Defn: A Generalized Non-deterministic Finite Automaton (GNFA) is a 5-tuple \(N = (Q, \Sigma, S, s, F) \) where \(s, q \in Q \), \(s \in Q \) as with NFAs, but

\[
S \subseteq (Q \times \text{Regexp}(\Sigma)) \times Q
\]

\[
\text{Regexp}(\Sigma) = \text{the set of regular expressions with } \Sigma \text{ as its character set}.
\]

Defn: A computation trace of a GNFA on an input \(x \in \Sigma^* \) of length \(n \) is a sequence \(\tau = (q_0, q_1, q_2, \ldots, q_{n-1}, q_n) \) s.t. \(q_0 = s \), \(q_n = q \), and \(x \) can be broken into substrings \(x =: U_1 \cdot U_2 \cdots U_m \) s.t. for each \(j \), \(1 \leq j \leq m \):

\[
(q_{j-1}, q_j, q_j) \in S \text{ and } U_j \in L(q_j), \text{ i.e. matches } q_j.
\]

\[
L(p) = \{ x \in N \text{ has a valid trace with } q_0 = s, q_m = q \}.
\]

Theorem: For every GNFA \(N \) we can build a regexp \(R \) s.t. \(L(N) = L(R) \).

And vice-versa: Given any regexp \(R \), there is the trivial GNFA

\[
N_R = (Q, \Sigma, S, s, F).
\]

Text proof arranges that you get this kind of GNFA at the end, but it gets nasty so we will use a shortcut.
Proof: Use a general 2-state GNFA as a basis:

Then \(L_{11} = (\alpha \cup (\beta \gamma \eta) \cdot \eta) \)

one time around the track
(or in the gutter)

defines zero or more times around the track

Above: \(\alpha = \epsilon \)
\(L_{11} = (0 + \# (0+\#)^*) \)

Example: \(\beta = \# \)
\(r = \# + 0 \)
no outgoing \(n = D \)

\[L_{12} = L_{11} \cdot (\beta \cdot \gamma^*) \cdot (\beta \eta) \]

home stretch and victory spins
\[L_{12} = L_{11} \cdot ((0+\#)^*) \]

\[L(N) = L_{11} \cup L_{12} = L_{11} + L_{11} \cdot (0+\#)^* \]

\[= (0 + \# (0+\#)^* D) \cdot (\epsilon + \# (0+\#)^*) \]

answer in the Turing Machine

Alternative: \(L_{11} = \alpha^* \beta \cdot L_{22} = \alpha^* \beta \cdot (\gamma + \# \alpha^* \beta)^* \)

"\(L_{22} \) once"

This works for any 2-state GNFA as the basis.

Induction: \(N \) has \(n \geq 3 \) states.

Let's assume \(\epsilon \) is the only accepting state different from 5 (if any).

Algorithm for \(k = n \) down to 3:

- eliminate state \(k \).

- done \(\Rightarrow \) read answer using basis for 2-state machine.

Strategy: Eliminate all non-accepting states different from 5 until we get \(n \geq 2 \).

Never need a new start state \(\Rightarrow \) Unless there are 2 accepting states different from 5 we're good.

If so, then add a new accepting state \(\epsilon \) with arcs from all the old ones. Numbers 2.

Because \(k \& F \), any processing that goes into \(k \) from some state \(i \) must go out via some state \(j \) in \(F \). This says for all \(i \) and \(j \), express \(\epsilon (i,k) \) to \(j \).
Diagram for Bypass

\[\alpha_{\text{new}} = \alpha_{\text{old}} + \beta \gamma^N \]

Doing for all exits \(j \) from \(i \) bypasses edge \(\beta \).

\(\beta \)-passing all incoming edges allows you to eliminate state \(k \).

Added: Here is an example done "graphically"-Tuesdays lecture will do it "in code style". Consider the following DFA. It has only one accepting state beyond the start state, so we need not add any more state.

M =

\[\begin{align*}
\alpha &= a + cc'a \\
\eta &= a + bc'a \\
\beta &= b + cc'b \gamma^N \\
\gamma &= a + cbb + cbb \gamma^N \\
\end{align*} \]

Eliminate (1):
Incoming: \((3, b, 1, 1, c) \) Out: \((a, 1, 1, c, 2) \)
\[\eta = a \quad \alpha = a + cc'a \quad \beta = b \quad \gamma = a + cbb + cbb \gamma^N \quad \eta = a + bc'a \]

New loop at (1) = old old \(\beta \gamma^N + CC' a = a + CC'a \)
New (3, 2) = old (3, 2) * b cc'b = c + bc'b
New (1, 2) = old 11, 27 + CC' b = b + CC' b. Then elim (4)

Eliminate (2): In terms (1) and (3) Out only to (3).
So we only need to update (3, 3) and (3, 3). There was no (1, 3!) but now there's (b + cc'b) (b + c)' a. And (3, 3) becomes (b + cc'b) a. Now do...