
Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Kolkata Algorithms Short Course: II. “Expanding”
Algorithms

Kenneth W. Regan
University at Buffalo (SUNY)

University of Calcutta, 3 August 2016

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)

BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.

Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.

Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.

Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space,

meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.

Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.

Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Breadth-First Search—Brief Review

Solves search problem, “is node f reachable from s?” (GAP)
BFS expands a set of FOUND nodes until no further change.
Economizes time but FOUND takes up much space.
Needs random access to look up whether v 2 FOUND.
Theoretical distinction: the search problem is can be “solved” by
NTM in O(logn) space, meaning with finitely many pointers
(“fingers”) into a read-only data structure where they move at-will.
Shows NL � P.
Example: Maze “dungeon” problem (and string-matching problem)
looked more complex but obeyed this distinction so in the same
“class” of algorithms.

And Depth-First Search economizes memory but not time, shows
NP � PSPACE.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Is this problem in the “BFS class”?

Given a graph G and a node h deemed a “health risk,”

If v is a health risk and u ! v then u is a health risk.
Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking
backwards.” Answer is still yes iff there is a path from s to h .

Solved by BFS working forwards from s—or more intuitively, by
working backwards from h and expanding the set nodes known to be
“health risks.” In the latter case it is BFS in the “reversed graph.”

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Is this problem in the “BFS class”?

Given a graph G and a node h deemed a “health risk,”
If v is a health risk and u ! v then u is a health risk.

Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking
backwards.” Answer is still yes iff there is a path from s to h .

Solved by BFS working forwards from s—or more intuitively, by
working backwards from h and expanding the set nodes known to be
“health risks.” In the latter case it is BFS in the “reversed graph.”

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Is this problem in the “BFS class”?

Given a graph G and a node h deemed a “health risk,”
If v is a health risk and u ! v then u is a health risk.
Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking
backwards.” Answer is still yes iff there is a path from s to h .

Solved by BFS working forwards from s—or more intuitively, by
working backwards from h and expanding the set nodes known to be
“health risks.” In the latter case it is BFS in the “reversed graph.”

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Is this problem in the “BFS class”?

Given a graph G and a node h deemed a “health risk,”
If v is a health risk and u ! v then u is a health risk.
Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking
backwards.” Answer is still yes iff there is a path from s to h .

Solved by BFS working forwards from s—or more intuitively, by
working backwards from h and expanding the set nodes known to be
“health risks.” In the latter case it is BFS in the “reversed graph.”

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Is this problem in the “BFS class”?

Given a graph G and a node h deemed a “health risk,”
If v is a health risk and u ! v then u is a health risk.
Is the start node s a health risk?

Yes, problem is in BFS class. It is the same as GAP but “thinking
backwards.” Answer is still yes iff there is a path from s to h .

Solved by BFS working forwards from s—or more intuitively, by
working backwards from h and expanding the set nodes known to be
“health risks.” In the latter case it is BFS in the “reversed graph.”

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).

We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).

Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses.

Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).

The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails.

However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

A much harder example

A 2-clause is a logical formula (x _ y) or ((:x) _ y) or (x _ (:y))
or (:x) _ (:y)).
We can write the four possible 2-clauses more economically as
(x _ y) or (�x _ y) or (x _ �y) or (�x _ �y).
Consider logical formulas f that are ANDs of such clauses. Called
“2-Conjunctive Normal Form” (2CNF).
The problem is, given an f , is there a way to make it true—or must
it always be false?

Example:
f = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x):

If we set u = true then we must set w ; x = true as well, but then the
last clause fails. However, we can set u = 0, v = 1, and either w or x
false—then we satisfy f .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses.

Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1.

But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?

Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).

So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .

And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .

Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.

Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.

Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Second Example and Key Idea

f 0 = (u _ v) ^ (�u _ w) ^ (�u _ x) ^ (�w _ �x) ^ (�v _ w) ^ (�v _ x):

This burdens f with two more clauses. Now if we set u = 0 and v = 1,
the two new clauses force us to make w = x = 1. But then the fourth
clause (�w _ �x) fails.

So there is no way. But how can we convincingly prove it?
Idea: x ! y is equivalent to ((:x) _ y).
So (x _ y) � �x ! y and (�x _ y) � x ! y .
And (x _ �y) � �x ! �y and (�x _ �y) � x ! �y .
Also (x _ y) � (y _ x) so include �y ! x etc.
Make a graph Gf with these nodes and all these edges.
Lemma: f is unsatsfiable () Gf has a “vicious cycle” involving
some node u and its negation �u . [Draw Gf , show example.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.

Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .

So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .

This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.

If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?

Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u ,

putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.

So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”

Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Analysis and Algorithm

If there is a path from u to w in Gf , then u =) w logically.
Same for any combination of u ; �u and w ; �w .
So if u and �u are on a cycle, then u =) :u and :u =) u .
This contradiction means there is no consistent truth assignment,
so f is unsatisfiable.
If there is no cycle involving both u and �u , for any u , then how can
we satisfy f and prove the Lemma?
Granting the Lemma, a nondeterministic TM N can “solve” f
being unsatisfiable by guessing a contradictory u ; �u , putting two
fingers there (“batsmen”) and walking each in Gf . If and when the
“batsmen” change places, we have the cycle.
So this is BFS class. We can get clean BFS by converting N to its
“ID graph.”
Can you find a more efficient algorithm directly?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .

But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .

Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?

[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]

We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?

The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Another Example

Let’s picture BFS as “conquest” or “occupation” or “invasion”:
If we have occupied u and u ! v is an edge and v is undefended,
then we conquer v .
But if v is a “Fort,” say we conquer v only if we have occupied all
“supply lines” u such that u ! v .
Now given a graph G where we occupy s , and a node t with some
forts in-between, the question is, can we conquer t?
[Show examples on board.]
We can straightforwardly modify the previous BFS algorithm to
solve this. So everything the same?
The kind of question where you gain insight from theory is:

Does this problem belong to the BFS class?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Graph Conquest Algorithm (literature: “pebbling”)

set<Node> CONQUERED = {s } , POPPED = {} ;
bool novel = true ; // f o r t : v_strength = indeg (v)
whi le (novel) {

novel = f a l s e ;
f o r each (u in CONQUERED \ POPPED) {

fo r each (v : u��>v) {
i f (v not in CONQUERED) {

novel = true ;
v_hits++;
i f (v_hits >= v_strength) {

CONQUERED += {v } ;
} } } }
POPPED += {u} ; //Can you ‘ ‘ND�do ’ ’ t h i s

} // us ing O(1)�many f i n g e r s ?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Conquering Boolean Logic

Let’s say we merely want to evaluate a Boolean formula f on a
given 0-1 truth assignment.

Much easier in general than trying to tell whether f is satisfiable.
We may suppose f uses AND, OR, and NOT gates only, and has
variables x1; : : : ; xn . We think of n as the “rough size” of f .
Further, using DeMorgan’s Laws, we may suppose all negations are
pushed inside: :(g ^ h) = (:g) _ (:h); :(g _ h) = (:g) ^ (:h).
So we make f use ^;_ only with 2n literals x1; : : : ; xn ; �x1; : : : ; �xn .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Conquering Boolean Logic

Let’s say we merely want to evaluate a Boolean formula f on a
given 0-1 truth assignment.
Much easier in general than trying to tell whether f is satisfiable.

We may suppose f uses AND, OR, and NOT gates only, and has
variables x1; : : : ; xn . We think of n as the “rough size” of f .
Further, using DeMorgan’s Laws, we may suppose all negations are
pushed inside: :(g ^ h) = (:g) _ (:h); :(g _ h) = (:g) ^ (:h).
So we make f use ^;_ only with 2n literals x1; : : : ; xn ; �x1; : : : ; �xn .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Conquering Boolean Logic

Let’s say we merely want to evaluate a Boolean formula f on a
given 0-1 truth assignment.
Much easier in general than trying to tell whether f is satisfiable.
We may suppose f uses AND, OR, and NOT gates only, and has
variables x1; : : : ; xn . We think of n as the “rough size” of f .

Further, using DeMorgan’s Laws, we may suppose all negations are
pushed inside: :(g ^ h) = (:g) _ (:h); :(g _ h) = (:g) ^ (:h).
So we make f use ^;_ only with 2n literals x1; : : : ; xn ; �x1; : : : ; �xn .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Conquering Boolean Logic

Let’s say we merely want to evaluate a Boolean formula f on a
given 0-1 truth assignment.
Much easier in general than trying to tell whether f is satisfiable.
We may suppose f uses AND, OR, and NOT gates only, and has
variables x1; : : : ; xn . We think of n as the “rough size” of f .
Further, using DeMorgan’s Laws, we may suppose all negations are
pushed inside: :(g ^ h) = (:g) _ (:h); :(g _ h) = (:g) ^ (:h).

So we make f use ^;_ only with 2n literals x1; : : : ; xn ; �x1; : : : ; �xn .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Conquering Boolean Logic

Let’s say we merely want to evaluate a Boolean formula f on a
given 0-1 truth assignment.
Much easier in general than trying to tell whether f is satisfiable.
We may suppose f uses AND, OR, and NOT gates only, and has
variables x1; : : : ; xn . We think of n as the “rough size” of f .
Further, using DeMorgan’s Laws, we may suppose all negations are
pushed inside: :(g ^ h) = (:g) _ (:h); :(g _ h) = (:g) ^ (:h).
So we make f use ^;_ only with 2n literals x1; : : : ; xn ; �x1; : : : ; �xn .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;

Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.

Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”

Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]

An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.

An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.

f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .

In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.

In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

From Formula (or Circuit) to a Graph

Given f using ^;_ and x1; : : : ; xn ; �x1; : : : ; �xn ;
Any given truth assignment a = (a1; : : : ; an) 2 f0; 1gn sets n
literals true and n of them false. They are 2n nodes in our graph.
Conceptually we connect our start node to the n made true—each
is “conquered.”
Now each ^;_ gate in f is also a node, and has in-edges from its
two arguments. [Show examples on board.]
An AND gate is a fort—conquered iff both of its arguments are.
An OR gate is an undefended node—one “truth invader” suffices.
f (a) = true () we conquer the output gate of f .
In a formula, each gate is argument to at most 1 other gate.
Literals can be used as often as desired.
In a (proper) circuit, some gates fan out to 2 or more other gates.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Circuit Evaluation “Conquers” All of P

Theorem; Let M be any deterministic Turing machine that runs in
time t(n) and space s(n). Then for any n , we can build a Boolean logic
circuit C of size O(t(n)� s(n)) with input nodes x1; : : : ; xn (and their
negations �x1; : : : ; �xn) such that for all inputs x 2 f0; 1gn ,

M accepts x () C (x) = 1:

[Show on board.] This embodies the slogan:

“Software Can be Efficiently Burned Into Hardware.”

Consequence: “Graph Conquest” is in the BFS class only if P = NL.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Circuit Evaluation “Conquers” All of P

Theorem; Let M be any deterministic Turing machine that runs in
time t(n) and space s(n). Then for any n , we can build a Boolean logic
circuit C of size O(t(n)� s(n)) with input nodes x1; : : : ; xn (and their
negations �x1; : : : ; �xn) such that for all inputs x 2 f0; 1gn ,

M accepts x () C (x) = 1:

[Show on board.] This embodies the slogan:

“Software Can be Efficiently Burned Into Hardware.”

Consequence: “Graph Conquest” is in the BFS class only if P = NL.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Circuit Evaluation “Conquers” All of P

Theorem; Let M be any deterministic Turing machine that runs in
time t(n) and space s(n). Then for any n , we can build a Boolean logic
circuit C of size O(t(n)� s(n)) with input nodes x1; : : : ; xn (and their
negations �x1; : : : ; �xn) such that for all inputs x 2 f0; 1gn ,

M accepts x () C (x) = 1:

[Show on board.] This embodies the slogan:

“Software Can be Efficiently Burned Into Hardware.”

Consequence: “Graph Conquest” is in the BFS class only if P = NL.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

More Non-BFS “Expanding” Algorithms

Minimum Spanning Tree.
Shortest Paths.
Edit Distance and Other Dynamic Programming.
How (Not) to Compute Fibonacci Numbers.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree

Given an undirected G and weights we � 0 on each edge e , find a
spanning tree T to minimize w(T) =

P
e2T we .

Motivating example: V (G) = hubs u ; v ; : : : for electrification,
w(u ; v) = cost of building electric lines between u and v .
A useful idea: If C � E(G) is a cutset, meaning a set of edges
whose removal creates two (or more) islands—like bridges over a
river—then T must include a minimum-weight edge from C .
[Show diagram of why on board.]

Repeat until T is built: add a minimum-weight edge e that does
not cause a cycle.

[Show example on board. Why is this correct? If “add” means “add to
T ” then we get Prim’s algorithm; if we allow e to start a new tree and
choose the minimum-available edge overall then Kruskal’s algorithm.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree

Given an undirected G and weights we � 0 on each edge e , find a
spanning tree T to minimize w(T) =

P
e2T we .

Motivating example: V (G) = hubs u ; v ; : : : for electrification,
w(u ; v) = cost of building electric lines between u and v .

A useful idea: If C � E(G) is a cutset, meaning a set of edges
whose removal creates two (or more) islands—like bridges over a
river—then T must include a minimum-weight edge from C .
[Show diagram of why on board.]

Repeat until T is built: add a minimum-weight edge e that does
not cause a cycle.

[Show example on board. Why is this correct? If “add” means “add to
T ” then we get Prim’s algorithm; if we allow e to start a new tree and
choose the minimum-available edge overall then Kruskal’s algorithm.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree

Given an undirected G and weights we � 0 on each edge e , find a
spanning tree T to minimize w(T) =

P
e2T we .

Motivating example: V (G) = hubs u ; v ; : : : for electrification,
w(u ; v) = cost of building electric lines between u and v .
A useful idea: If C � E(G) is a cutset, meaning a set of edges
whose removal creates two (or more) islands—like bridges over a
river—then T must include a minimum-weight edge from C .
[Show diagram of why on board.]

Repeat until T is built: add a minimum-weight edge e that does
not cause a cycle.

[Show example on board. Why is this correct? If “add” means “add to
T ” then we get Prim’s algorithm; if we allow e to start a new tree and
choose the minimum-available edge overall then Kruskal’s algorithm.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .

With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.

Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.

Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?

That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).

In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .

Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Minimum Spanning Tree—new idea?

In Prim’s algorithm we can choose any vertex v to start building T .
With Kruskal’s the (or some) minimum-weight edge begins a first
tree, but we may build up separate trees before joining them.
Indeed Kruskal can regard the start as a forest of n trivial trees,
each consisting of just one isolated node, Then every good choice of
edge joins two trees.
Idea (new?): Can we blend the two algorithms? Is that still
correct?
That is, say we do a “Kruskal step” if we choose a least edge that
has not already been used or rejected (because it causes a cycle).
In a “Prim step” we choose one (any) tree U from the forest and
then add a least edge that touches U .
Challenge: Can this ‘liberal’ mix of the algorithms make a mistake?

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.

Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .

Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .

At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).

For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .

Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.

Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .

To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

BFS and Shortest Paths (Dijkstra’s Algorithm)

In our code for BFS we iterated over FOUND nodes that were not
yet POPPED in the graph-label order.
Instead, let us maintain for each node v its currently-known
distance d(v) from s .
Initially d(s) = 0; d(v) =1 for all other v .
At each step, choose u 2 FOUND n POPPED with least d(u).
For each edge e from u to a neighbor v—even if v already visited
(but not popped)—if d(u) + w(e) < d(v) then update
d(v) := d(u) + w(e), and make a pointer from v point to u .
Then pop u . Choose new u 0 with least d(u 0); repeat until done.
Following pointers back from t then gives a shortest path P from s .
To prove correct, think of the first e where a supposedly shorter
path P 0 differs from P . . . [Show on board, note use of heaps.]

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].

Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.

The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.

Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).

In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .

We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).

If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .

The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Edit Distance and Dynamic Programming

The term dynamic programming (DP) is IMHO misleading [tell
story of 1950s “political correctness”].
Really it means cleverly finding a way to compute a global function
by incrementally building and updating a localized table.
The size of the table is most important to the running time.
Dijkstra’s algorithm updates the table d(v), but is more direct
than what is usually called DP and the table has only O(n) size
(unless you want all-pairs shortest paths).
In the edit distance problem, we wish to compute a certain distance
d(x ; y) between a string x of some length m and y of length n .
We will build a table D of size O(mn)—indeed dimension
(m + 1)� (n + 1).
If we number chars x = x1 � � � xm from 1, then we conveniently
number the “fenceposts” between and around them by 0; : : : ;m .
The “dynamic” idea is D(i ; j) = d(x1 � � � xi ; y1 � � � yj).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;

Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);

Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .

(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata.

This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum?

Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.

Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.

Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .

A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Example: editing Calcutta to Kolkata

The edits we are allowed to make are:
Delete any character;
Insert any character (in a “fencepost”);
Substitute any character c by any letter d .
(The last is 1 step, rather than the 2 steps of deleting c and
inserting d .)

One way to do this is Calcutta -> Kalcutta -> Kolcutta ->
Kolkutta -> Kolkatta -> Kolkata. This takes 5 steps. Is that
minimum? Well, think of building the city up from scratch. . .

d(�; Kolkata) = 7: clearly 7 inserts needed.
Similarly d(Calcutta; �) = 8.
Thus for any strings we always initialize D(0; j) = j and
D(i ; 0) = i .
A “Northeast” recurrence then expands the whole table.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

The Edit Distance Recursion

Lemma: For any strings x ; y and i ; j with 1 � i � jx j, 1 � j � jy j: if
xi = yj then D(i ; j) = D(i � 1; j � 1), else

D(i ; j) = 1+minfD(i � 1; j � 1);D(i � 1; j);D(i ; j � 1)g:

If xi = yj then the least sequence converting x1 � � � xi�1 to
y1 � � � yj�1 also converts x1 � � � xi to y1 � � � yj with no more edits.

If note, then because xi and yj are the last chars in the respective
(sub-)strings, at some point we have to change xi either by (a)
substituting it, (b) deleting it, or (c) inserting yj someplace after it.
So let S be a minimum sequence of edits from x 0 = x1 � � � xi to
y 0 = y1 � � � yj .
If yj is already in x1 � � � xi�1 then S deletes xi . We may as well do
that first. So D(i ; j) � 1+D(i � 1; j).
If not, and if S does not delete xi , then either it substitutes xi or
inserts after xi .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

The Edit Distance Recursion

Lemma: For any strings x ; y and i ; j with 1 � i � jx j, 1 � j � jy j: if
xi = yj then D(i ; j) = D(i � 1; j � 1), else

D(i ; j) = 1+minfD(i � 1; j � 1);D(i � 1; j);D(i ; j � 1)g:

If xi = yj then the least sequence converting x1 � � � xi�1 to
y1 � � � yj�1 also converts x1 � � � xi to y1 � � � yj with no more edits.
If note, then because xi and yj are the last chars in the respective
(sub-)strings, at some point we have to change xi either by (a)
substituting it, (b) deleting it, or (c) inserting yj someplace after it.

So let S be a minimum sequence of edits from x 0 = x1 � � � xi to
y 0 = y1 � � � yj .
If yj is already in x1 � � � xi�1 then S deletes xi . We may as well do
that first. So D(i ; j) � 1+D(i � 1; j).
If not, and if S does not delete xi , then either it substitutes xi or
inserts after xi .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

The Edit Distance Recursion

Lemma: For any strings x ; y and i ; j with 1 � i � jx j, 1 � j � jy j: if
xi = yj then D(i ; j) = D(i � 1; j � 1), else

D(i ; j) = 1+minfD(i � 1; j � 1);D(i � 1; j);D(i ; j � 1)g:

If xi = yj then the least sequence converting x1 � � � xi�1 to
y1 � � � yj�1 also converts x1 � � � xi to y1 � � � yj with no more edits.
If note, then because xi and yj are the last chars in the respective
(sub-)strings, at some point we have to change xi either by (a)
substituting it, (b) deleting it, or (c) inserting yj someplace after it.
So let S be a minimum sequence of edits from x 0 = x1 � � � xi to
y 0 = y1 � � � yj .

If yj is already in x1 � � � xi�1 then S deletes xi . We may as well do
that first. So D(i ; j) � 1+D(i � 1; j).
If not, and if S does not delete xi , then either it substitutes xi or
inserts after xi .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

The Edit Distance Recursion

Lemma: For any strings x ; y and i ; j with 1 � i � jx j, 1 � j � jy j: if
xi = yj then D(i ; j) = D(i � 1; j � 1), else

D(i ; j) = 1+minfD(i � 1; j � 1);D(i � 1; j);D(i ; j � 1)g:

If xi = yj then the least sequence converting x1 � � � xi�1 to
y1 � � � yj�1 also converts x1 � � � xi to y1 � � � yj with no more edits.
If note, then because xi and yj are the last chars in the respective
(sub-)strings, at some point we have to change xi either by (a)
substituting it, (b) deleting it, or (c) inserting yj someplace after it.
So let S be a minimum sequence of edits from x 0 = x1 � � � xi to
y 0 = y1 � � � yj .
If yj is already in x1 � � � xi�1 then S deletes xi . We may as well do
that first. So D(i ; j) � 1+D(i � 1; j).

If not, and if S does not delete xi , then either it substitutes xi or
inserts after xi .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

The Edit Distance Recursion

Lemma: For any strings x ; y and i ; j with 1 � i � jx j, 1 � j � jy j: if
xi = yj then D(i ; j) = D(i � 1; j � 1), else

D(i ; j) = 1+minfD(i � 1; j � 1);D(i � 1; j);D(i ; j � 1)g:

If xi = yj then the least sequence converting x1 � � � xi�1 to
y1 � � � yj�1 also converts x1 � � � xi to y1 � � � yj with no more edits.
If note, then because xi and yj are the last chars in the respective
(sub-)strings, at some point we have to change xi either by (a)
substituting it, (b) deleting it, or (c) inserting yj someplace after it.
So let S be a minimum sequence of edits from x 0 = x1 � � � xi to
y 0 = y1 � � � yj .
If yj is already in x1 � � � xi�1 then S deletes xi . We may as well do
that first. So D(i ; j) � 1+D(i � 1; j).
If not, and if S does not delete xi , then either it substitutes xi or
inserts after xi .

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .

If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).

Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..

One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Proof, continued...

If S does not delete xi , then it substitutes xi or inserts after xi .
If it substitutes xi := yj then we can do that first (or last), so
D(i ; j) � 1+D(i � 1; j � 1).
Else, we insert yj after the position occupied by xi . Again we can
just as well do that last, having produced y1 � � � yj�1. So
D(i ; j) � 1+D(i ; j � 1) in that case..
One case must hold, so proved. �

“Calcutta Example”: Clearly D(1; 1) = d(C; K) = 1. So

D(2; 1) = d(Ca; K = 1+minfD(1; 0);D(1; 1);D(2; 0)g
= 1+minfd(C; �); d(C; K); d(Ca; �)g = 2:

Next D(1; 2) = d(C; Ko) = 2 and D(2; 2) = d(Ca; Ko) = 2 and

D(3; 3) = D(2; 2) = 2 because x3 = y3 = `:

Building up, we eventually get D(8; 7) = 5 (exercise).

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)?

or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.

Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?

The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . .

but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.

Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.

Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.

But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Big Issue: Can We Improve the Time?

Can we improve the �(mn) running time to O(m + n)? or to
~O(m + n) ignoring any factors of log(m + n)? or at least to
O((m + n)2��) for some � > 0 so the time is better than quadratic?

Would have huge impact in gene sequencing, for instance.
Can we “jump the table,” as for Fibonacci Numbers Fn?
The formula Fn = Fn�1 + Fn�2 is a great definition. . . but a lousy
recursion.
Better is (Fn ;Fn�1) = (2Fn�2 + Fn�3;Fn�2 + Fn�3): O(n) time.
Filling table iteratively not recursively is simple and good.
But can we compute Fn without computing Fn�1 or Fn�2—and
without any fancy arithmetic like powers of the golden ratio?

Surprise(?) yes: keep squaring M =

"
1 1
0 1

#
.

But for ED, new “Puzzling Evidence” that �(mn) cannot be
avoided.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Original Third Lecture Day...

Shorter, done from board:

Sorting is a “Good Guy.”

Parallel Prefix Sum
Map-Reduce in the Abstract.
Log-Depth Circuits and Cloud-Friendly Algorithms.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Original Third Lecture Day...

Shorter, done from board:

Sorting is a “Good Guy.”
Parallel Prefix Sum

Map-Reduce in the Abstract.
Log-Depth Circuits and Cloud-Friendly Algorithms.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Original Third Lecture Day...

Shorter, done from board:

Sorting is a “Good Guy.”
Parallel Prefix Sum
Map-Reduce in the Abstract.

Log-Depth Circuits and Cloud-Friendly Algorithms.

Kolkata Algorithms Short Course: II. “Expanding” Algorithms

Original Third Lecture Day...

Shorter, done from board:

Sorting is a “Good Guy.”
Parallel Prefix Sum
Map-Reduce in the Abstract.
Log-Depth Circuits and Cloud-Friendly Algorithms.

