Fraught Issues in Statistical Chess Cheating Detection

Physics Colloquium, Vanderbilt University

Kenneth W. Regan ${ }^{1}$ University at Buffalo (SUNY)

16 November, 2023
${ }^{1}$ With grateful acknowledgment to co-authors-including Tamal Biswas now of RKMVERI - and UB's Center for Computational Research (CCR)

Two Framing Issues

- What does it mean to have statistical confidence in non-repeatable events?
- whether X exists in our accessible universe
- whether X cheated at chess.

Two Framing Issues

(1) What does it mean to have statistical confidence in non-repeatable events?

- whether X exists in our accessible universe
- whether X cheated at chess.
(Can regularities of human behavior reach the status of physical law?

Re. 2: We are physical systems, after all.

Two Framing Issues

(1) What does it mean to have statistical confidence in non-repeatable events?

- whether X exists in our accessible universe
- whether X cheated at chess.
- Can regularities of human behavior reach the status of physical law?

Re. 2: We are physical systems, after all. "P.O.B.I.T.E. Lite."

Two Framing Issues

- What does it mean to have statistical confidence in non-repeatable events?
- whether X exists in our accessible universe
- whether X cheated at chess.
(2 Can regularities of human behavior reach the status of physical law?

Re. 2: We are physical systems, after all. "P.O.B.I.T.E. Lite." Re. 1: I hope to shed light on some current miseries not mysteries of physics-

Two Framing Issues

- What does it mean to have statistical confidence in non-repeatable events?
- whether X exists in our accessible universe
- whether X cheated at chess.
(2 Can regularities of human behavior reach the status of physical law?

Re. 2: We are physical systems, after all. "P.O.B.I.T.E. Lite."
Re. 1: I hope to shed light on some current miseries not mysteries of physics-physics praxis, that is.

What Is a Physical Law?

Nervy Answer:

A severely underfitted model that works.

For example, consider three (or five) natural quantities:

What Is a Physical Law?

Nervy Answer:

A severely underfitted model that works.

For example, consider three (or five) natural quantities: m_{1} : tendency of X to resist force.

What Is a Physical Law?

Nervy Answer:

A severely underfitted model that works.

For example, consider three (or five) natural quantities: m_{1} : tendency of X to resist force.
m_{2} : capacity of X to exert force.

What Is a Physical Law?

Nervy Answer:

A severely underfitted model that works.

For example, consider three (or five) natural quantities: m_{1} : tendency of X to resist force.
m_{2} : capacity of X to exert force.
m_{3} : count of basic particles in X.

Isaac N: "Let's model all three by one variable m called mass."

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

Elo Chess Ratings-and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: $2000-2200=$ Expert, $2200-2400=$ Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800.

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: $2000-2200=$ Expert, $2200-2400=$ Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800. Adult beginner ≈ 600, kids $\rightarrow 100$.

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800 . Adult beginner ≈ 600, kids $\rightarrow 100$.
- Stockfish 16 3544, Torch 1.0 3531, Komodo Dragon 3.3 3529.

Elo Chess Ratings - and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: $2000-2200=$ Expert, $2200-2400=$ Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800 . Adult beginner ≈ 600, kids $\rightarrow 100$.
- Stockfish 16 3544, Torch 1.0 3531, Komodo Dragon 3.3 3529.
- So computers are at "Class 15."

Elo Chess Ratings-and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: $2000-2200=$ Expert, $2200-2400=$ Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800 . Adult beginner ≈ 600, kids $\rightarrow 100$.
- Stockfish 16 3544, Torch 1.0 3531, Komodo Dragon 3.3 3529.
- So computers are at "Class 15." \Longrightarrow a "Moore's Law of Games."

Elo Chess Ratings-and Why Cheat?

- Named for Arpad Elo, number R_{P} rates skill of player P.
- Defined by Logistic Curve: expected win $\% p$ given by

$$
p=\frac{1}{1+\exp (c \Delta)}
$$

where $\Delta=R_{P}-R_{O}$ is the difference to your opponent's rating.

- Taking $c=(\ln 10) / 400$ makes $\Delta=200$ give about 75% expectation.
- Class Units: 2000-2200 = Expert, 2200-2400 = Master, 2400-2600 is typical of International/Senior Master and Grandmaster ranks, 2600-2800 = "Super GM,"; Carlsen only player over 2800 . Adult beginner ≈ 600, kids $\rightarrow 100$.
- Stockfish 16 3544, Torch 1.0 3531, Komodo Dragon 3.3 3529.
- So computers are at "Class 15." \Longrightarrow a "Moore's Law of Games."
- Other Q: How do computer evaluations-in units of hundredths of a pawn (centipawns)—translate to chances of winning?

Model: Inputs and Parameters

Model: Inputs and Parameters

- Based on a utility function / loss function δ in a standard way- except for being log-log linear, not log-linear.

Model: Inputs and Parameters

- Based on a utility function / loss function δ in a standard way-except for being log-log linear, not log-linear.
- The (dis-)utility comes from (my heavily scaled version of) average centipawn loss of the played move compared to (what a powerful chess-playing program thinks is) the best move.

Model: Inputs and Parameters

- Based on a utility function / loss function δ in a standard way- except for being log-log linear, not log-linear.
- The (dis-)utility comes from (my heavily scaled version of) average centipawn loss of the played move compared to (what a powerful chess-playing program thinks is) the best move.
- No chess knowledge other than the move values is input.

The (only!) parameters trained against chess Elo Ratings are:

- s for "sensitivity"-strategic judgment.
- c for "consistency" in surviving tactical minefields.

Model: Inputs and Parameters

- Based on a utility function / loss function δ in a standard way-except for being log-log linear, not log-linear.
- The (dis-)utility comes from (my heavily scaled version of) average centipawn loss of the played move compared to (what a powerful chess-playing program thinks is) the best move.
- No chess knowledge other than the move values is input.

The (only!) parameters trained against chess Elo Ratings are:

- s for "sensitivity"-strategic judgment.
- c for "consistency" in surviving tactical minefields.
- h for "heave" or "Nudge" -obverse to depth of thinking.

Trained on all available in-person classical games in 2010-2019 between players within 10 Elo of a marker 1025, 1050, ..., 275, 2800, 2825. Wider selection below 1500 and above 2500 .

Model: Lone Equation(*)

$$
\frac{\log \left(p_{i}\right)}{\log \left(p_{1}\right)}=r_{i}=\exp \left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

where

Model: Lone Equation(*)

$$
\frac{\log \left(p_{i}\right)}{\log \left(p_{1}\right)}=r_{i}=\exp \left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

where

- $p_{1}=$ projected probability of playing the move ranked first by the chess program.
- $p_{i}=$ projected probability of the i-th ranked move.

Model: Lone Equation(*)

$$
\frac{\log \left(p_{i}\right)}{\log \left(p_{1}\right)}=r_{i}=\exp \left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

where

- $p_{1}=$ projected probability of playing the move ranked first by the chess program.
- $p_{i}=$ projected probability of the i-th ranked move.
- $v_{1}=$ value vector of first-ranked move across depths of search.
- $v_{i}=$ value vector of i th-ranked move.

Model: Lone Equation(*)

$$
\frac{\log \left(p_{i}\right)}{\log \left(p_{1}\right)}=r_{i}=\exp \left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

where

- $p_{1}=$ projected probability of playing the move ranked first by the chess program.
- $p_{i}=$ projected probability of the i-th ranked move.
- $v_{1}=$ value vector of first-ranked move across depths of search.
- $v_{i}=$ value vector of i th-ranked move.
- $e_{v}=$ "eagerness" of the player.

Model: Lone Equation(*)

$$
\frac{\log \left(p_{i}\right)}{\log \left(p_{1}\right)}=r_{i}=\exp \left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

where

- $p_{1}=$ projected probability of playing the move ranked first by the chess program.
- $p_{i}=$ projected probability of the i-th ranked move.
- $v_{1}=$ value vector of first-ranked move across depths of search.
- $v_{i}=$ value vector of i th-ranked move.
- $e_{v}=$ "eagerness" of the player. Essentially a restriction of the h idea to cases of deciding between equal-valued moves.
${ }^{(*)}$ Except for the separate training of a gaggle of hyper-parameters...

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.
- Fit β, then compute p_{i} via softmax.

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.
- Fit β, then compute p_{i} via softmax.
- Analogous to Gibbs Equations (well, if $c=1$).

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.
- Fit β, then compute p_{i} via softmax.
- Analogous to Gibbs Equations (well, if $c=1$).
- Log-linear model (multinomial logit) won 2000 Economics Nobel for Daniel McFadden.

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.
- Fit β, then compute p_{i} via softmax.
- Analogous to Gibbs Equations (well, if $c=1$).
- Log-linear model (multinomial logit) won 2000 Economics Nobel for Daniel McFadden.
- Works in much of Machine Learning, but not in chess.

Why Not a Simpler Log-Linear Model?

$$
\log \left(p_{i}\right)=\alpha+\beta\left(\frac{\delta\left(\overrightarrow{v_{1}}, \overrightarrow{v_{i}} ; e_{v}\right)}{s}\right)^{c}
$$

- Normalizing $\sum_{i} p_{i}=1$ drops out α.
- Fit β, then compute p_{i} via softmax.
- Analogous to Gibbs Equations (well, if $c=1$).
- Log-linear model (multinomial logit) won 2000 Economics Nobel for Daniel McFadden.
- Works in much of Machine Learning, but not in chess.
- Double-log model has perilous dynamics, needs careful hyperparameter settings. (Predictivity-robustness tradeoff.)

Outputs and Projections

The lone equation fits p_{i} as a power not a multiple of p_{1}.

$$
p_{i}=p_{1}^{r_{i}} ; \quad \sum_{i} p_{i}=1
$$

Yields aggregate projections over sets T of game turns t of:

$$
\begin{aligned}
\frac{1}{T} \sum_{t=1}^{T} p_{1, t} & =\text { "T1 match" to computer } \\
\frac{1}{T} \sum_{t=1}^{T} \sum_{i=1}^{\ell} p_{i, t} \delta(-i-) & =\text { "average centipawn loss" }
\end{aligned}
$$

Internal and External Confidence

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)
- \Longrightarrow covariance matrix is banded, hence approximable by scalars.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)
- \Longrightarrow covariance matrix is banded, hence approximable by scalars.
- Could treat as a "reduced-entropy" sample size $T^{\prime}<T$.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)
- \Longrightarrow covariance matrix is banded, hence approximable by scalars.
- Could treat as a "reduced-entropy" sample size $T^{\prime}<T$.
- What I actually do is adjust σ up to σ_{E}^{\prime} with dependence on Elo rating E determined by millions of randomized resampling trials from the training sets.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)
- \Longrightarrow covariance matrix is banded, hence approximable by scalars.
- Could treat as a "reduced-entropy" sample size $T^{\prime}<T$.
- What I actually do is adjust σ up to σ_{E}^{\prime} with dependence on Elo rating E determined by millions of randomized resampling trials from the training sets.
- With this patched, justified in saying the model paints chess moves on a 1,000 -sided die and simply rolls it.

Internal and External Confidence

- Projections also automatically give additive variance, hence σ and confidence intervals, if we assume turn decisions are independent.
- [Voiceover: They're not.]
- But it's a sparse dependence on neighboring moves. (Not across games-common "opening book" is removed from the sample.)
- \Longrightarrow covariance matrix is banded, hence approximable by scalars.
- Could treat as a "reduced-entropy" sample size $T^{\prime}<T$.
- What I actually do is adjust σ up to σ_{E}^{\prime} with dependence on Elo rating E determined by millions of randomized resampling trials from the training sets.
- With this patched, justified in saying the model paints chess moves on a 1,000 -sided die and simply rolls it. \Longrightarrow multinomial Bernoulli trials.

Pre-Check: The "Screening" Stage

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.
- $65=$ amber alert, $70=$ code orange, $75=$ red. Example.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.
- $65=$ amber alert, $70=$ code orange, $75=$ red. Example.
- Completely data driven-no theoretical equation.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.
- $65=$ amber alert, $70=$ code orange, $75=$ red. Example.
- Completely data driven-no theoretical equation.
- Rapid and Blitz trained on in-person events in 2019.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.
- $65=$ amber alert, $70=$ code orange, $75=$ red. Example.
- Completely data driven-no theoretical equation.
- Rapid and Blitz trained on in-person events in 2019. Slow chess trained on in-person FIDE Olympiads from 2010 to 2018.

Pre-Check: The "Screening" Stage

- Makes a simple "box score" of agreements to the chess engine being tested and the scaled average centipawn loss from disagreements.
- Creates a Raw Outlier Index (ROI) on the same 0-100 scale as flipping a fair coin 100 times.
- Here 50 is the expectation given one's rating and 5 is the standard deviation, so the "two-sigma normal range" is 40-to-60.
- Like medical stats except indexed to common normal scale.
- $65=$ amber alert, $70=$ code orange, $75=$ red. Example.
- Completely data driven-no theoretical equation.
- Rapid and Blitz trained on in-person events in 2019. Slow chess trained on in-person FIDE Olympiads from 2010 to 2018.
- Does not account for the difficulty of games. That is the job of the full model.

Recent Performance Examples

(show)

Z-Scores and Cheating Tests

For the aggregate quantities, the Central Limit Theorem in practice allows treating

$$
z^{\prime}=\frac{(\text { actual })-(\text { predicted })}{\sigma^{\prime}}
$$

as a z-score (after adjustment).
Evaluation Criteria:

Z-Scores and Cheating Tests

For the aggregate quantities, the Central Limit Theorem in practice allows treating

$$
z^{\prime}=\frac{(\text { actual })-(\text { predicted })}{\sigma^{\prime}}
$$

as a z-score (after adjustment).

Evaluation Criteria:

- Safety: Over fair=playing populations, $z^{\prime} \sim$ bell curve.

Z-Scores and Cheating Tests

For the aggregate quantities, the Central Limit Theorem in practice allows treating

$$
z^{\prime}=\frac{(\text { actual })-(\text { predicted })}{\sigma^{\prime}}
$$

as a z-score (after adjustment).

Evaluation Criteria:

- Safety: Over fair=playing populations, $z^{\prime} \sim$ bell curve.
- Sensitivity: Factual cheaters yield "high enough" z^{\prime}.

From this point on, let's suppose my model has these properties. What about interpreting the results?

Suppose We Get $z=3.54$

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000.

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in- 5,000 . Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in- 5,000 . Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in- 5,000 . Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1 -in-10,000 for in-person chess.

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1 -in- 200 for online chess.

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day?

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day? weekend?

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day? weekend? week?

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day? weekend? week? month?

Suppose We Get $z=3.54$

- Natural frequency ≈ 1-in-5,000. Is this Evidence?
- Transposing it gives "raw face-value odds" of "5,000-to-1 against the null hypothesis of fair play. But:
- Prior likelihood of cheating is
- 1-in-5,000 to 1-in-10,000 for in-person chess.
- 1-in-50 (greater for kids) to 1-in-200 for online chess.
- Look-Elsewhere Effect: How many were playing chess that day? weekend? week? month? year?

Are these considerations orthogonal, or do they align?

Fraught Issue \#1

What should be the target confidence?

Fraught Issue \#1

What should be the target confidence?
(1) Proof beyond reasonable doubt?

Fraught Issue \#1

What should be the target confidence?
(1) Proof beyond reasonable doubt?
(2) "Comfortable satisfaction"

Fraught Issue \#1

What should be the target confidence?
(1) Proof beyond reasonable doubt?
(2) "Comfortable satisfaction"
(3 "Balance of Probability"

CAS Lausanne recognizes all three, but inclines toward 2.

- Still doesn't specify a corresponding confidence target.

Fraught Issue \#1

What should be the target confidence?
(1) Proof beyond reasonable doubt?
(2 "Comfortable satisfaction"
(3) "Balance of Probability"

CAS Lausanne recognizes all three, but inclines toward 2.

- Still doesn't specify a corresponding confidence target.
- Science, of course, demands criterion 1.

Fraught Issue \#2: Confidence For Chess

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.
- Not quite right to say 1-in-200 error, i.e. a "Florida" every 4 cycles, because returns often blast past that instantly.

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.
- Not quite right to say 1-in-200 error, i.e. a "Florida" every 4 cycles, because returns often blast past that instantly.
- So maybe truer chess analogue is 1-in-500 error.

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.
- Not quite right to say 1-in-200 error, i.e. a "Florida" every 4 cycles, because returns often blast past that instantly.
- So maybe truer chess analogue is 1-in-500 error.
- Judge by "Countenanced Error Rate Per Year."

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.
- Not quite right to say 1-in-200 error, i.e. a "Florida" every 4 cycles, because returns often blast past that instantly.
- So maybe truer chess analogue is 1-in-500 error.
- Judge by "Countenanced Error Rate Per Year."
- E.g. if 10 cases per year reach judgment stage, and you can tolerate 1 error per 20 years, then 99.5

Fraught Issue \#2: Confidence For Chess

- I interpret the range of comfortable satisfaction as $99-99.9 \%$ final confidence.
- For calling elections, Decision Desk HQ uses 99.5% confidence.
- Not quite right to say 1-in-200 error, i.e. a "Florida" every 4 cycles, because returns often blast past that instantly.
- So maybe truer chess analogue is 1-in-500 error.
- Judge by "Countenanced Error Rate Per Year."
- E.g. if 10 cases per year reach judgment stage, and you can tolerate 1 error per 20 years, then 99.5
- But online chess has $10,000+$ cases per year...

Issue \# 3: Accounting "Look Elsewhere "

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.
- A highly computerlike game is a "shiny marble"-players do notice.

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.
- A highly computerlike game is a "shiny marble" -players do notice.
- Accounted over a year, suggests to divide odds by 100,000 .

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.
- A highly computerlike game is a "shiny marble"-players do notice.
- Accounted over a year, suggests to divide odds by 100,000.
- 4.75 sigma \longrightarrow only 90% confidence.
- 5.00 sigma $\longrightarrow 1$-in- 35 error.

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.
- A highly computerlike game is a "shiny marble"-players do notice.
- Accounted over a year, suggests to divide odds by 100,000.
- 4.75 sigma \longrightarrow only 90% confidence.
- 5.00 sigma $\longrightarrow 1$-in- 35 error.
- Sounds like 1-in-35 error is still too high based on confidence target.

Issue \# 3: Accounting "Look Elsewhere "

- Approximately 100,000 players-in-event per year among "notable" events.
- notable \equiv some or all gamescores preserved.
- A highly computerlike game is a "shiny marble" -players do notice.
- Accounted over a year, suggests to divide odds by 100,000.
- 4.75 sigma \longrightarrow only 90% confidence.
- 5.00 sigma $\longrightarrow 1$-in- 35 error.
- Sounds like 1-in-35 error is still too high based on confidence target.
- But reckon against time-scale of actual cases and tolerated error rate.

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)
- (But I deployed my model in 2011.)

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)
- (But I deployed my model in 2011.)
- Better argument?: Balance against the arrival rate of real cases.

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)
- (But I deployed my model in 2011.)
- Better argument?: Balance against the arrival rate of real cases.
- Aligns with Bayesian prior on average, but should allow for variance in the rate.

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)
- (But I deployed my model in 2011.)
- Better argument?: Balance against the arrival rate of real cases.
- Aligns with Bayesian prior on average, but should allow for variance in the rate.
- Figure discount by 25,000 to 50,000 .

Doomsday to the Rescue?

Why stop at a year? Why not consider "look elsewhere" over an entire 50-year span?

- IMHO, the notorious Doomsday Argument kicks in for real to fend off this level of skepticism...at least for now.
- Key point: What are the odds of getting this once-in-50-years event this (early) year?
- (My formal IP agreement with FIDE is 20 months old.)
- (But I deployed my model in 2011.)
- Better argument?: Balance against the arrival rate of real cases.
- Aligns with Bayesian prior on average, but should allow for variance in the rate.
- Figure discount by 25,000 to 50,000 . Then 5 -sigma is OK.

Issue \#4: Event Tiers

But what if we have a top-tier event?

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.
- Many of these per year, down to Under-8 Cadets.

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.
- Many of these per year, down to Under-8 Cadets.
- Qualifying events for championships.

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.
- Many of these per year, down to Under-8 Cadets.
- Qualifying events for championships.
- Major international Opens.

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.
- Many of these per year, down to Under-8 Cadets.
- Qualifying events for championships.
- Major international Opens.
- The Carlsen Online Chess Tour.

Issue \#4: Event Tiers

But what if we have a top-tier event?

- World Championships.
- Many of these per year, down to Under-8 Cadets.
- Qualifying events for championships.
- Major international Opens.
- The Carlsen Online Chess Tour.
- Chess.com"Titled Tuesdays" ...

The combination of the online 100-1 prior and marquee online events amps up the calculus.

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"?

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

- Niemann plays ≈ 25 events per year.

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

- Niemann plays ≈ 25 events per year.
- Like giving drug test to same athlete 25 x .

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

- Niemann plays ≈ 25 events per year.
- Like giving drug test to same athlete $25 x$ x.
- But what about a player wearing a heavy winter overcoat in hot weather?

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

- Niemann plays ≈ 25 events per year.
- Like giving drug test to same athlete $25 x$ x.
- But what about a player wearing a heavy winter overcoat in hot weather?
- Or a player wearing neon-green sneakers??

Issue \#5: Distinguishing Marks

What if the $z=3.54$ is on Hans Niemann? Is he a "marked man"? Even granting he's never cheated at in-person chess?

- Niemann plays ≈ 25 events per year.
- Like giving drug test to same athlete $25 x$ x.
- But what about a player wearing a heavy winter overcoat in hot weather?
- Or a player wearing neon-green sneakers??
- Yet another separate matter from the Bayesian prior.

Super-Fraught Issue \#6: Multi-Testing Samples

Super-Fraught Issue \#6: Multi-Testing Samples

- Includes Cherry-Picking and other forms of p-hacking.

Super-Fraught Issue \#6: Multi-Testing Samples

- Includes Cherry-Picking and other forms of p-hacking.
- What if a player seems to have cheated only in games 5-8 of a nine-game Open?

Super-Fraught Issue \#6: Multi-Testing Samples

- Includes Cherry-Picking and other forms of p-hacking.
- What if a player seems to have cheated only in games 5-8 of a nine-game Open?
- Or maybe games 4-6 and 8-9?

Super-Fraught Issue \#6: Multi-Testing Samples

- Includes Cherry-Picking and other forms of p-hacking.
- What if a player seems to have cheated only in games 5-8 of a nine-game Open?
- Or maybe games 4-6 and 8-9?
- Proper domain of Bonferroni Correction if it doesn't wipe out significance altogether.

Super-Fraught Issue \#6: Multi-Testing Samples

- Includes Cherry-Picking and other forms of p-hacking.
- What if a player seems to have cheated only in games 5-8 of a nine-game Open?
- Or maybe games 4-6 and 8-9?
- Proper domain of Bonferroni Correction if it doesn't wipe out significance altogether.
- Well, z-hacking/p-hacking is a huge area...

Issue \#7: Results on Aggregates of Players

Issue \#7: Results on Aggregates of Players

- What if you get $z=3.54$ on three different players in a 500 -player Open?

Issue \#7: Results on Aggregates of Players

- What if you get $z=3.54$ on three different players in a 500 -player Open?
- Not enough to convict any one player.

Issue \#7: Results on Aggregates of Players

- What if you get $z=3.54$ on three different players in a 500 -player Open?
- Not enough to convict any one player.
- But odds against all being fair can be estimated by aggregating z-scores, presuming (under the null hypothesis of fair play) that the players' actions are independent:

$$
z=\frac{z_{1}+z_{2}+z_{3}}{\sqrt{3}} \approx 6.13
$$

Issue \#7: Results on Aggregates of Players

- What if you get $z=3.54$ on three different players in a 500 -player Open?
- Not enough to convict any one player.
- But odds against all being fair can be estimated by aggregating z-scores, presuming (under the null hypothesis of fair play) that the players' actions are independent:

$$
z=\frac{z_{1}+z_{2}+z_{3}}{\sqrt{3}} \approx 6.13 \text { Billion-to-one }
$$

Applying "Look-Elsewhere" still leaves astronomical confidence that some cheating occurred.

Issue \#7: Results on Aggregates of Players

- What if you get $z=3.54$ on three different players in a 500 -player Open?
- Not enough to convict any one player.
- But odds against all being fair can be estimated by aggregating z-scores, presuming (under the null hypothesis of fair play) that the players' actions are independent:

$$
z=\frac{z_{1}+z_{2}+z_{3}}{\sqrt{3}} \approx 6.13 \text { Billion-to-one }
$$

Applying "Look-Elsewhere" still leaves astronomical confidence that some cheating occurred. Still leaves the question of who.

Issue \#8: Scaling of Estimation Error

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:
- 5 -game weekend tournaments;
- 9-game international Opens;
- 13-game invitational round-robins;
- 12-24 game championship matches.

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:
- 5 -game weekend tournaments;
- 9-game international Opens;
- 13-game invitational round-robins;
- 12-24 game championship matches.
- But how about 300+ games played in "Titled Tuesdays" over a half-year span?

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:
- 5-game weekend tournaments;
- 9-game international Opens;
- 13-game invitational round-robins;
- 12-24 game championship matches.
- But how about 300+ games played in "Titled Tuesdays" over a half-year span?
- Skew from rating estimation error scales linearly as $\Omega(n)$.

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:
- 5-game weekend tournaments;
- 9-game international Opens;
- 13-game invitational round-robins;
- 12-24 game championship matches.
- But how about 300+ games played in "Titled Tuesdays" over a half-year span?
- Skew from rating estimation error scales linearly as $\Omega(n)$.
- Overflows the $O(\sqrt{n})$ levees...

Issue \#8: Scaling of Estimation Error

- My formulas-"screening" as well as the predictive analytic model-scale as $O(\sqrt{n})$ gracefully to any sample size n of games/moves:
- 5-game weekend tournaments;
- 9-game international Opens;
- 13-game invitational round-robins;
- 12-24 game championship matches.
- But how about 300+ games played in "Titled Tuesdays" over a half-year span?
- Skew from rating estimation error scales linearly as $\Omega(n)$.
- Overflows the $O(\sqrt{n})$ levees... Validation by myriad resampling trials done on $n=4,9,16$.

Issue \#9: Biased Inputs

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.
- Also geographical variations in ratings.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.
- Also geographical variations in ratings.
- As in issue 8 , rating estimation bias skews linearly.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.
- Also geographical variations in ratings.
- As in issue 8 , rating estimation bias skews linearly.
- My model has enough cross-checks to detect and correct the bias-

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.
- Also geographical variations in ratings.
- As in issue 8 , rating estimation bias skews linearly.
- My model has enough cross-checks to detect and correct the bias - mainly need only assume not everyone is cheating.

Issue \#9: Biased Inputs

- Lag in ratings of rapidly improving young players.
- Was exponentiated by the pandemic. "Pandemic Lag" article on the GLL blog.
- Cause of many unwarranted suspicions, even recently.
- Also geographical variations in ratings.
- As in issue 8 , rating estimation bias skews linearly.
- My model has enough cross-checks to detect and correct the bias - mainly need only assume not everyone is cheating. No "interstellar dust" issue.

Going Post-Normal

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25 ; later filled in 20 x for ages 12 and 13 as of April 2020.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25 ; later filled in 20x for ages 12 and 13 as of April 2020.
- Gains above Elo 2000 reduced by treating formula as a differential.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25; later filled in 20x for ages 12 and 13 as of April 2020.
- Gains above Elo 2000 reduced by treating formula as a differential.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25 ; later filled in 20x for ages 12 and 13 as of April 2020.
- Gains above Elo 2000 reduced by treating formula as a differential.
- Formula for teenagers (with 15 multiplier) otherwise unchanged.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25 ; later filled in 20x for ages 12 and 13 as of April 2020.
- Gains above Elo 2000 reduced by treating formula as a differential.
- Formula for teenagers (with 15 multiplier) otherwise unchanged.
- Adjusted players are often over half the entrants in large Opens.

Going Post-Normal

- Arguments over the Niemann-Carlsen fracas a year age exposed the lack of any rigorous studies of the growth curves of young improving players.
- In Sept.-Nov. 2020, I fitted a simple formula from observations of players in multi-age youth events 5-7 months since their official ratings were frozen.
- I am still using fairly much the same formula, now 43 months in. Well, with some tweaks:
- Reduced multiplier for players under age 12 from 30 Elo per month to 25; later filled in 20x for ages 12 and 13 as of April 2020.
- Gains above Elo 2000 reduced by treating formula as a differential.
- Formula for teenagers (with 15 multiplier) otherwise unchanged.
- Adjusted players are often over half the entrants in large Opens.
- Basically running a more accurate rating system from the back of an envelope.

Post-Normal II: Time Dependence

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online - where chess is played faster.

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online-where chess is played faster.
- Not enough reliable training data for (in-person) fast chess across skill levels.

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online - where chess is played faster.
- Not enough reliable training data for (in-person) fast chess across skill levels.
- Panoply of different speeds anyway: $\tau=$ time you can use to play 60 moves.

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online-where chess is played faster.
- Not enough reliable training data for (in-person) fast chess across skill levels.
- Panoply of different speeds anyway: $\tau=$ time you can use to play 60 moves.
- FIDE standard slow chess gives $\tau=150$ minutes.

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online-where chess is played faster.
- Not enough reliable training data for (in-person) fast chess across skill levels.
- Panoply of different speeds anyway: $\tau=$ time you can use to play 60 moves.
- FIDE standard slow chess gives $\tau=150$ minutes.
- Postulate: Elo reduction $R_{E}(\tau)$ if largely independent of the player's Elo rating E.

Post-Normal II: Time Dependence

- The pandemic drove major tournaments online - where chess is played faster.
- Not enough reliable training data for (in-person) fast chess across skill levels.
- Panoply of different speeds anyway: $\tau=$ time you can use to play 60 moves.
- FIDE standard slow chess gives $\tau=150$ minutes.
- Postulate: Elo reduction $R_{E}(\tau)$ if largely independent of the player's Elo rating E.
- Reasonable a-priori since chess rating system is designed for additive invariance: only the difference in ratings to the opponent matters for predictions.

Laws of Time and Difficulty

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess. Implicitly done here.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess. Implicitly done here.
- Aitken Extrapolation.

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess. Implicitly done here.
- Aitken Extrapolation.
- Lo and behold-the two methods agree!

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess. Implicitly done here.
- Aitken Extrapolation.
- Lo and behold-the two methods agree!
- Is the resuting "Rating Time Curve" thereby a natural law?

Laws of Time and Difficulty

- Reliable data for $\tau=25$ and $\tau=5$ (as well as $\tau \geq 150$) from the elite annual World Rapid and Blitz Championships.
- Guess that $R(\tau)$ is $\operatorname{logistic}$ in $\log \tau$, so polynomial rational in τ.
- Gives four unknowns to fit, but only three equations. Try getting fourth from:
- Rating estimate of $\tau=0$, i.e., of completely random chess. Implicitly done here.
- Aitken Extrapolation.
- Lo and behold - the two methods agree!
- Is the resuting "Rating Time Curve" thereby a natural law?
- Does this make time fungible with difficulty, the latter as modeled by Item Response Theory?

Stance on Data Science

Stance on Data Science

- Extreme Corner of Data Science - since I need ultra-high confidence on any claim.

Stance on Data Science

- Extreme Corner of Data Science - since I need ultra-high confidence on any claim. Well, so do you.

Stance on Data Science

- Extreme Corner of Data Science - since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.

Stance on Data Science

- Extreme Corner of Data Science-since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace.

Stance on Data Science

- Extreme Corner of Data Science-since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace. (Compare what Scott Aaronson calls the Meatspace.)

Stance on Data Science

- Extreme Corner of Data Science-since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace. (Compare what Scott Aaronson calls the Meatspace.)
- Nonreproducibility, Mission Creep, and Shifting Sands. E.g., I do not reproduce the longer conclusions of this study.

Stance on Data Science

- Extreme Corner of Data Science - since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace. (Compare what Scott Aaronson calls the Meatspace.)
- Nonreproducibility, Mission Creep, and Shifting Sands. E.g., I do not reproduce the longer conclusions of this study.
- Here is a way of phrasing the question that comes from this stance:

Stance on Data Science

- Extreme Corner of Data Science - since I need ultra-high confidence on any claim. Well, so do you.
- Concern: Data modelers in less-extreme settings satisfice.
- That is, their models are designed up to one particular goal but don't explore much of the harder adjacent metaspace. (Compare what Scott Aaronson calls the Meatspace.)
- Nonreproducibility, Mission Creep, and Shifting Sands. E.g., I do not reproduce the longer conclusions of this study.
- Here is a way of phrasing the question that comes from this stance:

When is it important that our models include gravity?

Q \& A

And Thanks.

