Chess and Informatics

Kenneth W. Regan
University at Buffalo (SUNY)

CISIM 2017 Keynote
Chess and CS...

Chess: “The Drosophila of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)

Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chess” [sic], 2006)

From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as “me too” computer chess. Main area = computational complexity, in which I also partner Richard Lipton’s popular blog.

Then came the cheating accusations at the 2006 world championship match...

Now: chess gives a window on CS advances and data-science problems.
Chess and CS...

- Chess: “The *Drosophila* of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
Chess and CS...

- Chess: “The *Drosophila* of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.”
Chess and CS...

- Chess: “The Drosophila of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmess” [sic], 2006)
Chess and CS...

- Chess: “The Drosophila of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmness” [sic], 2006)
 - From 1986 to 2006, I followed this advice.
Chess and CS...

- Chess: “The Drosophila of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmess” [sic], 2006)
 - From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as “me too” computer chess.
Chess and CS...

- Chess: “The Drosophila of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmess” [sic], 2006)
 - From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as “me too” computer chess. Main area = computational complexity, in which I also partner Richard Lipton’s popular blog.
Chess and CS...

- Chess: “The *Drosophila* of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)

- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmess” [sic], 2006)

 - From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as “me too” computer chess. Main area = computational complexity, in which I also partner Richard Lipton’s popular blog.

- Then came the cheating accusations at the 2006 world championship match...
Chess and CS...

- Chess: “The *Drosophila* of AI” (Herbert Simon, John McCarthy, after Alexander Kronod)
- Advice for AI grad students 10 years ago: “Don’t do chess.” (I’ve lost my source but see Daniel Dennett, “Higher-order Truths About Chmness” [sic], 2006)
 - From 1986 to 2006, I followed this advice. Turned down many requests for what I saw as “me too” computer chess. Main area = computational complexity, in which I also partner Richard Lipton’s popular blog.
 - Then came the cheating accusations at the 2006 world championship match...
- Now: chess gives a window on CS advances and data-science problems.
External History of Computer Chess: Part One

1950s: Papers by Turing, Shannon, Newell-Simon-Shaw, others...,
programs by Prinz, Bernstein, Russian BESM group.

1960s: First programs able to defeat club-level players.

1968: David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.

1978: Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.

1981: Cray Blitz (software by Robert Hyatt) achieves first "Master" rating, followed soon by Ken Thompson's Belle.

1988: HiTech by Hans Berliner of CMU defeats grandmaster (GM) Arnold Denker in match; Deep Thought by another CMU group defeats GM and former world championship candidate Bent Larsen in a tournament game.

1997: Deep Blue defeats Garry Kasparov 3.5–2.5 in match.
**1950s: **Papers by Turing, Shannon, Newell-Simon-Shaw, others... , programs by Prinz, Bernstein, Russian BESM group.
External History of Computer Chess: Part One

- **1950s**: Papers by Turing, Shannon, Newell-Simon-Shaw, others..., programs by Prinz, Bernstein, Russian BESM group.
- **1960s**: First programs able to defeat club-level players.
External History of Computer Chess: Part One

- **1950s**: Papers by Turing, Shannon, Newell-Simon-Shaw, others... programs by Prinz, Bernstein, Russian BESM group.
- **1960s**: First programs able to defeat club-level players.
- **1968**: David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.
- **1978**: Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.
- **1981**: Cray Blitz (software by Robert Hyatt) achieves first "Master" rating, followed soon by Ken Thompson's Belle.
- **1988**: HiTech by Hans Berliner of CMU defeats grandmaster (GM) Arnold Denker in match; Deep Thought by another CMU group defeats GM and former world championship candidate Bent Larsen in a tournament game.
- **1997**: Deep Blue defeats Garry Kasparov 3.5–2.5 in match.
External History of Computer Chess: Part One

- **1950s**: Papers by Turing, Shannon, Newell-Simon-Shaw, others..., programs by Prinz, Bernstein, Russian BESM group.
- **1960s**: First programs able to defeat club-level players.
- **1968**: David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.
- **1978**: Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.
External History of Computer Chess: Part One

- **1950s**: Papers by Turing, Shannon, Newell-Simon-Shaw, others..., programs by Prinz, Bernstein, Russian BESM group.
- **1960s**: First programs able to defeat club-level players.
- **1968**: David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.
- **1978**: Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.
- **1981**: Cray Blitz (software by Robert Hyatt) achieves first “Master” rating, followed soon by Ken Thompson’s Belle.
External History of Computer Chess: Part One

- **1950s**: Papers by Turing, Shannon, Newell-Simon-Shaw, others... programs by Prinz, Bernstein, Russian BESM group.
- **1960s**: First programs able to defeat club-level players.
- **1968**: David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.
- **1978**: Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.
- **1981**: Cray Blitz (software by Robert Hyatt) achieves first “Master” rating, followed soon by Ken Thompson’s Belle.
- **1988**: HiTech by Hans Berliner of CMU defeats grandmaster (GM) Arnold Denker in match; Deep Thought by another CMU group defeats GM and former world championship candidate Bent Larsen in a tournament game.

Deep Blue defeats Garry Kasparov 3.5–2.5 in match.
External History of Computer Chess: Part One

- **1950s:** Papers by Turing, Shannon, Newell-Simon-Shaw, others..., programs by Prinz, Bernstein, Russian BESM group.

- **1960s:** First programs able to defeat club-level players.

- **1968:** David Levy, International Master (my rank) bet McCarthy and Newell $1,000 that no computer would defeat him by 1978.

- **1978:** Levy defeats Chess 4.7 by 4.5–1.5 to win bet, but computer wins first ever game over master.

- **1981:** Cray Blitz (software by Robert Hyatt) achieves first “Master” rating, followed soon by Ken Thompson’s Belle.

- **1988:** HiTech by Hans Berliner of CMU defeats grandmaster (GM) Arnold Denker in match; Deep Thought by another CMU group defeats GM and former world championship candidate Bent Larsen in a tournament game.

- **1997:** Deep Blue defeats Garry Kasparov 3.5–2.5 in match.
Chess was a microcosm of human thinking.

"Chess Knowledge" approach persisted into the 1970s.

"Brute Force" was considered dominant by the 1980s.

Hsu et al. (1990) noted the "emulation" and "engineering" camps.

"It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought—it reaches the same ends by different means."

Forecast that a basic search depth of 14–15 plies from raw speed of 1 billion positions per second would give an Elo Rating of 3400.

Real story, in my humble opinion, is benchmarking: How much measurable problem-solving power can we get out of a machine?
Chess was microcosm of human thinking.
Chess was microcosm of human thinking.

“Chess Knowledge” approach persisted into 1970s.
Chess was microcosm of human thinking.

“Chess Knowledge” approach persisted into 1970s.

“Brute Force” considered dominant by 1980.
Internal Story of Computer Chess

- Chess was microcosm of human thinking.
- “Chess Knowledge” approach persisted into 1970s.
- Hsu et al. (1990): “emulation” and “engineering” camps.

It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought—it reaches the same ends by different means.

Forecast that a basic search depth of 14–15 plies from raw speed of 1 billion positions per second would give an Elo Rating of 3400. Real story IMHO is benchmarking: How much measurable problem-solving power can we get out of a machine?
Chess was microcosm of human thinking.

“Chess Knowledge” approach persisted into 1970s.

“Brute Force” considered dominant by 1980.

Hsu et al. (1990): “emulation” and “engineering” camps.

“It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought—it reaches the same ends by different means.”
Internal Story of Computer Chess

- Chess was microcosm of human thinking.
- “Chess Knowledge” approach persisted into 1970s.
- Hsu et al. (1990): “emulation” and “engineering” camps.

“It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought—it reaches the same ends by different means.”

- Forecast that a basic search depth of 14–15 plies from raw speed of 1 billion positions per second would give an Elo Rating of 3400.
Chess was microcosm of human thinking.

“Chess Knowledge” approach persisted into 1970s.

“Brute Force” considered dominant by 1980.

Hsu et al. (1990): “emulation” and “engineering” camps.

“It may seem strange that our machine can incorporate relatively little knowledge of chess and yet outplay excellent human players. Yet one must remember that the computer does not mimic human thought—it reaches the same ends by different means.”

Forecast that a basic search depth of 14–15 plies from raw speed of 1 billion positions per second would give an Elo Rating of 3400.

Real story IMHO is benchmarking: How much measurable problem-solving power can we get out of a machine?
Benchmarks and Ratings

Famous benchmarks:
Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS via LINPACK, IOzone, ...

Other benchmarks across business suites, embedded computing functions...

Whole-system benchmarking is harder.

Do we include human software acumen?

Ratings ground performance in human competitive arenas.

Personnel evaluation tests and other psychometrics are partial like course grades...

Elo Ratings originated for chess by Arpad Elo in the US in the 1950s.
Adopted by the World Chess Federation (FIDE) from 1971 on.
Used by some other sporting bodies.
Embraced by the politics and sports prediction website FiveThirtyEight.
Benchmarks and Ratings

- Famous benchmarks: Whetstones
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone,*...
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone,*...
- Other benchmarks across business suites, embedded computing functions...
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones*, mega/giga/tera/peta-FLOPS via LINPACK, IOzone,…
- Other benchmarks across business suites, embedded computing functions. . .
- Whole-system benchmarking is harder.
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones*, mega/giga/tera/peta-FLOPS via LINPACK, *IOzone*,...
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?

Elo Ratings originated for chess by Arpad Elo in the US in the 1950s. Adopted by the World Chess Federation (FIDE) from 1971 on. Used by some other sporting bodies. Embraced by the politics and sports prediction website *FiveThirtyEight*.

Chess and Informatics
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones*, *mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone*,...
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone,*…
- Other benchmarks across business suites, embedded computing functions,…
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
- Personnel evaluation tests and other *psychometrics* are partial like course grades,…
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS* via LINPACK, IOzone,…
- Other benchmarks across business suites, embedded computing functions…
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
- Personnel evaluation tests and other *psychometrics* are partial like course grades…
- *Elo Ratings* originated for chess by Arpad Elo in the US in the 1950s.
Benchmarks and Ratings

- Famous benchmarks: *Whetstones*, *Dhrystones*, *mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone*,...
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
- Personnel evaluation tests and other *psychometrics* are partial like course grades...
- *Elo Ratings* originated for chess by Arpad Elo in the US in the 1950s.
- Adopted by the World Chess Federation (FIDE) from 1971 on.
Benchmarks and Ratings

- Famous benchmarks: *Whetstones, Dhrystones, mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone,...*
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
- Personnel evaluation tests and other *psychometrics* are partial like course grades...
- **Elo Ratings** originated for chess by Arpad Elo in the US in the 1950s.
- Adopted by the World Chess Federation (FIDE) from 1971 on.
- Used by some other sporting bodies.
Benchmarks and Ratings

- Famous benchmarks: *Whetstones*, *Dhrystones*, *mega/giga/tera/peta-FLOPS* via LINPACK, *IOzone*,...
- Other benchmarks across business suites, embedded computing functions...
- Whole-system benchmarking is harder.
- Do we include human software acumen?
- *Ratings* ground performance in human competitive arenas.
- Personnel evaluation tests and other *psychometrics* are partial like course grades...
- **Elo Ratings** originated for chess by Arpad Elo in the US in the 1950s.
- Adopted by the World Chess Federation (FIDE) from 1971 on.
- Used by some other sporting bodies.
- Embraced by the politics and sports prediction website *FiveThirtyEight*.
Elo Ratings R_P for players P
Elo Ratings R_P for players P

- Based on idea that your *points expectation* e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
Elo Ratings R_P for players P

- Based on idea that your points expectation e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve

$$e = \frac{1}{1 + e^{-Bx}} \quad \text{with} \quad B = \ln(10)/400.$$
Elo Ratings R_P for players P

- Based on idea that your *points expectation* e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve

$$ e = \frac{1}{1 + e^{-Bx}} \quad \text{with} \quad B = \ln(10)/400. $$

- Makes a 200-point difference == just over 75% expectation.
Elo Ratings R_P for players P

- Based on idea that your *points expectation* e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve

 $$e = \frac{1}{1 + e^{-Bx}}$$

 with

 $$B = \ln(10)/400.$$

- Makes a 200-point difference \approx just over 75% expectation.
- Adding e over every game in a tournament yield expected score e_P.
Elo Ratings R_P for players P

- Based on idea that your *points expectation* e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve

 $$e = \frac{1}{1 + e^{-Bx}} \quad \text{with} \quad B = \ln(10)/400.$$

- Makes a 200-point difference \textup{==} just over 75% expectation.
- Adding e over every game in a tournament yield expected score e_P.
- New rating is $R'_P = R_P + K \cdot (s_P - e_P)$ where s_P is P's actual score and the factor K is set by policy (e.g. $K = 10$ for established players but $K = 40$ for young/novice/rapidly improving ones).
Elo Ratings R_P for players P

- Based on idea that your points expectation e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve
 \[e = \frac{1}{1 + e^{-Bx}} \]
 with \[B = \ln(10)/400. \]
- Makes a 200-point difference == just over 75% expectation.
- Adding e over every game in a tournament yield expected score e_P.
- New rating is $R'_P = R_P + K \cdot (s_P - e_P)$ where s_P is P's actual score and the factor K is set by policy (e.g. $K = 10$ for established players but $K = 40$ for young/novice/rapidly improving ones).
- Since only differences matter, absolute rating numbers are arbitrary.
Elo Ratings R_P for players P

- Based on idea that your *points expectation* e goes from 0.0 to 1.0 as a function of difference $x = R_P - R_O$ to your opponent’s rating.
- Most commonly based on the logistic curve
 \[e = \frac{1}{1 + e^{-Bx}} \quad \text{with} \quad B = \ln(10)/400. \]

- Makes a 200-point difference == just over 75% expectation.
- Adding e over every game in a tournament yield expected score e_P.
- New rating is $R'_P = R_P + K \cdot (s_P - e_P)$ where s_P is P's actual score and the factor K is set by policy (e.g. $K = 10$ for established players but $K = 40$ for young/novice/rapidly improving ones).
- Since only differences matter, absolute rating numbers are arbitrary.
- *FiveThirtyEight* centers on 1500 and rated Golden State at 1850, Cavaliers at 1691 before the NBA Finals began: 28.6% chance for Cavs per game, about 11% for 7-game series.
Expectation Curve for Elo Differences

Chess Ratings and “Human Depth”

600: Adult beginner (scholastics go under 100...)
1000: Minimum FIDE rating, beginning tournament player.
1500: Solid club player.
2200: Master.
2500: Typical Grandmaster.
2800: Human championship level.
3200: Exceeded by today’s best programs on commodity PCs.
3400-3500: Ceiling of perfect play??
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)

László Mérő, *Ways of Thinking* (1990): Chess has human depth of 11 (or 14) classes of 200 Elo, 14 (or 17) including computers.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
- **2200**: Master.

László Mérő, *Ways of Thinking* (1990): Chess has **human depth** of 11 (or 14) class units of 200 Elo, 14 (or 17) including computers.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
- **2200**: Master.
- **2500**: Typical Grandmaster.

László Mérő, *Ways of Thinking* (1990): Chess has human depth of 11 (or 14) class units of 200 Elo, 14 (or 17) including computers.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100…)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
- **2200**: Master.
- **2500**: Typical Grandmaster.
- **2800**: Human championship level.

László Mérő, *Ways of Thinking* (1990): Chess has human depth of 11 (or 14) class units of 200 Elo, 14 (or 17) including computers.
Chess Ratings and “Human Depth”

- **600**: Adult beginner (scholastics go under 100…)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
- **2200**: Master.
- **2500**: Typical Grandmaster.
- **2800**: Human championship level.
- **3200**: Exceeded by today’s best programs on commodity PCs.

László Mérő, *Ways of Thinking* (1990): Chess has human depth of 11 (or 14) class units of 200 Elo, 14 (or 17) including computers.
Chess Ratings and "Human Depth"

- **600**: Adult beginner (scholastics go under 100...)
- **1000**: Minimum FIDE rating, beginning tournament player.
- **1500**: Solid club player.
- **2000**: Expert.
- **2200**: Master.
- **2500**: Typical Grandmaster.
- **2800**: Human championship level.
- **3200**: Exceeded by today’s best programs on commodity PCs.
- **3400-3500**: Ceiling of perfect play??

László Mérő, *Ways of Thinking* (1990): Chess has *human depth* of 11 (or 14) *class units* of 200 Elo, 14 (or 17) including computers.
Game Representation + Evaluation + Search

Game Representation

- Hardware advances and software tricks.

Evaluation

- Base evaluation $e(p)$ for each position p.
- Typically linear: $P_j w_j (\text{value of factor } j)$.
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many "positional" elements.
- Weights w_i now automatedly "tuned" by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.

Search

- Minimax search: $e(d(p)) = \max_i e(d(p[m_i]))$.
- Negate eval for opponent's view and recurse: negamax search.

Basic branching factor

- 35 legal moves on average.
Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
Programs for Chess and Other Games

Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.

Typically linear: $P_j w_j$ (value of factor j).
Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many "positional" elements.

Weights w_i now automatedly "tuned" by extensive game testing.

Eval in discrete units of 0.01 called centipawns.

Minimax search: $e_d(p) = \max_i e_d(p[i])$: Negate eval for opponent's view and recurse: negamax search.

Basic branching factor ~ 35 legal moves on average.
Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j$(value of factor j).
Game Rep.: Hardware advances and software tricks.

- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j \text{(value of factor } j)\text{.}$
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.

Weights w_i now automatedly “tuned” by extensive game testing.

Eval in discrete units of 0.01 called centipawns.

Minimax search: $ed(p) = \max_i ed(p[i]):$ Negate eval for opponent’s view and recurse: negamax search.

Basic branching factor 35 legal moves on average.
Programs for Chess and Other Games

Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j$ (value of factor j).
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.
- Weights w_i now automatically “tuned” by extensive game testing.
Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j$(value of factor j).
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.
- Weights w_i now automatedly “tuned” by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.
Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j$ (value of factor j).
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.
- Weights w_i now automatically “tuned” by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.
- Minimax search: $e_d(p) = \max_{i \leq \ell(p)} e_{d-1}(p[m_i])$.
Programs for Chess and Other Games

Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j(\text{value of factor } j)$.
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.
- Weights w_i now automatically “tuned” by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.
- Minimax search: $e_d(p) = \max_{i \leq \ell(p)} e_{d-1}(p[m_i])$.
- Negate eval for opponent’s view and recurse: negamax search.
Programs for Chess and Other Games

Game Representation + Evaluation + Search

- Game Rep.: Hardware advances and software tricks.
- Base evaluation $e_0(p)$ for each position p.
- Typically linear: $\sum_j w_j$ (value of factor j).
- Factors begin with 1 for each pawn, 3+ for Knight, 3++ for Bishop, 5 per Rook, 9 (or 10 or...) for the Queen, then go into many “positional” elements.
- Weights w_i now automatedly “tuned” by extensive game testing.
- Eval in discrete units of 0.01 called centipawns.
- Minimax search: $e_d(p) = \max_{i \leq \ell(p)} e_{d-1}(p[m_i])$.
- Negate eval for opponent’s view and recurse: negamax search.
- Basic branching factor $\ell \approx 35$ legal moves on average.
If we already know an opponent reply n_2 to move m_2 that makes $e_{d1}(p[m_2]) < e_{d1}(p[m_1])$, then no need to search any other replies to m_2. We need not be precise about values far from $v = e_{d1}(p)$. Hence we can save by guessing not just v but a window $<v<$ around v, using "<" and ">" as boundary "cutoff" values. If we guess wrong and it appears $v<$ ("fail low") or $v>$ ("fail high"), widen the window and start over. Successful-pruning reduces branching factor to $p`.
Sound Search Principles

- If we already know an opponent reply n_2 to move m_2 that makes $e_{d-1}(p[m_2]) < e_{d-1}(p[m_1])$, then no need to search any other replies to m_2.
Sound Search Principles

- If we already know an opponent reply n_2 to move m_2 that makes $e_{d-1}(p[m_2]) < e_{d-1}(p[m_1])$, then no need to search any other replies to m_2.

- We need not be precise about values far from $v = e_d(p)$.
Sound Search Principles

- If we already know an opponent reply n_2 to move m_2 that makes $e_{d-1}(p[m_2]) < e_{d-1}(p[m_1])$, then no need to search any other replies to m_2.
- We need not be precise about values far from $v = e_d(p)$.
- Hence we can save by guessing not just v but a window $\alpha < v < \beta$ around v, using “α” and “β” as boundary “cutoff” values.
Sound Search Principles

- If we already know an opponent reply n_2 to move m_2 that makes $e_{d-1}(p[m_2]) < e_{d-1}(p[m_1])$, then no need to search any other replies to m_2.

- We need not be precise about values far from $v = e_d(p)$.

- Hence we can save by guessing not just v but a window $\alpha < v < \beta$ around v, using "$< \alpha$" and "$> \beta$" as boundary "cutoff" values.

- If we guess wrong and it appears $v < \alpha$ ("fail low") or $v > \beta$ ("fail high"), widen the window and start over.
Sound Search Principles

- If we already know an opponent reply n_2 to move m_2 that makes $e_{d-1}(p[m_2]) < e_{d-1}(p[m_1])$, then no need to search any other replies to m_2.
- We need not be precise about values far from $v = e_d(p)$.
- Hence we can save by guessing not just v but a window $\alpha < v < \beta$ around v, using “α” and “β” as boundary “cutoff” values.
- If we guess wrong and it appears $v < \alpha$ (“fail low”) or $v > \beta$ (“fail high”), widen the window and start over.
- Successful α-β pruning reduces branching factor to $\approx \sqrt{l}$.
Alpha-Beta Search—Diagram
Iterative Deepening

Work in rounds of search $d = 1; 2; 3; \ldots$; use rankings of moves at d_1 to optimize pruning: "try the best moves first."

Use value v_{d_1} as best guess for v_{d} to center the window.

Extend search to depths $D > d$ along lines of play that have checks and captures and/or moves that are singular (meaning next-best move is much worse).

Stop extending when line becomes quiescent.

Each stage yields a well-defined principal variation (PV) along which:

$$e_d(p) = e_{d_1}(p_0) = e_0(p(D))$$

Stop when time budget dictates making a move.

Values $v_1; v_2; v_3; \ldots; v_{d}; \ldots$ converge to "true value."
Iterative Deepening

- Work in *rounds of search* $d = 1, 2, 3, \ldots$
Iterative Deepening

- Work in *rounds of search* $d = 1, 2, 3, \ldots$
- Use *rankings* of moves at $d - 1$ to optimize α-β pruning: “try the best moves first.”

Each stage yields a well-defined principal variation (PV) along which:

$e_d(p) = e_d(p_0) = \ldots = e_0(p(D))$.

Stop when time budget dictates making a move.

Values $v_1; v_2; v_3; \ldots; v_d; \ldots$ converge to “true value.”
Iterative Deepening

- Work in rounds of search $d = 1, 2, 3, \ldots$
- Use rankings of moves at $d - 1$ to optimize α-β pruning: “try the best moves first.”
- Use value v_{d-1} as best guess for v_d to center the window.
Iterative Deepening

- Work in *rounds of search* \(d = 1, 2, 3, \ldots \)
- Use *rankings* of moves at \(d - 1 \) to optimize \(\alpha - \beta \) pruning: “try the best moves first.”
- Use *value* \(v_{d-1} \) as best guess for \(v_d \) to center the window.
- *Extend* search to depths \(D > d \) along lines of play that have checks and captures and/or moves that are *singular* (meaning next-best move is much worse).
Iterative Deepening

- Work in rounds of search $d = 1, 2, 3, \ldots$
- Use rankings of moves at $d - 1$ to optimize α-β pruning: “try the best moves first.”
- Use value v_{d-1} as best guess for v_d to center the window.
- *Extend* search to depths $D > d$ along lines of play that have checks and captures and/or moves that are *singular* (meaning next-best move is much worse).
- Stop extending when line becomes *quiescent.*
Iterative Deepening

- Work in *rounds of search* $d = 1, 2, 3, \ldots$
- Use *rankings* of moves at $d - 1$ to optimize α-β pruning: “try the best moves first.”
- Use *value* v_{d-1} as best guess for v_d to center the window.
- *Extend* search to depths $D > d$ along lines of play that have checks and captures and/or moves that are *singular* (meaning next-best move is much worse).
- Stop extending when line becomes *quiescent*.
- Each stage yields a well-defined *principal variation* (PV) along which:

$$e_d(p) = e_{d-1}(p') = \cdots = e_0(p^{(D)}).$$
Iterative Deepening

- Work in *rounds of search* $d = 1, 2, 3, \ldots$
- Use *rankings* of moves at $d - 1$ to optimize $\alpha-\beta$ pruning: “try the best moves first.”
- Use *value* v_{d-1} as best guess for v_d to center the window.
- *Extend* search to depths $D > d$ along lines of play that have checks and captures and/or moves that are *singular* (meaning next-best move is much worse).
- Stop extending when line becomes *quiescent*.
- Each stage yields a well-defined *principal variation* (PV) along which:
 \[e_d(p) = e_{d-1}(p') = \cdots = e_0(p^{(D)}). \]
- Stop when time budget dictates making a move.
Iterative Deepening

- Work in rounds of search $d = 1, 2, 3, \ldots$
- Use rankings of moves at $d - 1$ to optimize α-β pruning: “try the best moves first.”
- Use value v_{d-1} as best guess for v_d to center the window.
- Extend search to depths $D > d$ along lines of play that have checks and captures and/or moves that are singular (meaning next-best move is much worse).
- Stop extending when line becomes quiescent.
- Each stage yields a well-defined principal variation (PV) along which:
 \[e_d(p) = e_{d-1}(p') = \cdots = e_0(p^{(D)}). \]
- Stop when time budget dictates making a move.
- Values $v_1, v_2, v_3, \ldots, v_d, \ldots$ converge to “true value.”
“Soundy” Search Principles

Often one can “prove” cutoffs faster by letting the other player make two moves in a row. Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them. Evaluate inferior moves only to depth c_d. These “Null Move” and “Late Move” reduction heuristics do the most to reduce the operational branching factor to about 1.5–1.6(!)

Note: $1^{55}_4^{40}_6^{10}=10^{60}$ million(!)

The champion program Stockfish 8 reaches depth 40 within an hour on my laptop.

Nominal depth d really a mix of depth c and depth D; actual visited nodes are mostly wrapped around the PV. How effective?
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for *Zugzwang* positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
- These “Null Move” and “Late Move” reduction heuristics do the most to reduce the operational branching factor to about 1.5–1.6(!)
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
- These “Null Move” and “Late Move” reduction heuristics do the most to reduce the operational branching factor to about 1.5–1.6(!)
- Note: $1.55^{40} \approx 6^{10} = \text{only about 60 million}(!)$
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
- These “Null Move” and “Late Move” reduction heuristics do the most to reduce the operational branching factor to about 1.5–1.6(!)
- Note: $1.55^{40} \approx 6^{10} = \text{only about 60 million}(!)$
- The champion program Stockfish 8 reaches depth 40 within an hour on my laptop.
“Soundy” Search Principles

- Often one can “prove” cutoffs faster by letting the other player make two moves in a row.
- Unsound for Zugzwang positions (where you want your opponent not you to have to move), but there are smart ways to avoid being fooled by them.
- Evaluate inferior moves only to depth $c \ll d$.
- These “Null Move” and “Late Move” reduction heuristics do the most to reduce the operational branching factor to about 1.5–1.6(!)
- Note: $1.55^{40} \approx 6^{10} = \text{only about 60 million(!)}$
- The champion program Stockfish 8 reaches depth 40 within an hour on my laptop.
- Nominal depth d really a mix of depth c and depth D; actual visited nodes are mostly wrapped around the PV. How effective?
The Logistic Law...

What percentage e of points do human players (of a given rating R) score from positions that a program gives value v?

Answer:

$$e \approx \frac{1}{1 + e^{-Bv}},$$

where B depends on R.
The Logistic Law...

What percentage e of points do human players (of a given rating R) score from positions that a program gives value v?

Answer:

$$e \approx \frac{1}{1 + e^{-Bv}},$$

where B depends on R.

Exact fit to $A + \frac{1 - 2A}{1 + \exp(-Bv)}$ where A is small; A represents the chance of missing a checkmate or otherwise blowing a “completely winning” game.
The Logistic Law...

What percentage e of points do human players (of a given rating R) score from positions that a program gives value v?

Answer:

$$e \approx \frac{1}{1 + e^{-Bv}},$$

where B depends on R.

Exact fit to $A + \frac{1 - 2A}{1 + \exp(-Bv)}$ where A is small; A represents the chance of missing a checkmate or otherwise blowing a “completely winning” game.

Data from all available games at standard time controls with both players rated within 10 (or 12) of an Elo quarter-century point 1025, 1050, 1075, 1100, ..., 2800. From 1,000s to 100,000s of positions in each group, just over 3 million positions total.
Example: Elo 1200

From 29991 turns in 472 games:
#buckets in [0.01--10]: 185
Exp. up 0.50 = 0.5629
Exp. up 1.00 = 0.6236
Exp. up 2.00 = 0.7312
Exp. up 3.00 = 0.8142
60% exp. eval = 0.8025
70% exp. eval = 1.6877
80% exp. eval = 2.8048
90% exp. eval = 4.6779

slope = 0.1265
skew = 0.0
drift = -0.029881626
R^2 = 0.99999996
B = 0.5384 ± 0.02223
A = 0.02988 ± 0.004068
K = 0.9701 ± 0.004068
Q = 1.0
C = 1.0
nu = 1.0
Bootstrap B, x1000 trials:
B' = 0.5570 ± 0.02904
Example: Elo 1600

From 57568 turns in 948 games:
#buckets in [0.01--10]: 268
Exp. up 0.50 = 0.5839
Exp. up 1.00 = 0.6624
Exp. up 2.00 = 0.7886
Exp. up 3.00 = 0.8689
60% exp. eval = 0.5988
70% exp. eval = 1.2628
80% exp. eval = 2.1138
90% exp. eval = 3.6229

slope = 0.1697
skew = 0.0
drift = -0.041108383
R^2 = 0.99999993
B = 0.7397 +/- 0.02177
A = 0.04111 +/- 0.003546
K = 0.9589 +/- 0.003546
Q = 1.0
C = 1.0
nu = 1.0
Bootstrap B, x1000 trials:
B' = 0.7519 +/- 0.02687
Example: Elo 2000

Points frequency vs. eval for AA2000_SF7d00LREG2b100sk4

From 108883 turns in 1739 games:
#buckets in [0.01--10]: 365
Exp. up 0.50 = 0.6042
Exp. up 1.00 = 0.6987
Exp. up 2.00 = 0.8382
Exp. up 3.00 = 0.9136
60% exp. eval = 0.4794
70% exp. eval = 1.0072
80% exp. eval = 1.6695
90% exp. eval = 2.7578

slope = 0.2117
skew = 0.0
drift = -0.025297824
R^2 = 0.99999996
B = 0.8921 +- 0.01742
A = 0.02530 +- 0.002571
K = 0.9747 +- 0.002571
Q = 1.0
C = 1.0
nu = 1.0
Bootstrap B, x1000 trials:
B' = 0.9018 +- 0.01829
Chess and Informatics

Example: Elo 2400

Points frequency vs. eval for AA2400_SF7d00LREG2b100sk4

From 125674 turns in 2079 games:
- #buckets in [0.01--10]: 341
- Exp. up 0.50 = 0.6219
- Exp. up 1.00 = 0.7280
- Exp. up 2.00 = 0.8669
- Exp. up 3.00 = 0.9278
- 60% exp. eval = 0.4069
- 70% exp. eval = 0.8574
- 80% exp. eval = 1.4314
- 90% exp. eval = 2.4283

slope = 0.2497
skew = 0.0
drift = -0.037184122
R^2 = 0.99999993
B = 1.0789 +- 0.02008
A = 0.03718 +- 0.002661
K = 0.9628 +- 0.002661
Q = 1.0
C = 1.0
nu = 1.0

Bootstrap B, x1000 trials:
B' = 1.0883 +- 0.02031
Example: Elo 2800

From 25532 turns in 334 games:

- #buckets in [0.01--10]: 117
- Exp. up 0.50 = 0.6311
- Exp. up 1.00 = 0.7428
- Exp. up 2.00 = 0.8816
- Exp. up 3.00 = 0.9371
- 60% exp. eval = 0.3771
- 70% exp. eval = 0.7940
- 80% exp. eval = 1.3237
- 90% exp. eval = 2.2335

slope = 0.2694
skew = 0.0
drift = -0.034976958
R^2 = 0.99999776
B = 1.1587 +- 0.04743
A = 0.03498 +- 0.007946
K = 0.9650 +- 0.007946
Q = 1.0
C = 1.0
nu = 1.0
Bootstrap B, x1000 trials:
B' = 1.1651 +- 0.04523
Example: Elo 2800 Ignoring Draws

From 9789 turns in 334 games:
#buckets in (0.01--10): 39
Exp. up 0.50 = 0.8875
Exp. up 1.00 = 0.9681
Exp. up 2.00 = 0.9785
Exp. up 3.00 = 0.9786
60% exp. eval = 0.09416
70% exp. eval = 0.1976
80% exp. eval = 0.3269
90% exp. eval = 0.5359

slope = 1.0779
skew = 0.0
drift = 0.0
R^2 = 0.99999954
B = 4.5046 +- 0.3161
A = 0.02140 +- 0.005510
K = 0.9786 +- 0.005510
Q = 1.0
C = 1.0
nu = 1.0
Bootstrap B, x2500 trials:
B' = 4.5618 +- 0.3705
Significances
Significances

1. Rated skill difference x and position value v occupy the same scale—both multiplied by B.
Significances

1. Rated skill difference \(x \) and position value \(v \) occupy the same scale—both multiplied by \(B \).

2. For expert players, being rated 150 Elo higher is like having an extra Pawn.
Significances

1. Rated skill difference x and position value v occupy the same scale—both multiplied by B.

2. For expert players, being rated 150 Elo higher is like having an extra Pawn.

3. B has a third role as the conversion factor between engine scales.
Significances

1. Rated skill difference x and position value v occupy the same scale—both multiplied by B.

2. For expert players, being rated 150 Elo higher is like having an extra Pawn.

3. B has a third role as the conversion factor between engine scales.
 - That is, if one program values a Queen as 9 and another says 10, you might expect to convert the latter by $9/10$.
Significances

1. Rated skill difference x and position value v occupy the same scale—both multiplied by B.

2. For expert players, being rated 150 Elo higher is like having an extra Pawn.

3. B has a third role as the conversion factor between engine scales.
 - That is, if one program values a Queen as 9 and another says 10, you might expect to convert the latter by $9/10$.

4. Higher B for higher rating thus means we perceive values more sharply.
The Logistic Law ... is Technically False

A program’s behavior is unchanged under any transformation of values \(e_d(m_i) \) that preserves the rank order of the moves \(m_i \).
The Logistic Law ... is Technically False

A program’s behavior is unchanged under any transformation of values $e_d(m_i)$ that preserves the rank order of the moves m_i.

- Some commercial programs do such transformations after-the-fact.
The Logistic Law ... is Technically False

A program’s behavior is unchanged under any transformation of values $e_d(m_i)$ that preserves the rank order of the moves m_i.

- Some commercial programs do such transformations after-the-fact.
- The open-source Stockfish program does not.
The Logistic Law ... is Technically False

A program’s behavior is unchanged under any transformation of values $e_d(m_i)$ that preserves the rank order of the moves m_i.

- Some commercial programs do such transformations after-the-fact.
- The open-source Stockfish program does not.
- Amir Ban, co-creator of both the chess program Deep Junior and the USB flash drive, attests that the law comes from doing things naturally and maximizes predictivity as well as playing strength for programs.
A Second Tweak to the Logistic Law

Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?
A Second Tweak to the Logistic Law

Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?

- The value $v = \text{the value of the best move}$, so it “prices in” your finding it.
A Second Tweak to the Logistic Law

Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?

- The value $v = \text{the value of the best move, so it \text{\textquotedblleft}prices in\text{\textquotedblright} your finding it}$.
- More crudely put, the player to move has the first chance to make a game-losing blunder.
A Second Tweak to the Logistic Law

Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?

- The value $v = \text{the value of the best move}$, so it “prices in” your finding it.
- More crudely put, the player to move has the first chance to make a game-losing blunder.
- Measured difference of 3–4% in expectation.
Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?

- The value v is the value of the best move, so it “prices in” your finding it.
- More crudely put, the player to move has the first chance to make a game-losing blunder.
- Measured difference of 3–4% in expectation.
- The curves you saw were symmetrized by including both player-to-move and opponent-to-move data points.
Conditioned on the position having value v from your point of view, would you rather have it be your turn to move or the opponent’s?

- The value $v = \text{the value of the best move},$ so it “prices in” your finding it.
- More crudely put, the player to move has the first chance to make a game-losing blunder.
- Measured difference of 3–4% in expectation.
- The curves you saw were symmetrized by including both player-to-move and opponent-to-move data points.
- GM Savielly Tartakover (Polish: Ksawey Tartakower, born in Rostov-on-Don): “The game is won by the player who makes the next-to-last blunder.”
Tartakover’s Dictum...
...Is Not True for Computers

1998: Kasparov says, “if you can’t beat ‘em, join ‘em” and promotes Advanced Chess where players team with one computer. (Freestyle Chess allows any number of computers; major events sponsored in 2005–2008 and 2014.)

1999–2003: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.

2005: Souped-up Hydra crushes GM Michael Adams 5.5-0.5.

2006: WC Vladimir Kramnik loses to Deep Fritz 10 on ordinary quad-core PC by 4-2; he overlooks Mate-in-1 in one game.

No human GM has played a computer on even terms in a sponsored match since then.
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
- **1998**: Kasparov says, “if you can’t beat ’em, join ’em” and promotes *Advanced Chess* where players team with one computer.
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
- **1998**: Kasparov says, “if you can’t beat ‘em, join ‘em” and promotes *Advanced Chess* where players team with one computer.
- *(Freestyle Chess allows any number of computers; major events sponsored in 2005–2008 and 2014.)*
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
- **1998**: Kasparov says, “if you can’t beat ’em, join ’em” and promotes *Advanced Chess* where players team with one computer. *(Freestyle Chess allows any number of computers; major events sponsored in 2005–2008 and 2014.)*
- **1999–2003**: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
- **1998**: Kasparov says, “if you can’t beat ’em, join ’em” and promotes *Advanced Chess* where players team with one computer.

 (*Freestyle Chess* allows any number of computers; major events sponsored in 2005–2008 and 2014.)
- **1999–2003**: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.
- **2004-2005**: Fritz, Deep Junior, and massively parallel Hydra beat WC Challenger class players 16.5-7.5 in two Bilbao Human-Computer tournaments.

1998: Kasparov says, “if you can’t beat ’em, join ’em” and promotes *Advanced Chess* where players team with one computer. (*Freestyle Chess* allows any number of computers; major events sponsored in 2005–2008 and 2014.)

1999–2003: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.

2005: Souped-up Hydra crushes GM Michael Adams 5.5-0.5.
History of Computer Chess – Part 2

- **1997**: Deep Blue abruptly retires.
- **1998**: Kasparov says, “if you can’t beat ’em, join ’em” and promotes *Advanced Chess* where players team with one computer. (*Freestyle Chess* allows any number of computers; major events sponsored in 2005–2008 and 2014.)
- **1999–2003**: Smaller systems beat GMs but only tie with Kasparov and later World Champion Viswanathan Anand.
- **2004-2005**: Fritz, Deep Junior, and massively parallel Hydra beat WC Challenger class players 16.5-7.5 in two Bilbao Human-Computer tournaments.
- **2005**: Souped-up Hydra crushes GM Michael Adams 5.5-0.5.
- **2006**: WC Vladimir Kramnik loses to Deep Fritz 10 on ordinary quad-core PC by 4-2; he overlooks Mate-in-1 in one game.

No human GM has played a computer on even terms in a sponsored match since then.
History of Computer Chess – Part Deux

2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu. Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9. Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?”

2009: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

2010: First later-proven case involving top-100 player.

2012-13: Borislav Ivanov produced my first-ever z-score above 3.5. It was >5:5. Higgs Boson declared discovered at z=5:1.

2013: FIDE formed Anti-Cheating Commission.

2014–2017: More cases, including players caught stashing smartphones in toilet stalls.
History of Computer Chess – Part Deux

- **2006**: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.
2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.

Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
History of Computer Chess – Part Deux

- **2006**: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.
 - Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
 - Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

- **2009**: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

- **2010**: First later-proven case involving top-100 player.

- **2012-13**: Borislav Ivanov produced my first-ever z-score above 3.5. It was > 5.5. Higgs Boson declared discovered at z = 5.1.

- **2013**: FIDE formed Anti-Cheating Commission.

- **2014–2017**: More cases, including players caught stashing smartphones in toilet stalls.
2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.

- Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
- Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

2009: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.
History of Computer Chess – Part Deux

- **2006**: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.
 - Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
 - Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

- **2009**: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

- **2010**: First later-proven case involving top-100 player.
2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.

- Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
- Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

2009: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

2010: First later-proven case involving top-100 player.

2012-13: Borislav Ivanov produced my first-ever z-score above 3.5. It was > 5.5. Higgs Boson declared discovered at $z = 5.1$.
2006: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.

- Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
- Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

2009: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

2010: First later-proven case involving top-100 player.

2012-13: Borislav Ivanov produced my first-ever z-score above 3.5. It was > 5.5. Higgs Boson declared discovered at $z = 5.1$.

2013: FIDE formed Anti-Cheating Commission.
History of Computer Chess – Part Deux

- **2006**: GM Veselin Topalov accuses Kramnik of getting moves from Fritz 9 by Internet cable to his toilet—the only off-camera part of their 2006 WC match milieu.
 - Only evidence given was alleged too-high “coincidence rates” of Kramnik’s moves with those liked by Fritz 9.
 - Frederic Friedel, co-founder of Fritz maker ChessBase: “Can anyone help us evaluate such statistical accusations?” → my involvement.

- **2009**: Smartphone “Pocket Fritz” measured at 2900+ performance crushing 2250-level human players 9.5–0.5.

- **2010**: First later-proven case involving top-100 player.

- **2012–13**: Borislav Ivanov produced my first-ever z-score above 3.5. It was > 5.5. Higgs Boson declared discovered at $z = 5.1$.

- **2013**: FIDE formed Anti-Cheating Commission.

- **2014–2017**: More cases, including players caught stashing smartphones in toilet stalls.
Chess is a hard problem. Narrowly defined but needs broad resources. Advances in hardware first. Later trumped by advances in software. Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster. Still not emulating the human mind... But powerful enough to "scope" players' minds... aided by acuity in modeling.
Fantastic CS Success Story

- Chess is a *hard problem*. Narrowly defined but needs broad resources.
Fantastic CS Success Story

- Chess is a *hard problem*. Narrowly defined but needs broad resources.
- Advances in hardware first.
Fantastic CS Success Story

- Chess is a *hard problem*. Narrowly defined but needs broad resources.
- Advances in hardware first.
- Later trumped by advances in software.
Chess and Informatics

Fantastic CS Success Story

- Chess is a *hard problem*. Narrowly defined but needs broad resources.
- Advances in hardware first.
- Later trumped by advances in software.
 - Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster.
Chess is a *hard problem*. Narrowly defined but needs broad resources.

Advances in hardware first.

Later trumped by advances in software.

- Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster.

Still not emulating the human mind...
Chess is a *hard problem*. Narrowly defined but needs broad resources.

Advances in hardware first.

Later trumped by advances in software.

- Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster.

Still not emulating the human mind...

But powerful enough to “scope” players’ minds...
Chess is a *hard problem*. Narrowly defined but needs broad resources.

Advances in hardware first.

Later trumped by advances in software.

- Albert Silver 2014 experiment: Komodo 8 on smartphone trounced 2006 leader Shredder 9 on hardware 50 times faster.

Still not emulating the human mind...

But powerful enough to "scope" players’ minds...

...aided by *acuity* in modeling.
Predictive Models

Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:
Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
Predictive Models

Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:
- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
Predictive Models

Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
Predictive Models

Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
- The events are the legal moves in a chess position.
Predictive Models

Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
- The events are the legal moves in a chess position. They are *mutually exclusive* and (together with “draw” or “resign”) *collectively exhaustive*: $\sum_i p_i = 1$.

Cost of a (non-optimal) move $m_i = \|v_1 - v_i\|$ to the first move m_1.

Predicted cost: $P_{\text{predicted}} = \sum_i p_i \cdot i$.

Scaled down when $|v_1|$ is high.
Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
- The events are the legal moves in a chess position. They are mutually exclusive and (together with “draw” or “resign”) collectively exhaustive: $\sum_i p_i = 1$.
- Cost of a (non-optimal) move $m_i = \delta(v_1, v_i)$ to the first move m_1.

Predictive Models
Given data and analysis on potential events E_1, \ldots, E_L estimate probabilities p_1, \ldots, p_L for them to occur.

Examples:

- Some of the events E_1, \ldots, E_m are natural disasters.
- E_1, \ldots, E_L are potential courses that a disease can take.
- The events are correct answers on an exam with L questions, and we want to estimate the distribution of results.
- The events are the legal moves in a chess position. They are *mutually exclusive* and (together with "draw" or "resign") *collectively exhaustive*: $\sum_i p_i = 1$.
- Cost of a (non-optimal) move m_i is $\delta_i = \delta(v_1, v_i)$ to the first move m_1.
- Predicted cost: $\sum_{i=1}^{L} p_i \delta_i$. *Scaled down* when $|v_1|$ is high.
Inputs and Outputs

Domain: A set T of decision-making situations t.

Chess game turns

Inputs: Values v_i for every option at turn t.

Parameters: $s; c; \ldots$ denoting skills and levels.

Defines fallible agent $P(s; c; \ldots)$.

Main Output: Probabilities $p_i; t$ for $P(s; c; \ldots)$ to select option i at time t.

Derived Outputs (Aggregate Statistics):

- Move-Match $MM = \sum_t p_i; t$
- Equal-top Value $EV = \sum_t \sum_i: i; t = 0 p_i; t$
- Average Scaled Difference $ASD = \sum_t \sum_i p_i; t - i; t$

And confidence intervals for them via multinomial Bernoulli trials.
Domain: A set T of decision-making situations t. Chess game turns
1. **Domain:** A set T of decision-making situations t. Chess game turns

2. **Inputs:** Values v_i for every option at turn t.

Parameters: s, c, \ldots denoting skills and levels.

Defines fallible agent $P(s, c, \ldots)$.

Main Output: Probabilities p_i^t for $P(s, c, \ldots)$ to select option i at time t.

Derived Outputs (Aggregate Statistics):

- **MM** = $\sum_t p_1^t$; Move-Match
- **EV** = $\sum_t \sum_i: i = 0 p_i^t$; Equal-top Value
- **ASD** = $\sum_t \sum_i p_i^t$; Average Scaled Difference

And confidence intervals for them via multinomial Bernoulli trials.
Inputs and Outputs

1. Domain: A set T of decision-making situations t. Chess game turns
2. Inputs: Values v_i for every option at turn t.
3. Parameters: s, c, \ldots denoting skills and levels.
Domain: A set T of decision-making situations t. Chess game turns

Inputs: Values v_i for every option at turn t.

Parameters: s, c, \ldots denoting skills and levels.

Defines fallible agent $P(s, c, \ldots)$.
Inputs and Outputs

1. Domain: A set T of decision-making situations t. Chess game turns

2. Inputs: Values v_i for every option at turn t.

3. Parameters: s, c, \ldots denoting skills and levels.

4. Defines fallible agent $P(s, c, \ldots)$.

5. Main Output: Probabilities $p_{i,t}$ for $P(s, c, \ldots)$ to select option i at time t.

Derived Outputs (Aggregate Statistics):
- $MM = \sum t p_{1,t}$:
- $EV = \sum t \sum i p_{i,t}$:
- $ASD = \sum t \sum i p_{i,t}$:

And confidence intervals for them via multinomial Bernoulli trials.
Domain: A set T of decision-making situations t.
Chess game turns

Inputs: Values v_i for every option at turn t.

Parameters: s, c, \ldots denoting skills and levels.

Defines fallible agent $P(s, c, \ldots)$.

Main Output: Probabilities $p_{i,t}$ for $P(s, c, \ldots)$ to select option i at time t.

Derived Outputs (Aggregate Statistics):

\[
\text{MM} = \sum_{t} p_{1,t} \quad \text{Move-Match}
\]

\[
\text{EV} = \sum_{t} \sum_{i: \delta_{i,t}=0} p_{i,t} \quad \text{Equal-top Value}
\]

\[
\text{ASD} = \sum_{t} \sum_{i} p_{i,t} \delta_{i,t} \quad \text{Average Scaled Difference}
\]
Obtaining the Probabilities

Each move \(m_i \) is assigned a perceived inferiority \(z_i \). Dimensionless, not in centipawn units like \(i \).

Exponential decay:

\[
p_i = p_g(z_i)
\]

where \(g(0) = 1 \), \(u_i = g(z_i) \) is the “utility share curve.”

Could be \(g(z_i) = z_i + 1 \) but a second layer of exponentiation works better (so far).

Have used \(g(z) = e^z \) and \(g(z) = e^z + 1 \); the latter makes \(1 = g(z) \) a “folded” logistic curve.

Then calculate \(p_1 \) to make \(P_i p_u_i = 1 \).

Given \(u_1 ; \ldots ; u_n \), how to solve for \(p \) giving \(p u_1 + p u_n = 1 \)? Better way than Newton?
Obtaining the Probabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.

Exponential decay:

$$p_i = p_g(z_i)$$

where $g(0) = 1$, and $u_i = g(z_i)$ is the "utility share curve." Could be $g(z_i) = z_i + 1$ but a second layer of exponentiation works better (so far). Have used $g(z_i) = e^{z_i}$ and $g(z_i) = e^{z_i + 1}$. The latter makes $1 = g(z_i)$ a "folded" logistic curve. Then calculate p_1 to make $P_i p_u = 1$.

Given u_1, \ldots, u_l, how to solve for p giving $p_u + \cdots + p_u = 1$? Better way than Newton?
Obtaining the Probabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.
- Dimensionless, not in centipawn units like δ_i.

$Exponential$ decay:\ $p_i = p_g(z_i)^1$; where $g(0) = 1$, $u_i = g(z_i)^1$ is the "utility share curve." Could be $g(z_i) = z_i + 1$ but a second layer of exponentiation works better (so far).

$Have used$ $g(z_i) = e^{z_i}$ and $g(z_i) = e^{z_i} + 1^2$; the latter makes $1 = g(z_i)$ a "folded" logistic curve.

Then calculate p_1 to make $P_i p_u i = 1$. Given u_1; \ldots u_n, how to solve for p giving $p u_1 + \ldots + p u_n = 1$? Better way than Newton?
Obtaining the Proabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.
- Dimensionless, not in centipawn units like δ_i.
- Exponential decay:
 \[p_i = p_1^{g(z_i)}, \]
 where $g(0) = 1$, $u_i = g(z_i) \geq 1$ is the “utility share curve.”
Obtaining the Probabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.
- Dimensionless, not in centipawn units like δ_i.
- Exponential decay:
 \[
 p_i = p_1^{g(z_i)},
 \]
 where $g(0) = 1$, $u_i = g(z_i) \geq 1$ is the “utility share curve.”
- Could be $g(z_i) = z_i + 1$ but a second layer of exponentiation works better (so far).
Obtaining the Probabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.
- Dimensionless, not in centipawn units like δ_i.
- Exponential decay:

 $$p_i = p_1^{g(z_i)},$$

 where $g(0) = 1$, $u_i = g(z_i) \geq 1$ is the “utility share curve.”
- Could be $g(z_i) = z_i + 1$ but a second layer of exponentiation works better (so far).
- Have used $g(z) = e^z$ and $g(z) = \frac{e^z + 1}{2}$; the latter makes $1/g(z)$ a “folded” logistic curve.
Obtaining the Probabilities

- Each move m_i is assigned a perceived inferiority $z_i \geq 0$.
- Dimensionless, not in centipawn units like δ_i.
- Exponential decay:
 \[p_i = p_1^{g(z_i)}, \]
 where $g(0) = 1$, $u_i = g(z_i) \geq 1$ is the “utility share curve.”
- Could be $g(z_i) = z_i + 1$ but a second layer of exponentiation works better (so far).
- Have used $g(z) = e^z$ and $g(z) = \frac{e^z + 1}{2}$; the latter makes $1/g(z)$ a “folded” logistic curve.
- Then calculate p_1 to make $\sum_i p_i^{u_i} = 1$.

Given $u_1, \ldots, u_\ell \geq 1$, how to solve for p giving $p^{u_1} + \cdots + p^{u_\ell} = 1$? Better way than Newton?
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for *sensitivity*, \(c \) for *consistency*.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
- Given any sample of positions, fit \(s, c \) to make projected MM and ASD agree with the sample values.
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
- Given any sample of positions, fit \(s, c \) to make projected MM and ASD agree with the sample values.
- Makes MM and ASD into unbiased estimators (EV generally conservative).
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
- Given any sample of positions, fit \(s \), \(c \) to make projected MM and ASD agree with the sample values.
- Makes MM and ASD into unbiased estimators (EV generally conservative).
- **Monotone** in sense that better moves always get higher probability no matter how weak the player, and an uptick in the value of a move always increases its probability.
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
- Given any sample of positions, fit \(s, c \) to make projected MM and ASD agree with the sample values.
- Makes MM and ASD into unbiased estimators (EV generally conservative).
- **Monotone** in sense that better moves always get higher probability no matter how weak the player, and an uptick in the value of a move always increases its probability.
- Not only yields linear relation \(E = \alpha s + \beta c \) to Elo rating, but the training gives good progressions \([s_E]\) and \([c_E]\) in each parameter.
Inferiority Main Equation

\[z_i = \left(\frac{\delta_i}{s} \right)^c \]

- Parameters \(s \) for sensitivity, \(c \) for consistency.
- \(\partial s \) greatest near \(\delta_i = 0 \); \(\partial c \) takes over for large mistakes.
- Given any sample of positions, fit \(s, c \) to make projected MM and ASD agree with the sample values.
- Makes MM and ASD into unbiased estimators (EV generally conservative).
- Monotone in sense that better moves always get higher probability no matter how weak the player, and an uptick in the value of a move always increases its probability.
- Not only yields linear relation \(E = \alpha s + \beta c \) to Elo rating, but the training gives good progressions \([s_E]\) and \([c_E]\) in each parameter.
- Unique fit and Intrinsic Performance Rating (IPR) for any set of games.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move \(m_1 \) being superior to \(m_2 \) by \(x \) and one of \(m_1 \) or \(m_2 \) being played, with what frequency \(f_1 \) do 2000-rated players prefer \(m_1 \)?

- \(x = 0.01 \),

- \(x = 0.02 \),

- \(x = 0.03 \),

- \(x = 0.04 \),

- \(x = 0.05 \),

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01, f_1 = 52.85\%$.

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$,}

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$,

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$, $f_1 = 56.165\%$.

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$, $f_1 = 56.165\%$.
- $x = 0.05$,
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$, $f_1 = 56.165\%$.
- $x = 0.05$, $f_1 = 58.28\%$.

Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$, $f_1 = 56.165\%$.
- $x = 0.05$, $f_1 = 58.28\%$.
- $x = 0.00$, Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01, f_1 = 52.85\%.$
- $x = 0.02, f_1 = 53.83\%.$
- $x = 0.03, f_1 = 56.08\%.$
- $x = 0.04, f_1 = 56.165\%.$
- $x = 0.05, f_1 = 58.28\%.$
- $x = 0.00, f_1 = 58.72\%.$
How Sensitive Are We?

Conditioned on the best move m_1 being superior to m_2 by x and one of m_1 or m_2 being played, with what frequency f_1 do 2000-rated players prefer m_1?

- $x = 0.01$, $f_1 = 52.85\%$.
- $x = 0.02$, $f_1 = 53.83\%$.
- $x = 0.03$, $f_1 = 56.08\%$.
- $x = 0.04$, $f_1 = 56.165\%$.
- $x = 0.05$, $f_1 = 58.28\%$.
- $x = 0.00$, $f_1 = 58.72\%$.

Co? Note: Sample sizes are 2,605–7,701 positions each, out of 140,999 positions by 2000-rated players overall.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

\[x = 0.01, \]
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01$, $f_1 = 54.78\%$.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01$, $f_1 = 54.78\%$.
- $x = 0.02$,
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.

Go back all the way to 1971—when there was no Stockfish 7 program.

Stockfish 7 would not diminish in game-playing quality at all if m_1 and m_2 were switched in those situations. How can we “precognite” which one it will list first??? An ESP test that humans pass over 60%.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03,$
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%.$
- $x = 0.02, f_1 = 54.64\%.$
- $x = 0.03, f_1 = 56.99\%.$
- $x = 0.04,$
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05,$
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
- $x = 0.00$?
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
- $x = 0.00? f_1 = 60.22\%$.

Last dataset has 10,611 turns with tied-optimal moves. Go back all the way to 1971—when there was no Stockfish 7 program. Stockfish 7 would not diminish in game-playing quality at all if m_1 and m_2 were switched in those situations. How can we “precognite” which one it will list first??? An ESP test that humans pass over 60%.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
- $x = 0.00? f_1 = 60.22\%$.

Last dataset has 10,611 turns with tied-optimal moves.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
- $x = 0.00? f_1 = 60.22\%$.

Last dataset has 10,611 turns with tied-optimal moves.

Go back all the way to 1971—when there was no Stockfish 7 program.
It’s an ESP Test

Same thing for 2600-rated players, 102,472 positions overall:

- $x = 0.01, f_1 = 54.78\%$.
- $x = 0.02, f_1 = 54.64\%$.
- $x = 0.03, f_1 = 56.99\%$.
- $x = 0.04, f_1 = 57.86\%$.
- $x = 0.05, f_1 = 61.11\%$.
- $x = 0.00? \ f_1 = 60.22\%$.

Last dataset has 10,611 turns with tied-optimal moves.

Go back all the way to 1971—when there was no Stockfish 7 program.

Stockfish 7 would not diminish in game-playing quality at all if m_1 and m_2 were switched in those situations. How can we “precognite” which one it will list first?? An ESP test that humans pass over 60\%.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation:
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable* Library Sorting.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: Stable Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: Stable Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with strictly higher value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable* Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with *strictly higher* value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
- Formulate numerical measure ρ_i of swing “up” and “down” (a trap).
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable* Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with *strictly higher* value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
- Formulate numerical measure ρ_i of swing “up” and “down” (a trap).
- When best move swings up *4.0–5.0* versus *0.0–1.0*, players rated 2700+ find it only *30%* versus *70%*.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable* Library Sorting.
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with *strictly higher* value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
- Formulate numerical measure ρ_i of swing “up” and “down” (a trap).
- When best move swings up 4.0–5.0 versus 0.0–1.0, players rated 2700+ find it only 30% versus 70%.
- Goal is to develop a **Challenge Quotient** based on how much trappy play a player sets for the opponent.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable Library Sorting.*
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with *strictly higher* value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
- Formulate numerical measure ρ_i of swing “up” and “down” (a trap).
- When best move swings up 4.0–5.0 versus 0.0–1.0, players rated 2700+ find it only 30% versus 70%.
- Goal is to develop a *Challenge Quotient* based on how much trappy play a player sets for the opponent—and emself.
Measuring “Swing” and Complexity and Difficulty

- Non-Parapsychological Explanation: *Stable Library Sorting.*
- Chess engines sort moves from last depth to schedule next round of search.
- By stability, lower move can become 1st only with *strictly higher* value.
- Lead moves tend to have been higher at lower depths. Lower move “swings up.”
- Formulate numerical measure ρ_i of swing “up” and “down” (a trap).
- When best move swings up 4.0–5.0 versus 0.0–1.0, players rated 2700+ find it only 30% versus 70%.
- Goal is to develop a *Challenge Quotient* based on how much trappy play a player sets for the opponent—and emself.
- Separates *performance* and *prediction* in the model.
Chess and Informatics

Example of “Swing” over Increasing Depths

The ___ of drug-resistant strains of bacteria and viruses has ___ researchers’ hopes that permanent victories against many diseases have been achieved.

- **a** vigorous . . corroborated
- **b** feebleness . . dashed
- **c** proliferation . . blighted
- **d** destruction . . disputed
- **e** disappearance . . frustrated

(source: itunes.apple.com)

| Move | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 |
|--------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Nd2 | 103 | 093 | 087 | 093 | 027 | 028 | 000 | 000 | 056 | -007| 039 | 028 | 037 | 020 | 014 | 017 | 000 | 006 | 000 |
| Bxd7 | 048 | 034 | -033| -033| -013| -042| -039| -050| -025| -010| 001 | 000 | -009| -027| -018| 000 | 000 | 000 | 000 |
| Qg8 | 114 | 114 | -037| -037| -014| -014| -022| -068| -008| -056| -042| -004| -032| 000 | -014| -025| -045| -045| -050|
| ... | | | | | | | | | | | | | | | | | | | |
Modeling “Heave”

\[z_i' = \left(\frac{\delta_i}{s} \right)^c + \left(\frac{h \cdot \rho_i}{s} \right)^{a \cdot c} \]
Modeling “Heave”

\[z_i' = \left(\frac{\delta_i}{s} \right)^c + \left(\frac{h \cdot \rho_i}{s} \right)^{a \cdot c} \]

- Coupling \(h, a \) to \(s, c \) in the second term gives the interpretation

\[h, a > 1 \implies \rho_i \text{ is more significant than } \delta_i. \]
Modeling “Heave”

\[z_i' = \left(\frac{\delta_i}{s} \right)^c + \left(\frac{h \cdot \rho_i}{s} \right)^{a \cdot c} \]

- Coupling \(h, a \) to \(s, c \) in the second term gives the interpretation

\[h, a > 1 \quad \implies \quad \rho_i \text{ is more significant than } \delta_i. \]

- Often allows solving EV plus 1 more equation for improved fits.
Modeling “Heave”

\[z_i' = \left(\frac{\delta_i}{s} \right)^c + \left(\frac{h \cdot \rho_i}{s} \right)^{a \cdot c} \]

- Coupling \(h, a \) to \(s, c \) in the second term gives the interpretation

 \[h, a > 1 \implies \rho_i \text{ is more significant than } \delta_i \]

- Often allows solving EV plus 1 more equation for improved fits.
- But those fits usually give \(h > 1.5 \), Uh-Oh!
Big Wins for the New Model
Big Wins for the New Model

- Predicts tied-move frequencies without an ad-hoc patch.
Big Wins for the New Model

- Predicts tied-move frequencies without an *ad-hoc* patch.
- Fits with 4 equations often make 30 others follow...
Big Wins for the New Model

- Predicts tied-move frequencies without an *ad-hoc* patch.
- Fits with 4 equations often make 30 others follow...
- No longer strictly monotone: Weaker players may prefer weaker moves that look better at early depths, more so if they have higher h.
Big Wins for the New Model

- Predicts tied-move frequencies without an *ad-hoc* patch.
- Fits with 4 equations often make 30 others follow...
- No longer strictly monotone: Weaker players may prefer weaker moves that look better at early depths, more so if they have higher *h*.
- Separates prediction and performance-assessment components.
Big Wins for the New Model

- Predicts tied-move frequencies without an *ad-hoc* patch.
- Fits with 4 equations often make 30 others follow...
- No longer strictly monotone: Weaker players may prefer weaker moves that look better at early depths, more so if they have higher h.
- Separates prediction and performance-assessment components.
- Often accurately predicts inferior moves to be more likely, **But...**
Fine-Grained Trouble Under the Dial

...at the same time it gives near-zero probability to reasonable moves that were played. Even sometimes gives projection to the best move!

[show examples from web article, "Stopped Watches and Data Analytics"]

So far the cause seems to be that the fit is latching on to features of i that allow it to be welded onto the frequency histogram $f_1; f_2; f_3; \ldots$.
Fine-Grained Trouble Under the Dial

...at the same time it gives near-zero probability to reasonable moves that were played.
...at the same time it gives near-zero probability to reasonable moves that were played.

Even sometimes gives ϵ projection to the best move!
...at the same time it gives near-zero probability to reasonable moves that were played.

Even sometimes gives ε projection to the best move!

[show examples from web article, “Stopped Watches and Data Analytics”]
...at the same time it gives near-zero probability to reasonable moves that were played.

Even sometimes gives ϵ projection to the best move!

[show examples from web article, “Stopped Watches and Data Analytics”]

So far the cause seems to be that the fit is latching on to features of ρ_i that allow it to be welded onto the frequency histogram f_1, f_2, f_3, \ldots.

From “Data Skeptic” to “Model Skeptic”
“Data Skeptic” is even the name of a podcast I once appeared on.
From “Data Skeptic” to “Model Skeptic”

- “Data Skeptic” is even the name of a podcast I once appeared on.
- Jaap van den Herik’s CISIM 2016 keynote gave a healthy dose of it.
From “Data Skeptic” to “Model Skeptic”

- “Data Skeptic” is even the name of a podcast I once appeared on.
- Jaap van den Herik’s CISIM 2016 keynote gave a healthy dose of it.
- “Model Skeptic” is represented by Cathy O’Neil’s book *Weapons of Math Destruction.*
From “Data Skeptic” to “Model Skeptic”

- “Data Skeptic” is even the name of a podcast I once appeared on.
- Jaap van den Herik’s CISIM 2016 keynote gave a healthy dose of it.
- “Model Skeptic” is represented by Cathy O’Neil’s book *Weapons of Math Destruction*.
“In data science we nowadays distinguish seven phases of activities:
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
“In data science we nowadays distinguish seven phases of activities:
1. collecting data,
2. cleaning data,
3. interpreting data,
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
7. the emergence of new paradigms.

These are our recommendations:

1. Increase research on AI systems for Big Data and Deep Learning with emphasis on moral constraints.
2. Increase research on AI systems for Big Data and Deep Learning with emphasis on the prevention of AI systems to be hacked.
3. Establish (a) a committee of Data Authorities and (b) an ethical committee.
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
7. the emergence of new paradigms.

These are our recommendations:
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
7. the emergence of new paradigms.

These are our recommendations:

1. Increase research on AI systems for Big Data and Deep Learning with emphasis on moral constraints.
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
7. the emergence of new paradigms.

These are our recommendations:

1. Increase research on AI systems for Big Data and Deep Learning with emphasis on moral constraints.
2. Increase research on AI systems for Big Data and Deep Learning with emphasis on the prevention of AI systems to be hacked.
“In data science we nowadays distinguish seven phases of activities:

1. collecting data,
2. cleaning data,
3. interpreting data,
4. analyzing data,
5. visualization of data,
6. narrative science, and
7. the emergence of new paradigms.

These are our recommendations:

1. Increase research on AI systems for Big Data and Deep Learning with emphasis on moral constraints.
2. Increase research on AI systems for Big Data and Deep Learning with emphasis on the prevention of AI systems to be hacked.
3. Establish (a) a committee of Data Authorities and (b) an ethical committee.
Adding a few more “Commandments”
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
- ...and for implications of those meanings.
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
- ...and for implications of those meanings.
- Cross-validation not just on subsets of the data but also of models.
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
- ...and for implications of those meanings.
- Cross-validation not just on subsets of the data but also of models.
- Models should be “Good At Any Grain”—?
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
- ...and for implications of those meanings.
- Cross-validation not just on subsets of the data but also of models.
- Models should be “Good At Any Grain”—?
- [your reactions go here]
Adding a few more “Commandments”

- Models should be “introspected” for meanings of their quantities...
- ...and for implications of those meanings.
- Cross-validation not just on subsets of the data but also of models.
- Models should be “Good At Any Grain”—?
- [your reactions go here]
- Thank you very much for the invitation!