumon to the MU-puzzle

From the ethereal heights of Joshi’s MU, we now descend to the prosaic
lowlinesses of Hofstadter's MU . . . I know that you have already concen-
trated your whole energy into this MU (when you read Chapter 1). So now 1
wish to answer the question which was posed there:
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The answer to this question is not an evasive MU:; rather, it is a resounding
NO. In order to show this, we will take advantage of dualistic, logical

thinking.
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We made two crucial observations in Chapter I:

(1) that the MU-puzzle has depth largely because it involves the
interplay of lengthening and shortening rules;

(2) that hope nevertheless exists for cracking the problem by
employing a tool which is in some sense of adequate depth to
handle matters of that complexity: the theory of numbers.

We did not analyze the MU-puzzle in those terms very carefully in Chapter
I; we shall do so now. And we will see how the second observation (when
generalized beyond the insignificant MIU-system) is one of the most fruit-
ful realizations of all mathematics, and how it changed mathematicians’
view of their own discipline.

For your ease of reference, here is a recapitulation of the MIU-system:
SymBoLs: M, 1, U .
Axiom: MI

RULES:
I. If xlis a theorem, so is xIU.
II. If Mx is a theorem, so is Mxx.
HI. In any theorem, lll can be replaced by U.
IV. UU can be dropped from any theorem.

Mumon Shows Us How to Solve the MU-puzzle

According to the observations above, then, the MU-puzzle is merely a
puzzle about natural numbers in typographical disguise. If we could only
find a way to transfer it to the domain of number theory, we might be able
to solve it. Let us ponder the words of Mumon, who said, “If any of you has
one eve, he will see the failure on

emm bV
S A5

see the failure on the teacher’s pai

matter to have one eye?

If you try counting the number of I's contained in theorems, you will
soon notice that it seems never to be 0. In other words, it seems that no
matter how much lengthening and shortening is involved, we can never
work in such a way that all I's are eliminated. Let us call the number of I's in
any string the I-count of that string. Note that the I-count of the axiom Ml is
1. We can do more than show that the I-count can’t be 0—we can show that
the I-count can never be any multiple of 3.

To begin with, notice that rules I and 1V leave the I-count totally
undisturbed. Therefore we need only think about rules I1 and I11. As far as
rule III is concerned, it diminishes the I-count by exactly 3. After an
application of this rule, the I-count of the output might conceivably be a
multiple of 3—but only if the I-count of the input was also. Rule I11, in
short, never creates a multiple of 3 from scratch. It can only create one
when it began with one. The same hplds for rule 11, which doubles the

t.” Bui why shouid it
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I-count. The reason is that if 3 divides 2n, then—because 3 does not d'!vide
2—it must divide n (a simple fact from the theory of numbers). Neither
rule II nor rule III can create a multiple of 3 from scratch.

But this is the key to the MU-puzzle! Here is what we know:

(1) The I-count begins at 1 (not a multiple of 3);
(2) Two of the rules do not affect the I-count at all;

(3) The two remaining rules which do affect the I-count do so in
such a way as never to create a multiple of 3 unless given one
initially.

The conclusion—and a typically hereditary one it is, too—is that the
I-count can never become any multiple of 3. In particular, 0 is a forbidden
value of the I-count. Hence, MU is not a theorem of the MIU-system. .

Notice that, even as a puzzle about I-counts, this problem was still
plagued by the crossfire of lengthening and shortening rules. Zero becam'e
the goal; I-counts could increase (rule II), could decrea§e (rule I1I). Unul
we analyzed the situation, we might have thought that, with enou‘gh switch-
ing back and forth between the rules, we might eventually hit 0. Now,
thanks to a simple number-theoretical argument, we know that that is
impossible.

Godel-Numbering the MIU-System

Not all problems of the the type which the MU-puzzle symbolizes are so
easy to solve as this one. But we have seen that at least one such puzzle
could be embedded within, and solved within, number theory. We are now
going to see that there is a way to embed all problems aboul. any formal
system, in number theory. This can happen thanks to the dls§overy, by
Godel, of a special kind of isomorphism. To illustrate it, 1 will use the
MIU-system.

We begin by considering the notation of the MIU-system. We shall
map each symbol onto a new symbol:

M &> 3
1 &> 1
U <> 0

The correspondence was chosen arbitrarily; the onl}' rhyme or reason to it
is that each symbol looks a little like the one it is mapped onto. Each
number is called the Géidel number of the corresponding leltef. NO\.N I am
sure you can guess what the Godel number of a multiletter string will be:

MU &> 30
MIlU &= 3110
etc.
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It is easy. Clearly this mapping between notations is an information-
preserving transformation; it is like playing the same melody on two differ-
ent instruments.

Let us now take a look at a typical derivation in the MIU-system,
written simultaneously in both notations:

(N MI —— axiom —— 31

(2) MI — rule2 — 311

3) Ml — rule 2 —— 31111
4) MUl —— rule3 —— 301

(5) MUU — rulel —— 3010

(6) MUIUUIU —— rule2 —— 3010010
) MUHU —— rule4 —— 30110

The left-hand column is obtained by applying our four familiar typograph-
ical rules. The right-hand column, too, could be thought of as having been
generated by a similar set of typographical rules. Yet the right-hand col-
umn has a dual nature. Let me explain what this means.

Seeing Things Both Typographically and Arithmetically

We could say of the fifth string (‘3010°) that it was made from the fourth, by
appending a ‘0’ on the right; on the other hand we could equally well view
the transition as caused by an arithmetical operation—multiplication by 10,
to be exact. When natural numbers are written in the decimal system,
multiplication by 10 and putting a ‘0’ on the right are indistinguishable
operations. We can take advantage of this to write an arithmetical rule which
corresponds to typographical rule I:

ARITHMETICAL RULE Ia: A number whose decimal expansion ends on the
right in ‘1’ can be multiplied by 10.

We can eliminate the reference to the symbols in the decimal expansion by
arithmetically describing the rightmost digit:

ARITHMETICAL RULE Ib: A number whose remainder when divided by 10
is 1, can be multiplied by 10.

Now we could have stuck with a purely typographical rule, such as the
following one:

TyroGraPHICAL RULE I:  From any theorem whose rightmost symbol is ‘1’ a
new theorem can be made, by appending ‘0’ to the right of that ‘I'.

‘They would have the same effect. This is why the right-hand column has a
“dual mature”: it can be viewed either as a series of typographical opera-
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tions changing one pattern of symbols into another, or as a series of
arithmetical operations changing one magnitude into another. But there
are powerful reasons for being more interested in the arithmetical version.
Stepping out of one purely typographical system into another isomorphic
typographical system is not a very exciting thing to do; whereas stepping
clear out of the typographical domain into an isomorphic part of number
theory has some kind of unexplored potential. It is as if somebody had
known musical scores all his life, but purely visually—and then, all of a
sudden, someone introduced him to the mapping between sounds and
musical scores. What a rich, new world! Then again, it is as if somebody had
been familiar with string figures all his life, but purely as string figures,
devoid of meaning—and then, all of a sudden, someone introduced him to
the mapping between stories and strings. What a revelation! The discovery
of Godel-numbering has been likened to the discovery, by Descartes, of the
isomorphism between curves in a plane and equations in two variables:
incredibly simple, once you see it—and opening onto a vast new world.
Before we jump to conclusions, though, perhaps you would like to see
a more complete rendering of this higher level of the isomorphism. Itis a
very good exercise. The idea is to give an arithmetical rule whose action is
indistinguishable from that of each typographical rule of the MIU-system.
A solution is given below. In the rules, m and k are arbitrary
natural numbers, and n is any natural number which is less than 10",

RuLk 1: If we have made 10m + 1, then we can make 10 X (10m + 1).
Example: Going from line 4 to line 5. Here, m = 30.

RuLE 2: If we have made 3 x 10" + n, then we can make
10" x (3 X 10™ + n) + n.

Example: Going from line 1 to line 2, where both m and =
equal 1.

RuULE 3: If we have made k X 10m*? + 111 % 10" + n, then we can
make &k x 10™*! + n.

Example: Going from line 3 to line 4. Here, m and n are 1,

and kis 3.
RuLe 4: If we have made k x 10"*2 + n, then we can make
kX 10™+n. i
Example: Going from line 6 to line 7. Here, m = 2, n=10,
and k = 301.

Let us not forget our axiom! Without it we can go nowhere. Therefore, let
us postulate that:

We can make 31.

Now the right-hand column can be seen as a full-fledged arithmetical
process, in a new arithmetical system which we might call the 310-system:

Mumon and Godel 263



(9} 31 given

(2) 311 rule 2 (m=1, n=1)

3) 31111 rule 2 (m=2, n=11)

4) 301 rule 3 (m=1, n=1, k=3)
(5) 3010 rule 1 (m=30)

(6) 3010010 rule 2 (m=3, n=10)

7 30110 rule 4 (m=2, n=10, k=301)

Notice once again that the lengthening and shortening rules are ever
with us in this “310-system”; they have merely been transposed into the
domain of numbers, so that the Gédel numbers go up and down. If you
look carefully at what is going on, you will discover that the rules are based
on nothing more profound than the idea that shifting digits to left and
right in decimal representations of integers is related to multiplications and

divisions by powers of 10. This simple observation finds its generalization
in the following

CENTRAL ProPOsITION:  If there is a typographical rule which tells
how certain digits are to be shifted, changed, dropped, or inserted
in any number represented decimally, then this rule can be rep-
resented equally well by an arithmetical counterpart which in-
volves arithmetical operations with powers of 10 as well as addi-
tions, subtractions, and so forth.

More briefly:

Typographical rules for manipulating numerals are actually
arithmetical rules for operating on numbers.

This simple observation is at the heart of Gédel's method, and it will have
an absolutely shattering effect. It tells us that once we have a Godel-
numbering for any formal system, we can straightaway form a set of
arithmetical rules which complete the Godel isomorphism. The upshot is

that we can transfer the study of any formal system—in fact the study of all
formal systems—into number theory.

MIU-Producible Numbers

Just as any set of typographical rules generates a set of theorems, a corre-
sponding set of natural numbers will be generated by repeated applications
of arithmetical rules. These producible numbers play the same role inside
number theory as theorems do inside any formal system. Of course, differ-
ent numbers will be producible, depending on which rules are adopted.
“Producible numbers” are only producible relative to a system of arithmetical
rules. For example, such numbers as 31, 3010010, 3111, and so forth
could be called MIU-producible numbers—an ungainly name, which might
be shortened to MIU-numbers, symbolizing the fact that those numbers are
the ones that result when you transcribe the MIU-system into number
theory, via Godel-numbering. If we were to Godel-number the pq-system
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and then “arithmetize” its rules, we could call the producible numbers
“pg-numbers”—and so on.

Note that the producible numbers (in any given system) are deﬁned by
a recursive method: given numbers which are known to be producible, we
have rules telling how to make more producible numbers. Thus, Fhe class
of numbers known to be producible is constantly extending itself, in much
the same way that the list of Fibonacci numbers, or Q-numbers, does. The
set of producible numbers of any system is a recursively enumerable set. What
about its complement—the set of nonproducible numbers? Is that set
always recursively enumerable? Do numbers which are nonproducible
share some common arithmetical feature?

This is the sort of issue which arises when you transpose the study of
formal systems into number theory. For each system which is arithmetized,
one can ask, “Can we characterize producible numbers in a simple way?”
“Can we characterize nonproducible numbers in a recursively er'lumerable
way?” These are difficult questions of number theory.' Depending on the
system which has been arithmetized, such questions might prove too harfi
for us to resolve. But if there is any hope for solving such problems, it
would have to reside in the usual kind of step-by-step reasoning as it applies
to natural numbers. And that, of course, was put in its quintessential form
in the previous Chapter. TNT seemed, to all appearances, to have captured
all valid mathematical thinking processes in one single, compact system.

Answering Questions about Producible Numbers
by Consulting TNT

Could it be, therefore, that the means with which to answer any question
about any formal system lies within just a single formal system—TNT? It
seems plausible. Take, for instance, this question:

is Mii a theorem of the MIU-system?

Finding the answer is equivalent to determining whether 30 is a MIU-
number or not. Because it is a statement of number theory, we should
expect that, with some hard work, we could figure out how to translate the
sentence “30 is a MIU-number” into TNT-notation, in somewhat the same
way as we figured out how to translate other number-theoretical sentences
into TNT-notation. I should immediately caution the reader that such a
translation, though it does exist, is immensely compl'ex. If'you recgll, 1
pointed out in Chapter VIII that even such a simple anthmetl.cal predicate
as “b is a power of 10” is very tricky to code into TNT-notatlon—anq th‘e
predicate “b is a MIU-number” is a lot more complicated than that! Sull, it
can be found; and the numeral SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSO can
be substituted for every b. This will result in a MONstrous string of TNT, a
string of TNT which speaks about the MU-puzzle. Let us tl'{erefore cz_lll that
string “MUMON”. Through MUMON and strings like it, TNT is now
capable of speaking “in code” about the MIU-system.
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The Dual Nature of MUMON

In order to gain some benefit from this peculiar transformation of the
original question, we would have to seek the answer to a new question:

Is MUMON a theorem of TNT?

All we have done is replace one relatively short string (MU) by another (the
monstrous MUMON), and a simple formal system (the MIU-system) by a
complicated one (TNT). It isn’t likely that the answer will be any more
forthcoming even though the question has been reshaped. In fact, TNT
has a full complement of both lengthening and shortening rules, and the
reformulation of the question is likely to be far harder than the original.
One might even say that looking at MU via MUMON is an intentionally
idiotic way of doing things. However, MUMON can be looked at on more
than one level.

In fact, this is an intriguing point: MUMON has two different passive
meanings. Firstly, it has the one which was given before:

30 is a MIU-number.

But secondly, we know that this statement is tied (via isomorphism) to the
statement

MU is a theorem of the MIU-system.

So we can legitimately quote this latter as the second passive meaning of
MUMON. It may seem very strange because, after all, MUMON contains
nothing but plus signs, parentheses, and so forth—symbols of TNT. How
can it possibly express any statement with other than arithmetical content?
The fact is, it can. Just as a single musical line may serve as both
harmony and melody in a single piece; Jjust as “BACH” may be interpreted
as both a name and a melody; just as a single sentence may be an accurate

structural description of 2 picture by Escher, of a section of DN A, of a piece

by Bach, and of the dialogue in which the sentence is embedded, so

MUMON can be taken in (at least) two entirely different ways. This state of
affairs comes about because of two facts:

Fact 1. Statements such as “MU is a theorem” can be coded into
number theory via Godel’s isomorphism.

Fact 2. Statements of number theor

y can be translated into
TNT.

It could be said that MUMON s, by Fact 1, a coded message, where the
symbols of the code are, by Fact 2, just symbols of TNT.
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Codes and Implicit Meaning

Now it could be objected here that a cnded message, unhke an le;odedf
message, does not express anything on its own—it requires knowledge o
the code. But in reality there is no such thmg' as an uncoded message.
There are only messages written in more familiar code§, and messalg:;s
written in less familiar codes. If the meaning of a message is to be revealed,
it must be pulled out of the code by some sort of mechanlsm, o:i |sor(111i(:1r-
phism. It may be difficult to discover the method !)y which the decoding
should be done; but once that method has b(?en dls.c.overed, the message
becomes transparent as water. When a codc? is famxh:ar enoulgh,‘lt cef;_s}t:
appearing like a code; one forgets tnat there is a decoding mechanism.
is identified with its meaning. )

meSSIE_llgeer;S“:S ehrelxve a case where the idintiﬁcation of message and meaning
is so strong that it is hard for us to conceive of an 'alternat; mear;)mlgS
residing in the same symbols. Namely, we are so pre.Judlced by the symbo
of TNT towards seeing number-theoretical meaning (and only ‘number-
theoretical meaning) in strings of TNT, that Fo conceive qf certain st“r(lings
of TNT as statements about the MIU-syste.m is quite difficult. But QO el’s
isomorphism compels us to recognize this second level of meaning in

in strings of TNT.
Certal)necodeg in the more familiar way, MUMON bears the message:

30 is a MIU-number.

This is a statement of number theory, gotten by interpreting each sign in
the conventional way. - . - .
But in discovering Gédel-numbering and the whole isomorphism bul:ll
upon it, we have in a sense broken a code in which messages al?out the
! . s e
MIU-system are written in strings of TNT. Godel’s lsomnrphlsrn is a new
information-revealer, just as the dccipherrnents of ancient scrlp}t,s were
information-revealers. Decoded by this new and less familiar mechanism,
MUMON bears the message

MU is a theorem of the MIU-system.

The moral of the story is one we have heard before: that .meam}:lg l; ar;
automatic by-product of our recognition of any 1somorph1;m, t il;e or
there are at least two passive meanings of MUMON-—maybe more!

The Boomerang: Gédel-Numbering TNT

Of course things do not stop here. We have onl).f begunldrelz;hzllr(;gu:lsﬁ
‘ potential of Gédel's isomorphism. The natural trick wou | elf
- TNT’s capability of mirroring other formal systems back lon i saend, 2 the

Tortoise turned the Crab’s phonograph§ against lhems; ve[s, and as wé

Goblet G turned against itself, in destroymg itself. In order to ,

267
Mumon and Goédel



