Chess and "Natural Laws"

How might human decision regularities appear in other domains?

Kenneth W. Regan ${ }^{1}$
University at Buffalo (SUNY)

UB CSE 501, 11/13/2018
${ }^{1}$ Joint work with Tamal Tanu Biswas and with grateful acknowledgment to UB's Center for Computational Research (CCR)

Chess and "Natural Laws"

How might human decision regularities appear in other domains?

> Kenneth W. Regan ${ }^{1}$ University at Buffalo (SUNY)

UB CSE 501, 11/13/2018 Password: Vicki Hanson

${ }^{1}$ Joint work with Tamal Tanu Biswas and with grateful acknowledgment to UB's Center for Computational Research (CCR)
${ }^{1}$ Joint work with Tamal Tanu Biswas and with grateful acknowledgment to UB's Center for Computational Research (CCR)

Chess and Natural Laws

- Logistic Laws. https://rjlipton.wordpress.com/2012/03/30/when-is-a-law-natural/

Chess and Natural Laws

- Logistic Laws. https://rjlipton.wordpress.com/2012/03/30/when-is-a-law-natural/
- The Win-Expectation Curve:
https://rjlipton.wordpress.com/2016/12/08/magnus-and-the-turkey-grinder/

Chess and Natural Laws

- Logistic Laws. https://rjlipton.wordpress.com/2012/03/30/when-is-a-law-natural/
- The Win-Expectation Curve:
https://rjlipton.wordpress.com/2016/12/08/magnus-and-the-turkey-grinder/
- Relative Perception of Value: https://rjlipton.wordpress.com/2016/11/30/when-data-servesturkey/

Chess and Natural Laws

- Logistic Laws. https://rjlipton.wordpress.com/2012/03/30/when-is-a-law-natural/
- The Win-Expectation Curve:
https://rjlipton.wordpress.com/2016/12/08/magnus-and-the-turkey-grinder/
- Relative Perception of Value: https://rjlipton.wordpress.com/2016/11/30/when-data-servesturkey/
- Predictive Analytics: Inferring the probabilities p_{j} of various events j:
- Risk or damage events.
- Voter j choosing candidate i.
- Student i choosing answer j.
- Player choosing move m_{j} at chess.

Chess and Tests

The \qquad of drug-resistant strains of bacteria and viruses has \qquad researchers' hopes that permanent victories against many diseases have been achieved.vigor . . corroborated
(b) feebleness . . dashedproliferation.. blighteddestruction. . disputeddisappearance . . frustrated (source: itunes.apple.com)

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen.

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen. First define numbers $u_{j}=g(X, S)_{j}$ often thought of as "utilities."

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen. First define numbers $u_{j}=g(X, S)_{j}$ often thought of as "utilities." Then the multinomial logit (MNL) model represents the probabilities via

$$
\log \left(p_{j}\right)=\alpha+\beta u_{j}
$$

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen. First define numbers $u_{j}=g(X, S)_{j}$ often thought of as "utilities." Then the multinomial logit (MNL) model represents the probabilities via

$$
\log \left(p_{j}\right)=\alpha+\beta u_{j} .
$$

The quantities

$$
L_{j}=e^{\alpha+\beta u_{j}}
$$

are called likelihoods.

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen. First define numbers $u_{j}=g(X, S)_{j}$ often thought of as "utilities." Then the multinomial logit (MNL) model represents the probabilities via

$$
\log \left(p_{j}\right)=\alpha+\beta u_{j}
$$

The quantities

$$
L_{j}=e^{\alpha+\beta u_{j}}
$$

are called likelihoods. Then the probabilities are obtained simply by normalizing them:

$$
p_{j}=\frac{L_{j}}{\sum_{j^{\prime}=1}^{J} L_{j^{\prime}}}={ }_{d e f} \operatorname{softmax}\left(\beta u_{1}, \ldots, \beta u_{J}\right)
$$

Multinomial Logit Model

Given options m_{1}, \ldots, m_{J} and information $X=X_{1}, \ldots, X_{J}$ about all of them, and characteristics S of a person choosing among them, we want to project the probabilities p_{j} of m_{j} being chosen. First define numbers $u_{j}=g(X, S)_{j}$ often thought of as "utilities." Then the multinomial logit (MNL) model represents the probabilities via

$$
\log \left(p_{j}\right)=\alpha+\beta u_{j}
$$

The quantities

$$
L_{j}=e^{\alpha+\beta u_{j}}
$$

are called likelihoods. Then the probabilities are obtained simply by normalizing them:

$$
p_{j}=\frac{L_{j}}{\sum_{j^{\prime}=1}^{J} L_{j^{\prime}}}={ }_{d e f} \operatorname{softmax}\left(\beta u_{1}, \ldots, \beta u_{J}\right)
$$

Finally obtain β by fitting; e^{α} becomes a constant of proportionality so that the p_{j} sum to 1 .

Chess Decision Setting

Chess Decision Setting

- One player P with characteristics S.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).
- Raw utilities $u_{j}=\delta\left(v_{1}, v_{j}\right)$ by some difference-in-value function δ in either "pawn units" or "chance of winning" units.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).
- Raw utilities $u_{j}=\delta\left(v_{1}, v_{j}\right)$ by some difference-in-value function δ in either "pawn units" or "chance of winning" units.
- Parameter β treated as a divisor s of those units, i.e., $\beta=\frac{1}{s}$.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).
- Raw utilities $u_{j}=\delta\left(v_{1}, v_{j}\right)$ by some difference-in-value function δ in either "pawn units" or "chance of winning" units.
- Parameter β treated as a divisor s of those units, i.e., $\beta=\frac{1}{s}$.
- Second parameter c allows nonlinearity: $\delta\left(v_{1}, v_{i}\right)^{c}$. (First $c=1$.)

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).
- Raw utilities $u_{j}=\delta\left(v_{1}, v_{j}\right)$ by some difference-in-value function δ in either "pawn units" or "chance of winning" units.
- Parameter β treated as a divisor s of those units, i.e., $\beta=\frac{1}{s}$.
- Second parameter c allows nonlinearity: $\delta\left(v_{1}, v_{i}\right)^{c}$. (First $c=1$.)
- MNL model (called "Shares" by me) then equivalent to:

$$
\log \left(p_{j}\right)=U_{j}=\left(\frac{\delta\left(v_{1}, v_{j}\right)}{s}\right)^{c}
$$

and we go as before.

Chess Decision Setting

- One player P with characteristics S.
- Multiple game turns t, each has possible moves $m_{t, j}$.
- For a given turn (i.e., chess position) t, legal moves are $m_{1}, \ldots, m_{j}, \ldots, m_{J}$ (index t understood).
- Moves indexed by values v_{1}, \ldots, v_{J} in nonincreasing order.
- Values determined by strong chess programs. Not apprehended fully by P (bounded rationality, fallible agents).
- Raw utilities $u_{j}=\delta\left(v_{1}, v_{j}\right)$ by some difference-in-value function δ in either "pawn units" or "chance of winning" units.
- Parameter β treated as a divisor s of those units, i.e., $\beta=\frac{1}{s}$.
- Second parameter c allows nonlinearity: $\delta\left(v_{1}, v_{i}\right)^{c}$. (First $c=1$.)
- MNL model (called "Shares" by me) then equivalent to:

$$
\log \left(p_{j}\right)=U_{j}=\left(\frac{\delta\left(v_{1}, v_{j}\right)}{s}\right)^{c}
$$

and we go as before. Taking $\log \left(p_{j}\right)-\log \left(p_{1}\right)$ on LHS gives same model.

Alternative "Loglog-Linear" Model

Represent a difference in double logs of probabilities on left-hand side instead.

Alternative "Loglog-Linear" Model

Represent a difference in double logs of probabilities on left-hand side instead. Now nice to keep signs nonnegative by inverting probabilities.

$$
\log \log \left(1 / p_{j}\right)-\log \log \left(1 / p_{1}\right)=\beta U_{j}
$$

Alternative "Loglog-Linear" Model

Represent a difference in double logs of probabilities on left-hand side instead. Now nice to keep signs nonnegative by inverting probabilities.

$$
\log \log \left(1 / p_{j}\right)-\log \log \left(1 / p_{1}\right)=\beta U_{j}
$$

The β can be absorbed as $\left(\frac{1}{s}\right)^{c}$ even when $c \neq 1$ so my nonlinearized utility still fits the setting.

Alternative "Loglog-Linear" Model

Represent a difference in double logs of probabilities on left-hand side instead. Now nice to keep signs nonnegative by inverting probabilities.

$$
\log \log \left(1 / p_{j}\right)-\log \log \left(1 / p_{1}\right)=\beta U_{j}
$$

The β can be absorbed as $\left(\frac{1}{s}\right)^{c}$ even when $c \neq 1$ so my nonlinearized utility still fits the setting. Then abstractly:

$$
\begin{aligned}
\frac{\log \left(1 / p_{j}\right)}{\log \left(1 / p_{1}\right)} & =\exp \left(\beta U_{j}\right)=_{\text {def }} L_{j} \\
\log \left(1 / p_{j}\right) & =\log \left(1 / p_{1}\right) L_{j} \\
\log \left(p_{j}\right) & =\log \left(p_{1}\right) L_{j} \\
p_{j} & =p_{1}^{L_{j}}
\end{aligned}
$$

Analogy to power decay, Zipf's Law... Proceed to demo.

