Defn: A deterministic finite automaton (DFA) is a 5-tuple $M = (Q, \Sigma, s, s', F)$ where:

- Q is a finite set of states
- Σ is an alphabet—that is, a finite set of char.
- s, a member of Q, is the start state (q_0 in text)
- F, a subset of Q, is the set of (desired) final states, also called the set of accepting states.
- δ is the transition function: $\delta: Q \times \Sigma \rightarrow Q$.

Class DFA {
 set<State> Q;
 set<char> Sigma;
 State s;
 set<State> F; //REQ: c is in Sigma
 State delta (State p, char c); //REQ: c is in Sigma
 State (*delta) (State p, char c);
 set<Triple<State, char, State>> delta;
}

This is a class method. We need a member method.

In C++ — (WR prefers: — ?);

This makes delta a member rather than a class-wide method so clearly it depends on an instance M. Triples are instructions
Visualization:
\(\Delta \) is a set of nodes.
\(\Sigma \) is a set of edges with labels in \(\Sigma \).

Example: Tell whether a given string \(X \) over \(\Sigma = \{0, 1\} \) has an odd number of 1s.
\(\Delta = \{ \text{even}, \text{odd} \} \)

Interpreta / INVariant:
Current state reflects the number of 1s seen so far.
Start state \(\delta = \text{even} \) since initially we have seen zero 1s and 0 is an even number.

If a DFA, the set \(\delta \) has exactly one state for each possible state of \(\{0, 1\} \).

The language \(L(\Delta) \) of this DFA \(\Delta \) equals \(\{ x \in \{0, 1\}^* : \#1(x) \text{ is odd} \} \).

Define: A computation by a DFA \(\Delta = (\Delta, \Sigma, \delta, \delta, F) \) is a sequence:
\[\gamma = (q_0, X_1, q_1, X_2, \ldots, X_{n-1}, q_{n-1}, X_n, q_n) \]
where:
- \(n = |X| \) (the length of \(X \))
- \(X = X_1 \ldots X_n \)
- \(\delta \) is \(i \)th bit.
- \(q_0 = \delta \)
- each \(q_i \in \Delta \)
- for all \(i, \delta(q_i, X_i) = q_{i+1} \)

For all \(j, 1 \leq j \leq n \), \((q_{j-1}, X_j, q_j) \in \delta \)

\(L(\Delta) = \{ x \in \{0, 1\}^* : \Delta \text{ has an accepting computation on input } x \} \)
OK to define DFA by their diagrams. Some simple cases.

\[\Sigma = \{0, 1\} \]

\[M_0 = \]

\[\alpha = \{0, 1, 2\} \]

\[F = \emptyset \]

\[L(M_0) = \emptyset \]

\[L(M_1) = \Sigma^* = \{0, 1\}^* \]

\[F = \{0, 1, 2\} \]

Hence a DFA need not be "in lowest terms".

One More Example:

How about \#1(x) Mod 3?

\[\#1(x) = 0 \equiv 0 \mod 3 \]

Start \(F \iff 0\) should be in \(L\).

\[\Sigma = \{0, 1, 2\} \]

\[F = \{0, 1, 2\} \]

\[L(M) = \{x \in \{0, 1, 2\}^* : \text{sum of digits is a multiple of 3}\} \]

\[M_2 = \]

\[\text{Read } c = 0: \text{congruence stays same.} \]

\[\text{Read } c = 1: \text{congruence up by 1 and 3 cycle clockwise.} \]

\[\text{Read } c = 2: \text{cycle counterclockwise} \]

\[0, 3, 6, 9 \]

The way I defined \(L_3\) looks circular, but that's a problem only when \(x\) is a single digit, so we declare that 0, 3, 6, 9 \(L_3\) as the bases.

For other \(x\), it's well-founded.

Indeed, \(M_3\) is kind of the same as \(M\), but with a bigger alphabet.