Contextual Vocabulary Acquisition

On a Representation of Everything But the Word “pry”
Chris Becker
CSE740: CVA Seminar

May 1, 2003

Contextual Vocabulary Acquisition

On a Representation of Everything But the Word “pry”
Chris Becker

Abstract

This paper describes the work I did during the Spring 2003 semester on the CVA project analyzing a context of the verb ‘pry’ to determine if it was possible to extract the meaning of this word from the clues given in that context. The specific sentence used for this was “Making sure you have unbolted, unscrewed, and unattached everything, begin to pry the door panel from the door using a wide, thin screwdriver.” [4] My main areas of interest in working with this context were, in order of importance, (i) evaluating what components of meaning are implied by the existence of “from” in relation to the direct and indirect objects of the verb, (ii) identifying what information can be inferred from knowledge of the instrument being used by the agent to make the action take place, and (iii) identifying what significance any items that allow the specific action to take place have on the meaning of the verb. As of my final week working on this project I have completed a representation in SNePS of a simplified version of the sentence and modified the verb algorithm (J. Del Vecchio, 2002) to return information on the Instrument and any items enabling the action to take place. The next phase of this project would involve expanding the SNePS representation created thus far into one more closely depicting the structure and details of the original sentence, as well as adding a full supply of background knowledge and rules of inference. In the long run, additional work must be done on the verb algorithm to have it search with greater depth into the relationships between the verb and its arguments; specifically, any prepositional phrases connecting the direct and indirect objects, and well as agents and instruments. Currently the verb algorithm returns only the type of transitivity displayed in the represented context.
Introduction

The purpose of the Contextual Vocabulary Acquisition research project (Rapaport & Kibby, 2001) is to develop strategies for extracting the meaning of target words from information in their surrounding context. These strategies are to be implemented computationally using SNePS as the knowledge base and inference engine. After testing the success of these strategies in SNePS, they will be taught to grade school students and be utilized in order to receive feedback that will go into further development of the algorithms. Thus, the benefits from this research are two-fold: to improve upon computational systems of language processing, and to assist in the education of vocabulary.

My task for this project was to select a context with some target word, construct a representation of that context in SNePS, and test the particular algorithm for the target word’s part of speech on the representation in order to determine the effectiveness of that algorithm and suggest any modifications based on the results. I undertook this task in three stages: (1) analyzing the components of the original sentence, (2) designing a propositional network of the sentence, and (3) actually coding it into SNePS, and attempting to get some output from the verb algorithm.
1. Analysis of the context
My analysis of the context began by performing an experiment. Using the context I had selected, I replaced the word “pry” with the made-up word unkbubber. I then instructed subjects to define unkbubber given only the sentence “Making sure you have unbolted, unscrewed, and unattached everything, begin to unkbubber the door panel from the door using a wide, thin screwdriver.” [4] The medium was an online message board, which allowed me to receive data from more people in a short amount of time. All subjects were college students at this school. All subjects were aware of each other’s answers given, though each acted independently in coming up with their own. The responses included the following (sic):

1. to remove in a wiggling/prying mannor

2. pry

3. remove

4. to pry

5. disjoin

6. disengage

7. detach
I did not ask for protocols, nor did I do any follow-up experiments to find any. My goal was satisfied by the fact that anyone who had background knowledge of the word “pry” could have made the correct substitution with the made-up word. I then set out to come up with my own protocols; ones that I could be certain about that weren’t derived or stated in the ad hoc manner that subjects in some experiment would do so in.

My strategy was this: to identify the primary components of meaning of the verb (pry), as well as components which set it apart from similar verbs (e.g. remove, pull, take), and then attempt to find those components in the surrounding context. Implementing this in the reverse could be part of a usable strategy for learning word meanings from context.

Paraphrasing from the definitions given in several dictionaries, I noted that the primary components of “pry” involved raising/moving/opening, using a lever, with effort. Next, I returned to the context:

Making sure you have unbolted, unscrewed, and unattached everything, begin to pry the door panel from the door using a wide, thin screwdriver.

Analyzing it, I sought to find as many components of meaning of pry as possible within the context. I determined that the most important components in the sentence were from, using, and the entire clause preceding and including begin. Of those I determined that the most important component was the contextual information provided by from.

In the experiment described above, all the subjects responded with something that complemented from over than any other component of the passage. “Pry, remove, disjoin, detach, and disengage” all take an object and indirect object connected by from, indicating that the indirect object is the source from which the object is being removed, detached, etc. However, I found that prying does not have to imply complete removal, and in the wider context of the passage, the actual removal of the door panel takes places several stages later. Prying does involve partial removal though, and the fact that the removal is only partial is emphasized in the context by the phrase “begin to”, which I will return to later in my analysis.
According to the Cambridge Grammar of English, “from” simply specifies a source of the direct object. The most common verbs that require that a source be specified are those that contain removal or separation as a major component of their meaning. The next most common set of verbs are “protection” verbs, as in “the roof protected us from the rain”. It would be grammatically correct to say “…protect the door panel from the door…”, but in the context this makes no sense. Therefore, as part of the background knowledge for this context there must be information on the implied paths of the object and indirect object. That is, if the source, is on a path toward the object (e.g falling rain) then the verb will be one that negates the fact that the indirect object is the source of the object; i.e, protect, block, shelter. In the present context, door panel and door have no implied path of movement, so we can safely say that the ‘source-of’ definition holds, and that therefore the choice of verb must fit that.
Another important part of this context involves use of the word “begin”. This word is significant in this context for two reasons. First, when connected with “Making sure you have unbolted, unscrewed, and unattached everything…”, it gains the meaning of “then”, where the part preceding it is the antecedent and the part following it is the consequent. The act of “making sure” implies that the agent must check the truth value of its argument and, after confirming it, follow the instructions in the clause that follows. “Begin” also holds a second component of meaning here, which is that its argument is a process that has duration; that is, we are explicitly told that the process starts, which then implies that it must end. However, this action is left open-ended; we are not explicitly told, in this context, about its completion. We therefore don’t know the end result of the verb.
Under this analysis of “begin” two partial components of “pry” are present. The duration component relates to “pry” in that time is a component of effort, which as mentioned previously, is a component of “pry”. Secondly, as also mentioned earlier, “pry” does not imply complete removal; the presence of “begin” serves to emphasize this. If we contrast the phrases “begin to pry” and “begin to remove”, the latter describes what the final state will be even though “begin” indicates that the act is not completed yet. In the full context, “pry” could just as easily be replaced with “remove” and the passage will still make perfect sense. And, as listed above, somebody did suggest “remove” as the meaning for the neologism in the experiment.
The third important segment of this context involves the use of an instrument in the performance of the action. “…using a wide, thin screwdriver” tells us that a component of the verb’s meaning must be a property or a function of this device. At the least, this allows the inference to be made that prying possibly requires the use of an instrument. Knowing the definition of “pry”, we can tell that one of the necessary components is some sort of lever. So, here we have something found in the context that is in the class of a component of the word’s true meaning. Getting the algorithm to make this connection is the only real challenge remaining. The success of the algorithm doing this depends completely on background knowledge and rules, and further requires that the verb algorithm be augmented to search for instruments.
The main challenge is getting the system to infer that the screwdriver is a lever. The most basic requirement, obviously, is that it must have some background knowledge of levers. Additionally, a connection might be made between the properties of the screwdriver, thin and wide, and its ability to provide leverage. There is, however, a big gap in this inference because screwdrivers can have numerous uses, the least of which involve screwing or unscrewing screws (however, the knowledge in the context that everything has been unscrewed might serve to refute the hypothesis that the screwdriver is being used to unscrew anything, although there is nothing in the context to refute the assumption that something is being be screwed).

So, from the analysis of this context, the very least that can be inferred about the word “pry” is that it is a process that takes time, involves the use of a screwdriver (possibly only a wide, thin one), and the object being acted upon is probably being separated from some other object. Compared to the real definition, that it involves effort, usage of a lever, and results in some separation or opening, the inferences made from just this one context provide some fairly close elements of its real meaning.
2. Representating the context
Before converting the context into a propositional network, I translated it into a more suitable form for this purpose. The context, “Making sure you have unbolted, unscrewed, and unattached everything, begin to pry the door panel from the door using a wide, thin screwdriver.” was changed to “If everything is not bolted, not screwed, and not attached, then somebody begins to pry a door panel from a door using a wide, thin screwdriver.” As I mentioned above, “making sure” functions in the same way as an if statement, asserting that the conditions must be met before the acts that follow can take place. Additionally, in order to simplify matters I converted the sentence into more of a narrative rather than an assertion, by replacing the unspecified agent with somebody. And lastly, in order to modularize as many components of meaning as possible, I’ve converted the words unbolted, unscrewed, and unattached to just not plus their non-negated form.

See the appendix for diagrams of the SNePS representation of the context as well as the semantics for any new case frames used.

In addition to the passage, I also had to identify the necessary background knowledge needed to understand the context. After a brief analysis, I came up with the following list:

The agent is human.

Door panels are physical objects.
Doors are physical objects.
The door panel is connected to the door.

Screwdrivers are tools.

Tools are physical objects.

Tools can be held.

Screw drivers can screw.

Screw drivers are long.

Screw drivers are rigid.

Screw drivers can be thin.

Screw drivers can be wide.

Long, rigid, thin objects can be used to stab.

Levers are long, rigid, thin objects.

Processes can begin.

Processes can end.

Processes that begin must end.

Processes that begin and end have duration.

Effort is work times time.

If there is force and displacement, then there is work.

If there is mass and acceleration then there is force.

If there is duration and change in velocity then there is acceleration.

Physical objects have mass.

A lever can exert force.

Door panels do not have any implied path of motion.

Doors do not have any implied path of motion.

If some action is performed on something1 from something2,

and neither something1 nor something2 have any implied path of motion

then something2 is the source of something1.

If something1 is the source of something2

then something2 can be separated from something1.

If something1 can be separated from something2

then there is some action that can be performed to separate something1 from something2.

If something1 is separated from something2 then there is displacement.

Prying is an action.

An agent can remove something1 from something2

An agent can detach something1 from something2

An agent can take something1 from something2

An agent can pull something1 from something2

An agent can receive something1 from something2

…

 (plus miscellaneous knowledge of any additional actions that can be placed in the context of: an agent can ____ something1 from something2)

…

If everything is not screwed, then no screwdriver will be used to screw anything.

If anything is not screwed, then a screwdriver can be used to screw something.
In making this list, I made it a point to include knowledge that people would be likely to have, regardless of whether it interferes with the ability to infer the correct meaning of the target word. Some of the knowledge is purposely meant to cause confusion, because without it, the algorithm would never be proven to work as a curriculum to effectively teach vocabulary. An effective algorithm would need to provide a strategy for weeding out incorrect information, and testing that ability is probably the most important task in the whole of this research project.
3. Encoding Representations and Testing the Verb Algorithm
My primary goal in this phase of the project was to get the verb algorithm to output some coherent information from the SNePS representations of the context. There were two things I did to accomplish this. First, I represented a more simplified version of the context in SNePS along with some background knowledge, and several generic rules, which together would give the most basic output I would expect from a complete representation of the full context. The second thing I did was increase the functionality of the verb algorithm.

The actual context that I represented in a SNePS demo was the further simplified version of the actual context: “If everything is unbolted, unscrewed, and unattached, then someone pries the door panel from the door using a wide, thin screwdriver.” Basically, the only difference is the removal of “begin to”, which complicated the representation by requiring that time be represented. Since the current verb algorithm doesn’t look for arcs relating to time, I decided to omit it from my initial representations. I also re-included the un forms of the items in the if clause, since representing not added complexity to the representation that the algorithm couldn’t handle at this point.

In order to better represent the action taking place in this passage I decided to create an agent-act-instrument case frame, where the act took the form of an action-object-indobj case frame. The latter case frame was already present in the implementation of the verb algorithm, and was used to identify the bitransitive case. The algorithm didn’t, however, have any means of processing instrument usage, so this is where I had to make a few changes.
As it was, the algorithm, written by Justin Del Vecchio during the summer of 2002, returned information solely based on the predicate type of the given verb. It successfully returned a skeleton for transitive, intransitive, and bitransitive cases, where the agent, action, object, and indirect object from the context filled each empty slot. In addition to the three transitive types it successfully parsed, I added the ability for it to detect a forth type, instrument usage, which simply contained an extra field in the output skeleton.
Another change I made was for the algorithm to output all data that filled in each “slot” in the algorithm’s representation of the verb. I also added several more slots, including instrument types and things that enabled the verb to take place.

See the appendix for diagrams of the SNePS representation as well as the annotated demo showing the output of the modified verb algorithm.
4. Immediate Next Steps to Take

Having completed a demo of a simplified version of the context, the first thing to do next would be to represent the full context, along with all rules and background knowledge listed above. This version should incorporate the element of time, so the brunt of this work would involve first designing a suitable representation of “begin to pry”. I would still choose not to represent “making sure…” any other way, nor would I change the way the agent is represented (e.g, by using an I pointer, which would more closely follow the exact context).

In the verb algorithm I would implement some new functions to return any temporal information relating to the target verb. Additionally, and perhaps more importantly, work must be done to have the algorithm identify the prepositional phrase connecting objects and indirect objects, since this contains vital information to the meaning of the verb. I would propose to extend the action-object-indobj case frame to action-object-preposition-indobj. In this way the information can be easily accessed, and it won’t upset the current functionality of the verb algorithm. How the algorithm infers meaning from it, however, will still rest upon the rules and background knowledge entered by the user. Perhaps, two steps ahead from now, it would be beneficial to have a standard set of background knowledge pertaining specifically to the prepositions likely to be found in contexts like this one.
5. Recommended Long-Term Work

Probably the most important thing to do in the long run is to finished the verb algorithm. This would seem to remain quite an open-ended task, as there is very little to go on beyond Ehrlich’s work. Once Del Vecchio’s implementation incorporates Ehrlich’s complete design, it will have the ability to identify whether a verb is transitive, intransitive, bitransitive and/or reflexive, the types of the subject, object, and indirect objects, and causes and/or effects of the verb. I believe there are more things that should be implemented, and I will take this time to suggest a few.

First, I will expand on my description in the previous section of incorporating information from prepositional phrases. As evidenced by my own work on the context above, the preposition from contains a great deal of information specifying the relationship between the object and indirect object. Contrast this with a sentence containing to instead of from, and it is apparent just how important the preposition is to complement the meaning of bitransitive verbs. Once the verb algorithm can process case frames containing prepositional information, someone should construct a standard set of background knowledge on typical prepositions found in any previously analyzed contexts.

My next bit involves more of a general analysis of what the verb algorithm should do. It is clear to me that even when this algorithm will be complete, it will still be completely dependant on background knowledge and rules of inference to do what it does. In terms of a strategy that can be converted into a curriculum, it is quite sparse. I presume the next step that will be taken will be to gather protocols on the acquisition of unknown verbs, in order to study and implement them in the algorithm or in representations of contexts. I, however, believe that protocols, as I’ve seen them in all the literature on CVA, are completely unscientific and hardly provide a fraction of the picture we are looking for. In reviewing protocols we are not looking at the processes that take place in the subject’s mind; we’re looking at what they chose or managed to convey verbally, and from that attempting to induce what the strategies were. Additionally, most of the subjects used for these experiments are anywhere from grade-school children to first year college students, none of whom (as far as I’m aware) are accomplished cognitive scientists and the like. These protocols are also just outputs; they provide no information on the actual mental processes taking place. I have heard, however, of some researchers using eye-tracking equipment in their experiments. This, I believe, is a step in the right direction. A better step would be to have people who are working on the actual strategies undergo the experiment themselves, introspecting as they form their own protocols.

Even from protocols I question how an improved strategy can come about. Instead, here is what I think should be done. First, make up a large corpus of contexts with target words; preferably several dozen for each word. For each context and target word, two things must be done: (1) map out all the components of the meaning of the target word, and (2) analyze the components of meaning of the surrounding context regardless of its relevance to the meaning of the target word. Next, determine from both lists the components of meaning of the target word that can be found in the context, noting in what relationship they stand, syntactically and semantically, to the word, and also noting how all the components in the context that were irrelevant either didn’t or should have been (based on expectations in the context) related to the target word. Additionally, determine the set of words that could logically replace the target word. Note from each the components of meaning in the context, if any, that don’t agree with the substituted word’s meaning, or that correspond to the difference in meaning between the substituted word and the original word. After performing this task on the entire corpus, analyze the data for patterns of relationships between components of the contexts and the target word, and patterns among the manner in which inferences must be made between information in the context and background knowledge. These patterns may then be used to form an effective word-learning strategy that can be tested computationally.
APPENDIX
i. New SNePS case frames created
In addition to the standard SNePS case frames, I have incorporated three new ones into the representation of the context. Their syntax and semantics are defined as follows.
	Syntax
	Semantics

	[image: image1.png]agent instrument
AR

¥,

x z

	[[m]] is the proposition such that [[X]] performs [[Y]] using [[Z]]

	[image: image2.png]SR
action | indobj
A l N

¥

b < z

	[[m]] is the proposition such that [[X]] occurs on [[Y]] where [[V]] is the preposition denoting the relationship of the verb between [[Y]] and [[Z]]

	[image: image3.png]abject

e

function

N

	[[m]] is the proposition such that [[X]] has the function [[Y]]

ii. SNePS diagrams
Note: there may be some minor differences between the diagrams and the code in the annotated demo. For the most part, however, the diagrams follow the same structure as the code.
[image: image4.png]° lex
&b
unattached

lex 13

| unsorewed
unbolted

cq

The diagrams are divided into three segments. The one above represents the sentence fragment “If everything is unbolted, unscrewed, and unattached, then…”. One oddity of this representation is that the universally quantified variable is not linked in any way to the consequent. This is because, in the semantics of the wider context, everything refers to objects obstructing the agent’s path to the door panel. If the wider context were to be represented, then further restrictions would need to be placed on this variable. In the context of this one sentence, however, the specific items that everything refers to is not important.
[image: image5.png]M3 agent ﬂ.

act from

door

@)

action

abject @ member

door panel <— 1eX

This diagram represents the fragment, “…somebody pries the door panel from the door…”. It begins with the consequent of the previous diagram (node M3!), which states that an agent performs an act with an instrument. The act is the proposition that the action, pry, is performed on the object, a member of the class of door panels, with the preposition, from, and the indirect object, a member of the class of doors.
[image: image6.png]‘member

®9)

abject

abject
(1) en
(B6)

function
function function k 5
&)
lex lex stab
¥ v

lever

This diagram represents the final fragment, “…using a wide, thin screwdriver.”. Most of this portion of the representation contains background knowledge on the instrument, a member of the class of screwdrivers. The specific instance of screwdriver used in the context has the properties of being wide and thin. The class of screwdrivers have the function of being able to screw, stab, provide leverage, and, as a result of knowledge in the context, pry. Additionally, screwdrivers are a subclass of tool.
iii. Annotated Demo

Script started on Tue Apr 22 23:57:53 2003

yeager {~/CVA} > mlispInternational Allegro CL Enterprise Edition

6.2 [Solaris] (Jun 26, 2002 11:20)

Copyright (C) 1985-2002, Franz Inc., Berkeley, CA, USA. All Rights Reserved.

This development copy of Allegro CL is licensed to:

 [4549] SUNY/Buffalo, N. Campus

;; Optimization settings: safety 1, space 1, speed 1, debug 2.

;; For a complete description of all compiler switches given the

;; current optimization settings evaluate (explain-compiler-settings).

;;---

;; Current reader case mode: :case-sensitive-lower

cl-user(1): :ld /projects/snwiz/bin/sneps

; Loading /projects/snwiz/bin/sneps.lisp

Loading system SNePS...10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SNePS-2.6 [PL:0a 2002/09/30 22:37:46] loaded.

Type `(sneps)' or `(snepslog)' to get started.

cl-user(2): (sneps)

 Welcome to SNePS-2.6 [PL:0a 2002/09/30 22:37:46]

Copyright (C) 1984--2002 by Research Foundation of

State University of New York. SNePS comes with ABSOLUTELY NO WARRANTY!

Type `(copyright)' for detailed copyright information.

Type `(demo)' for a list of example applications.

 4/22/2003 23:58:45

* (demo "pry.demo")

File /home/unmdue/clbecker/CVA/pry.demo is now the source of input.

 CPU time : 0.00

* ;;Chris Becker

;;CVA Seminar

;;April 14, 2003

;;Verb Algorithm Demonstration

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;

(resetnet t)

Net reset

 CPU time : 0.01

*

;;;load relations

(intext "rels")

File rels is now the source of input.

 CPU time : 0.00

*
act is already defined.

action is already defined.

effect is already defined.

object1 is already defined.

object2 is already defined.

(a1 a2 a3 a4 act action after agent antonym before cause class

 direction effect equiv etime from in indobj instrument into lex

 location kn_cat manner member members mode object objects object1

 objects1 object2 on onto part place possessor proper-name property

 purpose rel skf stime subclass superclass synonym time to whole

 possesor)

 CPU time : 0.05

*

End of file rels

 CPU time : 0.07

*

;;;load paths

(intext "paths")

File paths is now the source of input.

 CPU time : 0.01

*

before implied by the path (compose before

 (kstar (compose after- ! before)))

before- implied by the path (compose (kstar (compose before- ! after))

 before-)

 CPU time : 0.00

*

after implied by the path (compose after

 (kstar (compose before- ! after)))

after- implied by the path (compose (kstar (compose after- ! before))

 after-)

 CPU time : 0.00

*

sub1 implied by the path (compose object1- superclass- ! subclass

 superclass- ! subclass)

sub1- implied by the path (compose subclass- ! superclass subclass- !

 superclass object1)

 CPU time : 0.00

*

super1 implied by the path (compose superclass subclass- ! superclass

 object1- ! object2)

super1- implied by the path (compose object2- ! object1 superclass- !

 subclass superclass-)

 CPU time : 0.00

*

superclass implied by the path (or superclass super1)

superclass- implied by the path (or superclass- super1-)

 CPU time : 0.00

*

End of file paths

 CPU time : 0.09

*

;;;load editted verb algorithm

^(

--> load "verb_alg_edit")

; Loading /home/unmdue/clbecker/CVA/verb_alg_edit.lisp

t

 CPU time : 0.23

*

START OF DEMO

;;;

;;

;;

;; 1. Representation of:

;;

;; "If everything is unbolted, unscrewed, and unattached,

;; someone pries the door panel from the door using a screwdriver"

;;

;;

;;;

;;1.1 create a door panel

;;;

(describe (assert member #dp class (build lex "door panel")))

(m2! (class (m1 (lex door panel))) (member b1))

(m2!)

 CPU time : 0.00

*

;;1.2 create a door

;;;

(describe (assert member #door class (build lex "door")))

(m4! (class (m3 (lex door))) (member b2))

(m4!)

 CPU time : 0.01

*

;;1.2.1

;;
doors and doorpanels are physical objects

;;;

(describe (assert

subclass ((build lex "door") (build lex "door panel"))

superclass (build lex "physical object")))

(m6! (subclass (m3 (lex door)) (m1 (lex door panel)))

 (superclass (m5 (lex physical object))))

(m6!)

 CPU time : 0.01

*

;;1.3

;;
#sd is a screwdriver

;;;

(describe (assert member #sd class (build lex "screwdriver")= classSD))

(m8! (class (m7 (lex screwdriver))) (member b3))

(m8!)

 CPU time : 0.00

*

;;1.3.1

;;
The screwdriver is thin and wide

;;;

(describe (assert object *sd property ((build lex "wide") (build lex "thin"))))

(m11! (object b3) (property (m10 (lex thin)) (m9 (lex wide))))

(m11!)

 CPU time : 0.00

*

;;1.3.2

;;
Screwdrivers are tools

;;;

(describe (assert subclass *classSD superclass (build lex "tool")))

(m13! (subclass (m7 (lex screwdriver))) (superclass (m12 (lex tool))))

(m13!)

 CPU time : 0.01

*

;;1.3.3

;;
Screwdrivers can be used as levers, to screw, or to stab

;;;

(describe (assert object (build lex "screwdriver") property (build lex "stab")))

(m15! (object (m7 (lex screwdriver))) (property (m14 (lex stab))))

(m15!)

 CPU time : 0.00

*

(describe (assert object (build lex "screwdriver") property (build lex "screw")))

(m17! (object (m7 (lex screwdriver))) (property (m16 (lex screw))))

(m17!)

 CPU time : 0.01

*

(describe (assert object (build lex "screwdriver") property (build lex "lever")))

(m19! (object (m7 (lex screwdriver))) (property (m18 (lex lever))))

(m19!)

 CPU time : 0.01

*

;;1.4

;;
There is a human agent

;;;

(describe (assert member #agnt class (build lex "human")))

(m21! (class (m20 (lex human))) (member b4))

(m21!)

 CPU time : 0.00

*

;;1.5

;;
The agent pries the doorpanel from the door using a screwdriver

;;;

(describe (assert agent *agnt

 act (build action (build lex "pry")

object *dp

indobj *door)= actPry

 instrument *sd

)= priesDP)

(m24! (act (m23 (action (m22 (lex pry))) (indobj b2) (object b1)))

 (agent b4) (instrument b3))

(m24!)

 CPU time : 0.00

*

;;1.6

;;
for all r, if r is not bolted, screwed, or attached,

;;

then prying will take place,
;;
(this rule is replaced by the following rule)

;;;

;;(describe (assert forall $r

;;
ant (build min 0 max 0

;;

arg ((build object *r property (build lex "bolted"))

;;

 (build object *r property (build lex "screwed"))

;;

 (build object *r property (build lex "attached"))))

;;
cq *priesDP

;;))

;;;

;;1.6.1

;;
for all r, if r is unbolted, unscrewed, or unattached,

;;

then prying will take place,

;;;

(describe (assert forall $r

&ant(
(build object *r property (build lex "unbolted"))

(build object *r property (build lex "unscrewed"))

(build object *r property (build lex "unattached")))

cq *priesDP))

(m28! (forall v1)

 (&ant (p3 (object v1) (property (m27 (lex unattached))))

 (p2 (object v1) (property (m26 (lex unscrewed))))

 (p1 (object v1) (property (m25 (lex unbolted)))))

 (cq

 (m24! (act (m23 (action (m22 (lex pry))) (indobj b2) (object b1)))

 (agent b4) (instrument b3))))

(m28!)

 CPU time : 0.01

*

;;1.7

;;

cause: "Everything being disconnected"

;;

effect: prying takes place

;;

;;
(* for testing cause-effect case frame on the algorithm

;;
where something causes the action to take place)

;;;

(describe (assert cause (build lex "Everything being disconnected")

 effect *priesDP))

(m30! (cause (m29 (lex Everything being disconnected)))

 (effect

 (m24! (act (m23 (action (m22 (lex pry))) (indobj b2) (object b1)))

 (agent b4) (instrument b3))))

(m30!)

 CPU time : 0.00

*

;;1.7.1

;;

cause: prying takes place

;;

effect: something is removed

;;

;;
(* for testing cause-effect case frame on the algorithm

;;
where the action causes something to take place)

;;;

(describe (assert cause *priesDP

 effect (build lex "Something is removed")))

(m32!

 (cause

 (m24! (act (m23 (action (m22 (lex pry))) (indobj b2) (object b1)))

 (agent b4) (instrument b3)))

 (effect (m31 (lex Something is removed))))

(m32!)

 CPU time : 0.01

*

;;1.8

;;
 Rule: if p undergoes action z FROM q, then q is the source of p

;;

;;;

(describe (assert forall ($p $q $z)

ant (build action *z

object *p

indobj *q)

cq (build

object1 *p

rel (build lex "the source of")

object2 *q)

))

(m34! (forall v4 v3 v2) (ant (p4 (action v4) (indobj v3) (object v2)))

 (cq (p5 (object1 v2) (object2 v3) (rel (m33 (lex the source of))))))

(m34!)

 CPU time : 0.02

*

;;1.8.1

;;
Rule: if p is the source of q, then q can be removed from p

;;

;;;

(describe (assert forall (*p *q)

ant (build

object1 *p

rel (build lex "the source of")

object2 *q)

cq (build

object1 *p

rel (build lex "can be removed from")

object2 *q)

))

(m36! (forall v3 v2)

 (ant (p5 (object1 v2) (object2 v3) (rel (m33 (lex the source of)))))

 (cq

 (p6 (object1 v2) (object2 v3) (rel (m35 (lex can be removed from))))))

(m36!)

 CPU time : 0.01

*

;;1.8.2

;;
if prying is performed on an object p in relation to indobj q

;;
AND p can be removed from q, then (possibly) the action 'pry' will cause

;;
p to be removed from q.

;;

;;
(to simplify matters, the consequent states that the action is

;;
 then a synonym of "remove"

;;

(describe (assert forall (*p *q)

ant (min 2 max 2

arg((build

action (build lex "pry")

object *p

indobj *q)

 (build

object1 *p

rel (build lex "can be removed from")

object2 *q))

)

cq (build synonym (build lex "pry") synonym (build lex "remove"))

))

(m39! (forall v3 v2)

 (ant (p7 (action (m22 (lex pry))) (indobj v3) (object v2)) arg max 2

 min

 (p6 (object1 v2) (object2 v3) (rel (m35 (lex can be removed from)))))

 (cq (m38 (synonym (m37 (lex remove)) (m22)))))

(m39!)

 CPU time : 0.02

*

;;Define it!

;;;;;;;;;;;;;;;;;;;;

^(

--> defineVerb 'pry 0)

 ************(Meaningless Information)************

 predicateType: instrument

 agent: (b4)

 act: pry

 object: (b1)

 indirectObject: (b2)

 instrument: (b3)

These fields contain the actual node indices that they represent. A human readable form of the data they represent can be found below.
 ************(Meaningful Information)*************

 * object types acted upon:

 (physical object door panel)

 * indirect object types acted in relation to/from:

 (physical object door)

 * Types and properties of instruments that can be used to pry:

 (stab screw lever thin wide tool screwdriver)

 * Things that enable the action to take place:

 ((Everything being disconnected) (m29) nil nil (p3 p2 p1)

 (unattached unscrewed unbolted))

 * synonyms of pry:

 (remove pry)

 effects of the action taking place :

 (m31 Something is removed)

 ****************(Useless)****************

 agentHierarchyList:

 nil

 prepositionList: (lists 'attached prepositions' -nothing implemented)

 nil

 superclassHierarchy (i.e, superclasses of the verb):

 nil

 consequences (i.e, searches for ant- cq case frames, the the antecedent is the action): nil

These fields either represent functions that were not implemented in the algorithm or possible components of the context that were not found in CASSIE’s memory.
 ********************(END)*****************

Since this data output is basically a dump of all information the algorithm has gathered about the target verb, it prints out the data for each instance of the verb. In this case, it identified two instances; one as it searched for instrument cases, the other as it searched for bitransitivity. In the completed verb algorithm, all of this data should be compiled into one easily readable output.

 ************(Meaningless Information)************

 predicateType: bitransitive

 agent: (b4)

 act: pry

 object: (b1)

 indirectObject: (b2)

 instrument: (b3)

 ************(Meaningful Information)*************

 * object types acted upon:

 (physical object door panel)

 * indirect object types acted in relation to/from:

 (physical object door)

 * Types and properties of instruments that can be used to pry:

 (stab screw lever thin wide tool screwdriver)

 * Things that enable the action to take place:

 ((Everything being disconnected) (m29) nil nil (p3 p2 p1)

 (unattached unscrewed unbolted))

 * synonyms of pry:

 (remove pry)

 effects of the action taking place :

 (m31 Something is removed)

 ****************(Useless)****************

 agentHierarchyList:

 nil

 prepositionList: (lists 'attached prepositions' -nothing implemented)

 nil

 superclassHierarchy (i.e, superclasses of the verb):

 nil

 consequences (i.e, searches for ant- cq case frames, the the antecedent is the action): nil

 ********************(END)*****************

What follows here is what Del Vecchio had the algorithm print out. Note however, that since I added the ability for the algorithm to find instrument usage by the agent, that data is incorporated here.
"You want me to define the verb 'pry'.

Predicate stucture of the sentences using the verb: pry

The most common type of sentences I know of that use 'pry' are of the form:

 'A something can pry by using something.'

 'A something can pry something to/from something.'

These are simply canned phrases outputted by the algorithm indicating the predicate types it found. Since I incorporated instrument usage as a predicate type, it too has a canned phrase included.
No superclasses were found for this verb.

 Sorting from the most common predicate case to the least common here is what I know. I will first

attempt to unify the components of the sentences that use the verb giving a generalizaiton based on my

background knowledge:

A human can pry.

A human can pry a physical object to/from a physical object.

Now, looking from the bottom up I want to get a sense of the categories that most of the agents, objects

and indirect objects belong to. This is different from looking for the most unified case. Instead I am

looking for the classes that contain approximately half of the agents, objects and indirect objects.

This is an attempt at generalization but from another approach.

A human can pry.

A human can pry a door panel to/from a door using a screwdriver.

Here, the fact that an instrument is used is specified by the algorithm, as a result of my own tinkering with it.
"

 CPU time : 0.25

*

End of /home/unmdue/clbecker/CVA/pry.demo demonstration.

iv. Online Resources
All work I did on the project can be found at:

http://www.acsu.buffalo.edu/~clbecker/cva_spring2003.html

v. Bibliography

[1] Del Vecchio, Justin, (2002) “A Contextual Vocabulary Acquisition Algorithm for
Verbs Implemented in SNePS.”
[2] (Rapaport, William J., Kibby, Michael W. (2001) “Contextual Vocabulary
Acquisition: Development of a Computational Theory and Educational
Curriculum”.
[3] Huddleston, Rodney D., Pullum, Geoffrey K, Cambridge Grammar of English.
Cambridge University Press, 2002.
[4] How to remove your Chrysler Imperial’s door panels,
http://www.imperialclub.com/repair/interior/panel.htm, 2003.
PAGE
1

