
The Chess Stress Test for Discrete Choice Modeling

The Chess Stress Test for Discrete Choice Modeling

Kenneth W. Regan1

University at Bu�alo (SUNY)

UB CSE UpBeat, 10/19/2018

1Joint work with Tamal Tanu Biswas and with grateful acknowledgment to UB's
Center for Computational Research (CCR)



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen.

First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.� Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods. Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen. First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.�

Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods. Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen. First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.� Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods. Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen. First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.� Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods.

Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen. First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.� Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods. Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Multinomial Logit Model

Given options m1; : : : ;mJ and information X = X1; : : : ;XJ about all of
them, and characteristics S of a person choosing among them, we want
to project the probabilities pj of mj being chosen. First de�ne numbers
uj = g(X ;S)j often thought of as �utilities.� Then the multinomial

logit (MNL) model represents the probabilities via

log(pj ) = �+ �uj :

The quantities
Lj = e�+�uj

are called likelihoods. Then the probabilities are obtained simply by
normalizing them:

pj =
LjPJ

j 0=1 Lj 0

=def softmax(�u1; : : : ; �uJ ):

Finally obtain � by �tting; e� becomes a constant of proportionality so
that the pj sum to 1.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before.

Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Chess Decision Setting

One player P with characteristics S .

Multiple game turns t , each has possible moves mt ;j .

For a given turn (i.e., chess position) t , legal moves are
m1; : : : ;mj ; : : : ;mJ (index t understood).

Moves indexed by values v1; : : : ; vJ in nonincreasing order.

Values determined by strong chess programs. Not apprehended
fully by P (bounded rationality, fallible agents).

Raw utilities uj = �(v1; vj ) by some di�erence-in-value function � in
either �pawn units� or �chance of winning� units.

Parameter � treated as a divisor s of those units, i.e., � = 1

s
.

Second parameter c allows nonlinearity: �(v1; vi )
c . (First c = 1.)

MNL model (called �Shares� by me) then equivalent to:

log(pj ) = Uj =

�
�(v1; vj )

s

�c

and we go as before. Taking log(pj )� log(p1) on LHS gives same model.



The Chess Stress Test for Discrete Choice Modeling

Alternative �Loglog-Linear� Model

Represent a di�erence in double logs of probabilities on left-hand side
instead.

Now nice to keep signs nonnegative by inverting probabilities.

log log(1=pj )� log log(1=p1) = �Uj

The � can be absorbed as (1
s
)c even when c 6= 1 so my nonlinearized

utility still �ts the setting. Then abstractly:

log(1=pj )

log(1=p1)
= exp(�Uj ) =def Lj

log(1=pj ) = log(1=p1)Lj

log(pj ) = log(p1)Lj

pj = p
Lj

1
:

Analogy to power decay, Zipf's Law. . .Proceed to demo.



The Chess Stress Test for Discrete Choice Modeling

Alternative �Loglog-Linear� Model

Represent a di�erence in double logs of probabilities on left-hand side
instead. Now nice to keep signs nonnegative by inverting probabilities.

log log(1=pj )� log log(1=p1) = �Uj

The � can be absorbed as (1
s
)c even when c 6= 1 so my nonlinearized

utility still �ts the setting. Then abstractly:

log(1=pj )

log(1=p1)
= exp(�Uj ) =def Lj

log(1=pj ) = log(1=p1)Lj

log(pj ) = log(p1)Lj

pj = p
Lj

1
:

Analogy to power decay, Zipf's Law. . .Proceed to demo.



The Chess Stress Test for Discrete Choice Modeling

Alternative �Loglog-Linear� Model

Represent a di�erence in double logs of probabilities on left-hand side
instead. Now nice to keep signs nonnegative by inverting probabilities.

log log(1=pj )� log log(1=p1) = �Uj

The � can be absorbed as (1
s
)c even when c 6= 1 so my nonlinearized

utility still �ts the setting.

Then abstractly:

log(1=pj )

log(1=p1)
= exp(�Uj ) =def Lj

log(1=pj ) = log(1=p1)Lj

log(pj ) = log(p1)Lj

pj = p
Lj

1
:

Analogy to power decay, Zipf's Law. . .Proceed to demo.



The Chess Stress Test for Discrete Choice Modeling

Alternative �Loglog-Linear� Model

Represent a di�erence in double logs of probabilities on left-hand side
instead. Now nice to keep signs nonnegative by inverting probabilities.

log log(1=pj )� log log(1=p1) = �Uj

The � can be absorbed as (1
s
)c even when c 6= 1 so my nonlinearized

utility still �ts the setting. Then abstractly:

log(1=pj )

log(1=p1)
= exp(�Uj ) =def Lj

log(1=pj ) = log(1=p1)Lj

log(pj ) = log(p1)Lj

pj = p
Lj

1
:

Analogy to power decay, Zipf's Law. . .Proceed to demo.


