Kolkata Algorithms Short Course: II. "Expanding" Algorithms

Kenneth W. Regan University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be "solved" by NTM in $O(\log n)$ space,

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be "solved" by NTM in $O(\log n)$ space, meaning with finitely many pointers ("fingers") into a read-only data structure where they move at-will.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be "solved" by NTM in $O(\log n)$ space, meaning with finitely many pointers ("fingers") into a read-only data structure where they move at-will. Shows NL \subseteq P.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be "solved" by NTM in $O(\log n)$ space, meaning with finitely many pointers ("fingers") into a read-only data structure where they move at-will. Shows NL \subseteq P.
- Example: Maze "dungeon" problem (and string-matching problem) looked more complex but obeyed this distinction so in the same "class" of algorithms.

Breadth-First Search—Brief Review

- Solves search problem, "is node f reachable from s ?" (GAP)
- BFS expands a set of FOUND nodes until no further change.
- Economizes time but FOUND takes up much space.
- Needs random access to look up whether $v \in$ FOUND.
- Theoretical distinction: the search problem is can be "solved" by NTM in $O(\log n)$ space, meaning with finitely many pointers ("fingers") into a read-only data structure where they move at-will. Shows NL \subseteq P.
- Example: Maze "dungeon" problem (and string-matching problem) looked more complex but obeyed this distinction so in the same "class" of algorithms.

And Depth-First Search economizes memory but not time, shows $N P \subseteq$ PSPACE.

Is this problem in the "BFS class"?

- Given a graph G and a node h deemed a "health risk,"

Is this problem in the "BFS class"?

- Given a graph G and a node h deemed a "health risk,"
- If v is a health risk and $u \rightarrow v$ then u is a health risk.

Is this problem in the "BFS class"?

- Given a graph G and a node h deemed a "health risk,"
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?

Is this problem in the "BFS class"?

- Given a graph G and a node h deemed a "health risk,"
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but "thinking backwards." Answer is still yes iff there is a path from s to h.

Is this problem in the "BFS class"?

- Given a graph G and a node h deemed a "health risk,"
- If v is a health risk and $u \rightarrow v$ then u is a health risk.
- Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but "thinking backwards." Answer is still yes iff there is a path from s to h.

Solved by BFS working forwards from s-or more intuitively, by working backwards from h and expanding the set nodes known to be "health risks." In the latter case it is BFS in the "reversed graph."

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y)$).

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses.

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).
- The problem is, given an f, is there a way to make it true-or must it always be false?

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).
- The problem is, given an f, is there a way to make it true-or must it always be false?

Example:

$$
f=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x})
$$

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).
- The problem is, given an f, is there a way to make it true-or must it always be false?

Example:

$$
f=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x})
$$

If we set $u=$ true then we must set $w, x=$ true as well, but then the last clause fails.

A much harder example

- A 2-clause is a logical formula $(x \vee y)$ or $((\neg x) \vee y)$ or $(x \vee(\neg y))$ or $(\neg x) \vee(\neg y))$.
- We can write the four possible 2-clauses more economically as $(x \vee y)$ or $(\bar{x} \vee y)$ or $(x \vee \bar{y})$ or $(\bar{x} \vee \bar{y})$.
- Consider logical formulas f that are ANDs of such clauses. Called "2-Conjunctive Normal Form" (2CNF).
- The problem is, given an f, is there a way to make it true-or must it always be false?

Example:

$$
f=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x})
$$

If we set $u=$ true then we must set $w, x=$ true as well, but then the last clause fails. However, we can set $u=0, v=1$, and either w or x false-then we satisfy f.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x) .
$$

This burdens f with two more clauses.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.
- So $(x \vee y) \equiv \bar{x} \rightarrow y$ and $(\bar{x} \vee y) \equiv x \rightarrow y$.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.
- So $(x \vee y) \equiv \bar{x} \rightarrow y$ and $(\bar{x} \vee y) \equiv x \rightarrow y$.
- And $(x \vee \bar{y}) \equiv \bar{x} \rightarrow \bar{y}$ and $(\bar{x} \vee \bar{y}) \equiv x \rightarrow \bar{y}$.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.
- So $(x \vee y) \equiv \bar{x} \rightarrow y$ and $(\bar{x} \vee y) \equiv x \rightarrow y$.
- And $(x \vee \bar{y}) \equiv \bar{x} \rightarrow \bar{y}$ and $(\bar{x} \vee \bar{y}) \equiv x \rightarrow \bar{y}$.
- Also $(x \vee y) \equiv(y \vee x)$ so include $\bar{y} \rightarrow x$ etc.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.
- So $(x \vee y) \equiv \bar{x} \rightarrow y$ and $(\bar{x} \vee y) \equiv x \rightarrow y$.
- And $(x \vee \bar{y}) \equiv \bar{x} \rightarrow \bar{y}$ and $(\bar{x} \vee \bar{y}) \equiv x \rightarrow \bar{y}$.
- Also $(x \vee y) \equiv(y \vee x)$ so include $\bar{y} \rightarrow x$ etc.
- Make a graph G_{f} with these nodes and all these edges.

Second Example and Key Idea

$$
f^{\prime}=(u \vee v) \wedge(\bar{u} \vee w) \wedge(\bar{u} \vee x) \wedge(\bar{w} \vee \bar{x}) \wedge(\bar{v} \vee w) \wedge(\bar{v} \vee x)
$$

This burdens f with two more clauses. Now if we set $u=0$ and $v=1$, the two new clauses force us to make $w=x=1$. But then the fourth clause ($\bar{w} \vee \bar{x}$) fails.

- So there is no way. But how can we convincingly prove it?
- Idea: $x \rightarrow y$ is equivalent to $((\neg x) \vee y)$.
- So $(x \vee y) \equiv \bar{x} \rightarrow y$ and $(\bar{x} \vee y) \equiv x \rightarrow y$.
- And $(x \vee \bar{y}) \equiv \bar{x} \rightarrow \bar{y}$ and $(\bar{x} \vee \bar{y}) \equiv x \rightarrow \bar{y}$.
- Also $(x \vee y) \equiv(y \vee x)$ so include $\bar{y} \rightarrow x$ etc.
- Make a graph G_{f} with these nodes and all these edges.
- Lemma: f is unsatsfiable $\Longleftrightarrow G_{f}$ has a "vicious cycle" involving some node u and its negation \bar{u}. [Draw G_{f}, show example.]

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?
- Granting the Lemma, a nondeterministic TM N can "solve" f being unsatisfiable by guessing a contradictory u, \bar{u},

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?
- Granting the Lemma, a nondeterministic TM N can "solve" f being unsatisfiable by guessing a contradictory u, \bar{u}, putting two fingers there ("batsmen") and walking each in G_{f}. If and when the "batsmen" change places, we have the cycle.

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?
- Granting the Lemma, a nondeterministic TM N can "solve" f being unsatisfiable by guessing a contradictory u, \bar{u}, putting two fingers there ("batsmen") and walking each in G_{f}. If and when the "batsmen" change places, we have the cycle.
- So this is BFS class. We can get clean BFS by converting N to its "ID graph."

Analysis and Algorithm

- If there is a path from u to w in G_{f}, then $u \Longrightarrow w$ logically.
- Same for any combination of u, \bar{u} and w, \bar{w}.
- So if u and \bar{u} are on a cycle, then $u \Longrightarrow \neg u$ and $\neg u \Longrightarrow u$.
- This contradiction means there is no consistent truth assignment, so f is unsatisfiable.
- If there is no cycle involving both u and \bar{u}, for any u, then how can we satisfy f and prove the Lemma?
- Granting the Lemma, a nondeterministic TM N can "solve" f being unsatisfiable by guessing a contradictory u, \bar{u}, putting two fingers there ("batsmen") and walking each in G_{f}. If and when the "batsmen" change places, we have the cycle.
- So this is BFS class. We can get clean BFS by converting N to its "ID graph."
- Can you find a more efficient algorithm directly?

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t ?

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t ?
- [Show examples on board.]

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t ?
- [Show examples on board.]
- We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t ?
- [Show examples on board.]
- We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?
- The kind of question where you gain insight from theory is:

Another Example

Let's picture BFS as "conquest" or "occupation" or "invasion":

- If we have occupied u and $u \rightarrow v$ is an edge and v is undefended, then we conquer v.
- But if v is a "Fort," say we conquer v only if we have occupied all "supply lines" u such that $u \rightarrow v$.
- Now given a graph G where we occupy s, and a node t with some forts in-between, the question is, can we conquer t ?
- [Show examples on board.]
- We can straightforwardly modify the previous BFS algorithm to solve this. So everything the same?
- The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Graph Conquest Algorithm (literature: "pebbling")

set $<$ Node $>$ CONQUERED $=\{\mathrm{s}\}, \operatorname{POPPED}=\{ \}$; bool novel = true; //fort: v_strength $=$ indeg (v) while (novel) \{
novel $=$ false;
foreach (u in CONQUERED \ POPPED) \{ foreach (v: u—>v) \{
if (v not in CONQUERED) \{
novel = true;
v_hits++;
if (v_hits $>=$ v_strength) \{ CONQUERED $+=\{\mathrm{v}\}$;
\} \} \}
POPPED $+=\{u\} ; / / C a n$ you '(ND-do'' this
//using $O(1)$-many fingers?

Conquering Boolean Logic

- Let's say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.

Conquering Boolean Logic

- Let's say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.
- Much easier in general than trying to tell whether f is satisfiable.

Conquering Boolean Logic

- Let's say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.
- Much easier in general than trying to tell whether f is satisfiable.
- We may suppose f uses AND, OR, and NOT gates only, and has variables x_{1}, \ldots, x_{n}. We think of n as the "rough size" of f.

Conquering Boolean Logic

- Let's say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.
- Much easier in general than trying to tell whether f is satisfiable.
- We may suppose f uses AND, OR, and NOT gates only, and has variables x_{1}, \ldots, x_{n}. We think of n as the "rough size" of f.
- Further, using DeMorgan's Laws, we may suppose all negations are pushed inside: $\neg(g \wedge h)=(\neg g) \vee(\neg h) ; \neg(g \vee h)=(\neg g) \wedge(\neg h)$.

Conquering Boolean Logic

- Let's say we merely want to evaluate a Boolean formula f on a given 0-1 truth assignment.
- Much easier in general than trying to tell whether f is satisfiable.
- We may suppose f uses AND, OR, and NOT gates only, and has variables x_{1}, \ldots, x_{n}. We think of n as the "rough size" of f.
- Further, using DeMorgan's Laws, we may suppose all negations are pushed inside: $\neg(g \wedge h)=(\neg g) \vee(\neg h) ; \neg(g \vee h)=(\neg g) \wedge(\neg h)$.
- So we make f use \wedge, \vee only with $2 n$ literals $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort-conquered iff both of its arguments are.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort-conquered iff both of its arguments are.
- An OR gate is an undefended node-one "truth invader" suffices.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort-conquered iff both of its arguments are.
- An OR gate is an undefended node-one "truth invader" suffices.
- $f(a)=$ true \Longleftrightarrow we conquer the output gate of f.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort-conquered iff both of its arguments are.
- An OR gate is an undefended node-one "truth invader" suffices.
- $f(a)=$ true \Longleftrightarrow we conquer the output gate of f.
- In a formula, each gate is argument to at most 1 other gate. Literals can be used as often as desired.

From Formula (or Circuit) to a Graph

- Given f using \wedge, \vee and $x_{1}, \ldots, x_{n}, \bar{x}_{1}, \ldots, \bar{x}_{n}$;
- Any given truth assignment $a=\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}$ sets n literals true and n of them false. They are $2 n$ nodes in our graph.
- Conceptually we connect our start node to the n made true-each is "conquered."
- Now each \wedge, \vee gate in f is also a node, and has in-edges from its two arguments. [Show examples on board.]
- An AND gate is a fort-conquered iff both of its arguments are.
- An OR gate is an undefended node-one "truth invader" suffices.
- $f(a)=$ true \Longleftrightarrow we conquer the output gate of f.
- In a formula, each gate is argument to at most 1 other gate. Literals can be used as often as desired.
- In a (proper) circuit, some gates fan out to 2 or more other gates.

Circuit Evaluation "Conquers" All of P

Theorem; Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_{1}, \ldots, x_{n} (and their negations $\left.\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ such that for all inputs $x \in\{0,1\}^{n}$,

$$
M \text { accepts } x \Longleftrightarrow C(x)=1
$$

Circuit Evaluation "Conquers" All of P

Theorem; Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_{1}, \ldots, x_{n} (and their negations $\left.\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ such that for all inputs $x \in\{0,1\}^{n}$,

$$
M \text { accepts } x \Longleftrightarrow C(x)=1
$$

[Show on board.] This embodies the slogan:

> "Software Can be Efficiently Burned Into Hardware."

Circuit Evaluation "Conquers" All of P

Theorem; Let M be any deterministic Turing machine that runs in time $t(n)$ and space $s(n)$. Then for any n, we can build a Boolean logic circuit C of size $O(t(n) \times s(n))$ with input nodes x_{1}, \ldots, x_{n} (and their negations $\left.\bar{x}_{1}, \ldots, \bar{x}_{n}\right)$ such that for all inputs $x \in\{0,1\}^{n}$,

$$
M \text { accepts } x \Longleftrightarrow C(x)=1
$$

[Show on board.] This embodies the slogan:

> "Software Can be Efficiently Burned Into Hardware."

Consequence: "Graph Conquest" is in the BFS class only if $\mathrm{P}=\mathrm{NL}$.

More Non-BFS "Expanding" Algorithms

- Minimum Spanning Tree.
- Shortest Paths.
- Edit Distance and Other Dynamic Programming.
- How (Not) to Compute Fibonacci Numbers.

Minimum Spanning Tree

- Given an undirected G and weights $w_{e} \geq 0$ on each edge e, find a spanning tree T to minimize $w(T)=\sum_{e \in T} w_{e}$.

Minimum Spanning Tree

- Given an undirected G and weights $w_{e} \geq 0$ on each edge e, find a spanning tree T to minimize $w(T)=\sum_{e \in T} w_{e}$.
- Motivating example: $V(G)=$ hubs u, v, \ldots for electrification, $\left.w_{(} u, v\right)=$ cost of building electric lines between u and v.

Minimum Spanning Tree

- Given an undirected G and weights $w_{e} \geq 0$ on each edge e, find a spanning tree T to minimize $w(T)=\sum_{e \in T} w_{e}$.
- Motivating example: $V(G)=$ hubs u, v, \ldots for electrification, $\left.w_{(} u, v\right)=$ cost of building electric lines between u and v.
- A useful idea: If $C \subset E(G)$ is a cutset, meaning a set of edges whose removal creates two (or more) islands-like bridges over a river-then T must include a minimum-weight edge from C. [Show diagram of why on board.]

Repeat until T is built: add a minimum-weight edge e that does not cause a cycle.
[Show example on board. Why is this correct? If "add" means "add to T " then we get Prim's algorithm; if we allow e to start a new tree and choose the minimum-available edge overall then Kruskal's algorithem.]

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, Then every good choice of edge joins two trees.

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, Then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, Then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?
- That is, say we do a "Kruskal step" if we choose a least edge that has not already been used or rejected (because it causes a cycle).

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, Then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?
- That is, say we do a "Kruskal step" if we choose a least edge that has not already been used or rejected (because it causes a cycle).
- In a "Prim step" we choose one (any) tree U from the forest and then add a least edge that touches U.

Minimum Spanning Tree-new idea?

- In Prim's algorithm we can choose any vertex v to start building T.
- With Kruskal's the (or some) minimum-weight edge begins a first tree, but we may build up separate trees before joining them.
- Indeed Kruskal can regard the start as a forest of n trivial trees, each consisting of just one isolated node, Then every good choice of edge joins two trees.
- Idea (new?): Can we blend the two algorithms? Is that still correct?
- That is, say we do a "Kruskal step" if we choose a least edge that has not already been used or rejected (because it causes a cycle).
- In a "Prim step" we choose one (any) tree U from the forest and then add a least edge that touches U.
- Challenge: Can this 'liberal' mix of the algorithms make a mistake?

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.
- At each step, choose $u \in$ FOUND \backslash POPPED with least $d(u)$.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.
- At each step, choose $u \in$ FOUND \backslash POPPED with least $d(u)$.
- For each edge e from u to a neighbor v-even if v already visited (but not popped)-if $d(u)+w(e)<d(v)$ then update $d(v):=d(u)+w(e)$, and make a pointer from v point to u.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.
- At each step, choose $u \in$ FOUND \backslash POPPED with least $d(u)$.
- For each edge e from u to a neighbor v-even if v already visited (but not popped)-if $d(u)+w(e)<d(v)$ then update $d(v):=d(u)+w(e)$, and make a pointer from v point to u.
- Then pop u. Choose new u^{\prime} with least $d\left(u^{\prime}\right)$; repeat until done.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.
- At each step, choose $u \in$ FOUND \backslash POPPED with least $d(u)$.
- For each edge e from u to a neighbor v-even if v already visited (but not popped)-if $d(u)+w(e)<d(v)$ then update $d(v):=d(u)+w(e)$, and make a pointer from v point to u.
- Then pop u. Choose new u^{\prime} with least $d\left(u^{\prime}\right)$; repeat until done.
- Following pointers back from t then gives a shortest path P from s.

BFS and Shortest Paths (Dijkstra's Algorithm)

- In our code for BFS we iterated over FOUND nodes that were not yet POPPED in the graph-label order.
- Instead, let us maintain for each node v its currently-known distance $d(v)$ from s.
- Initially $d(s)=0 ; d(v)=\infty$ for all other v.
- At each step, choose $u \in$ FOUND \backslash POPPED with least $d(u)$.
- For each edge e from u to a neighbor v-even if v already visited (but not popped)-if $d(u)+w(e)<d(v)$ then update $d(v):=d(u)+w(e)$, and make a pointer from v point to u.
- Then pop u. Choose new u^{\prime} with least $d\left(u^{\prime}\right)$; repeat until done.
- Following pointers back from t then gives a shortest path P from s.
- To prove correct, think of the first e where a supposedly shorter path P^{\prime} differs from $P \ldots$ [Show on board, note use of heaps.]

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra's algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want all-pairs shortest paths).

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra's algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want all-pairs shortest paths).
- In the edit distance problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra's algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want all-pairs shortest paths).
- In the edit distance problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.
- We will build a table D of size $O(m n)$-indeed dimension $(m+1) \times(n+1)$.

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra's algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want all-pairs shortest paths).
- In the edit distance problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.
- We will build a table D of size $O(m n)$-indeed dimension $(m+1) \times(n+1)$.
- If we number chars $x=x_{1} \cdots x_{m}$ from 1 , then we conveniently number the "fenceposts" between and around them by $0, \ldots, m$.

Edit Distance and Dynamic Programming

- The term dynamic programming (DP) is IMHO misleading [tell story of 1950s "political correctness"].
- Really it means cleverly finding a way to compute a global function by incrementally building and updating a localized table.
- The size of the table is most important to the running time.
- Dijkstra's algorithm updates the table $d(v)$, but is more direct than what is usually called DP and the table has only $O(n)$ size (unless you want all-pairs shortest paths).
- In the edit distance problem, we wish to compute a certain distance $d(x, y)$ between a string x of some length m and y of length n.
- We will build a table D of size $O(m n)$-indeed dimension $(m+1) \times(n+1)$.
- If we number chars $x=x_{1} \cdots x_{m}$ from 1 , then we conveniently number the "fenceposts" between and around them by $0, \ldots, m$.
- The "dynamic" idea is $D(i, j)=d\left(x_{1} \cdots x_{i}, y_{1} \cdots y_{j}\right)$.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum?

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...
- $d(\lambda$, Kolkata $)=7$: clearly 7 inserts needed.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...
- $d(\lambda$, Kolkata $)=7$: clearly 7 inserts needed.
- Similarly $d($ Calcutta,$\lambda)=8$.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...
- $d(\lambda$, Kolkata $)=7$: clearly 7 inserts needed.
- Similarly d (Calcutta, λ) $=8$.
- Thus for any strings we always initialize $D(0, j)=j$ and $D(i, 0)=i$.

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:

- Delete any character;
- Insert any character (in a "fencepost");
- Substitute any character c by any letter d.
- (The last is 1 step, rather than the 2 steps of deleting c and inserting d.)
One way to do this is Calcutta -> Kalcutta -> Kolcutta -> Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that minimum? Well, think of building the city up from scratch...
- $d(\lambda$, Kolkata $)=7$: clearly 7 inserts needed.
- Similarly $d($ Calcutta, $\lambda)=8$.
- Thus for any strings we always initialize $D(0, j)=j$ and $D(i, 0)=i$.
- A "Northeast" recurrence then expands the whole table.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq|x|, 1 \leq j \leq|y|:$ if $x_{i}=y_{j}$ then $D(i, j)=D(i-1, j-1)$, else

$$
D(i, j)=1+\min \{D(i-1, j-1), D(i-1, j), D(i, j-1)\} .
$$

- If $x_{i}=y_{j}$ then the least sequence converting $x_{1} \cdots x_{i-1}$ to $y_{1} \cdots y_{j-1}$ also converts $x_{1} \cdots x_{i}$ to $y_{1} \cdots y_{j}$ with no more edits.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq|x|, 1 \leq j \leq|y|:$ if $x_{i}=y_{j}$ then $D(i, j)=D(i-1, j-1)$, else

$$
D(i, j)=1+\min \{D(i-1, j-1), D(i-1, j), D(i, j-1)\} .
$$

- If $x_{i}=y_{j}$ then the least sequence converting $x_{1} \cdots x_{i-1}$ to $y_{1} \cdots y_{j-1}$ also converts $x_{1} \cdots x_{i}$ to $y_{1} \cdots y_{j}$ with no more edits.
- If note, then because x_{i} and y_{j} are the last chars in the respective (sub-)strings, at some point we have to change x_{i} either by (a) substituting it, (b) deleting it, or (c) inserting y_{j} someplace after it.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq|x|, 1 \leq j \leq|y|:$ if $x_{i}=y_{j}$ then $D(i, j)=D(i-1, j-1)$, else

$$
D(i, j)=1+\min \{D(i-1, j-1), D(i-1, j), D(i, j-1)\} .
$$

- If $x_{i}=y_{j}$ then the least sequence converting $x_{1} \cdots x_{i-1}$ to $y_{1} \cdots y_{j-1}$ also converts $x_{1} \cdots x_{i}$ to $y_{1} \cdots y_{j}$ with no more edits.
- If note, then because x_{i} and y_{j} are the last chars in the respective (sub-)strings, at some point we have to change x_{i} either by (a) substituting it, (b) deleting it, or (c) inserting y_{j} someplace after it.
- So let S be a minimum sequence of edits from $x^{\prime}=x_{1} \cdots x_{i}$ to $y^{\prime}=y_{1} \cdots y_{j}$.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq|x|, 1 \leq j \leq|y|:$ if $x_{i}=y_{j}$ then $D(i, j)=D(i-1, j-1)$, else

$$
D(i, j)=1+\min \{D(i-1, j-1), D(i-1, j), D(i, j-1)\} .
$$

- If $x_{i}=y_{j}$ then the least sequence converting $x_{1} \cdots x_{i-1}$ to $y_{1} \cdots y_{j-1}$ also converts $x_{1} \cdots x_{i}$ to $y_{1} \cdots y_{j}$ with no more edits.
- If note, then because x_{i} and y_{j} are the last chars in the respective (sub-)strings, at some point we have to change x_{i} either by (a) substituting it, (b) deleting it, or (c) inserting y_{j} someplace after it.
- So let S be a minimum sequence of edits from $x^{\prime}=x_{1} \cdots x_{i}$ to $y^{\prime}=y_{1} \cdots y_{j}$.
- If y_{j} is already in $x_{1} \cdots x_{i-1}$ then S deletes x_{i}. We may as well do that first. So $D(i, j) \leq 1+D(i-1, j)$.

The Edit Distance Recursion

Lemma: For any strings x, y and i, j with $1 \leq i \leq|x|, 1 \leq j \leq|y|$: if $x_{i}=y_{j}$ then $D(i, j)=D(i-1, j-1)$, else

$$
D(i, j)=1+\min \{D(i-1, j-1), D(i-1, j), D(i, j-1)\} .
$$

- If $x_{i}=y_{j}$ then the least sequence converting $x_{1} \cdots x_{i-1}$ to $y_{1} \cdots y_{j-1}$ also converts $x_{1} \cdots x_{i}$ to $y_{1} \cdots y_{j}$ with no more edits.
- If note, then because x_{i} and y_{j} are the last chars in the respective (sub-)strings, at some point we have to change x_{i} either by (a) substituting it, (b) deleting it, or (c) inserting y_{j} someplace after it.
- So let S be a minimum sequence of edits from $x^{\prime}=x_{1} \cdots x_{i}$ to $y^{\prime}=y_{1} \cdots y_{j}$.
- If y_{j} is already in $x_{1} \cdots x_{i-1}$ then S deletes x_{i}. We may as well do that first. So $D(i, j) \leq 1+D(i-1, j)$.
- If not, and if S does not delete x_{i}, then either it substitutes x_{i} or inserts after x_{i}.

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.
- Else, we insert y_{j} after the position occupied by x_{i}. Again we can just as well do that last, having produced $y_{1} \cdots y_{j-1}$. So $D(i, j) \leq 1+D(i, j-1)$ in that case..

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.
- Else, we insert y_{j} after the position occupied by x_{i}. Again we can just as well do that last, having produced $y_{1} \cdots y_{j-1}$. So $D(i, j) \leq 1+D(i, j-1)$ in that case..
- One case must hold, so proved. \square

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.
- Else, we insert y_{j} after the position occupied by x_{i}. Again we can just as well do that last, having produced $y_{1} \cdots y_{j-1}$. So $D(i, j) \leq 1+D(i, j-1)$ in that case..
- One case must hold, so proved. \square
"Calcutta Example": Clearly $D(1,1)=d(C, K)=1$. So

$$
\begin{aligned}
D(2,1) & =d(\mathrm{Ca}, \mathrm{~K}=1+\min \{D(1,0), D(1,1), D(2,0)\} \\
& =1+\min \{d(\mathrm{C}, \lambda), d(\mathrm{C}, \mathrm{~K}), d(\mathrm{Ca}, \lambda)\}=2 .
\end{aligned}
$$

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.
- Else, we insert y_{j} after the position occupied by x_{i}. Again we can just as well do that last, having produced $y_{1} \cdots y_{j-1}$. So $D(i, j) \leq 1+D(i, j-1)$ in that case..
- One case must hold, so proved. \square
"Calcutta Example": Clearly $D(1,1)=d(C, K)=1$. So

$$
\begin{aligned}
D(2,1) & =d(\mathrm{Ca}, \mathrm{~K}=1+\min \{D(1,0), D(1,1), D(2,0)\} \\
& =1+\min \{d(\mathrm{C}, \lambda), d(\mathrm{C}, \mathrm{~K}), d(\mathrm{Ca}, \lambda)\}=2 .
\end{aligned}
$$

Next $D(1,2)=d(\mathrm{C}, \mathrm{Ko})=2$ and $D(2,2)=d(\mathrm{Ca}, \mathrm{Ko})=2$ and

$$
D(3,3)=D(2,2)=2 \quad \text { because } \quad x_{3}=y_{3}=\ell .
$$

Proof, continued...

- If S does not delete x_{i}, then it substitutes x_{i} or inserts after x_{i}.
- If it substitutes $x_{i}:=y_{j}$ then we can do that first (or last), so $D(i, j) \leq 1+D(i-1, j-1)$.
- Else, we insert y_{j} after the position occupied by x_{i}. Again we can just as well do that last, having produced $y_{1} \cdots y_{j-1}$. So $D(i, j) \leq 1+D(i, j-1)$ in that case..
- One case must hold, so proved. \square
"Calcutta Example": Clearly $D(1,1)=d(C, K)=1$. So

$$
\begin{aligned}
D(2,1) & =d(\mathrm{Ca}, \mathrm{~K}=1+\min \{D(1,0), D(1,1), D(2,0)\} \\
& =1+\min \{d(\mathrm{C}, \lambda), d(\mathrm{C}, \mathrm{~K}), d(\mathrm{Ca}, \lambda)\}=2 .
\end{aligned}
$$

Next $D(1,2)=d(\mathrm{C}, \mathrm{Ko})=2$ and $D(2,2)=d(\mathrm{Ca}, \mathrm{Ko})=2$ and

$$
D(3,3)=D(2,2)=2 \quad \text { because } \quad x_{3}=y_{3}=\ell .
$$

Building up, we eventually get $D(8,7)=5$ (exercise).

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$?

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition...

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition... but a lousy recursion.

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition. . . but a lousy recursion.
- Better is $\left(F_{n}, F_{n-1}\right)=\left(2 F_{n-2}+F_{n-3}, F_{n-2}+F_{n-3}\right): O(n)$ time.

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $\left(F_{n}, F_{n-1}\right)=\left(2 F_{n-2}+F_{n-3}, F_{n-2}+F_{n-3}\right): O(n)$ time.
- Filling table iteratively not recursively is simple and good.

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $\left(F_{n}, F_{n-1}\right)=\left(2 F_{n-2}+F_{n-3}, F_{n-2}+F_{n-3}\right): O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_{n} without computing F_{n-1} or F_{n-2}-and without any fancy arithmetic like powers of the golden ratio?

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $\left(F_{n}, F_{n-1}\right)=\left(2 F_{n-2}+F_{n-3}, F_{n-2}+F_{n-3}\right): O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_{n} without computing F_{n-1} or F_{n-2}-and without any fancy arithmetic like powers of the golden ratio?
- Surprise(?) yes: keep squaring $M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.

Big Issue: Can We Improve the Time?

Can we improve the $\Theta(m n)$ running time to $O(m+n)$? or to $\tilde{O}(m+n)$ ignoring any factors of $\log (m+n)$? or at least to $O\left((m+n)^{2-\epsilon}\right)$ for some $\epsilon>0$ so the time is better than quadratic?

- Would have huge impact in gene sequencing, for instance.
- Can we "jump the table," as for Fibonacci Numbers F_{n} ?
- The formula $F_{n}=F_{n-1}+F_{n-2}$ is a great definition... but a lousy recursion.
- Better is $\left(F_{n}, F_{n-1}\right)=\left(2 F_{n-2}+F_{n-3}, F_{n-2}+F_{n-3}\right): O(n)$ time.
- Filling table iteratively not recursively is simple and good.
- But can we compute F_{n} without computing F_{n-1} or F_{n-2}-and without any fancy arithmetic like powers of the golden ratio?
- Surprise(?) yes: keep squaring $M=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$.
- But for ED, new "Puzzling Evidence" that $\Theta(m n)$ cannot be avoided.

Original Third Lecture Day...

Shorter, done from board:

- Sorting is a "Good Guy."

Original Third Lecture Day...

Shorter, done from board:

- Sorting is a "Good Guy."
- Parallel Prefix Sum

Original Third Lecture Day...

Shorter, done from board:

- Sorting is a "Good Guy."
- Parallel Prefix Sum
- Map-Reduce in the Abstract.

Original Third Lecture Day...

Shorter, done from board:

- Sorting is a "Good Guy."
- Parallel Prefix Sum
- Map-Reduce in the Abstract.
- Log-Depth Circuits and Cloud-Friendly Algorithms.

