Eliminate state 4:

$\text{In: } (1, c) \quad \text{Out: } (2, b)$

Update $b(3, 1, 2)$, $T(1, 1)$, $T(1, 3)$, $T(2, 1)$, and $T(2, 3)$.

For $K = n$ down to 3:

for $i = 1$ to K:

for $j = 1$ to K:

$T(i, j) = T(i, k) \cdot T(k, k)^* \cdot T(k, j)$.

Only one acc. state other than S.

Hence re-number it (3) and don't need to add an extra final state.

One can skip doing this.

Eliminate state 3:

$\text{In: } (1, f) \quad \text{Out: } (2, a)$

Update $T(1, 2)$, $T(2, 2)$ only.

$b + c^* a = a + c \cdot c^* a = a + c^* b$

$b + c^* b = c + b \cdot c^* \cdot a = b c^* a$

$b + c a = a + c^* a$

$L(11) = (b + c^* b) (b + c)^* a$

$L(12) = T''(1, 1)$
We have completed a cycle of proving Kleene's Theorem:

For every language A over an alphabet Σ:

1. There is a regular expression r s.t. $A = L(r)$.
2. There is a DFA M s.t. $A = L(M)$.
3. There is an NFA N s.t. $A = L(IN)$.
4. There is a GNFA N' s.t. $A = L(IN')$.

We proved $1 \Rightarrow 3 \Rightarrow 2 \Rightarrow 4$.

We can use these steps algorithmically.

Theorem: For every regular expressions r_1, r_2 we can build a regexp r_3 such that $L(r_3) = L(r_1) \cap L(r_2)$.

Algorithm:

Proof:

- Convert r_1 and r_2 into equivalent NFAs N_1 and N_2.
- Convert N_1 and N_2 into equivalent DFAs M_1 and M_2.
- Use Cartesian product to build a DFA M_3 s.t. $L(M_3) = L(M_1) \cap L(M_2)$.
- Convert M_3 into the regexp r_3.

... or $M_3 = L(M_1) \cup L(M_2)$...
An Example to Note: For every K, define

$L_K = \{x \in \{0, 1\}^* : \text{the } k\text{th bit from the end is a } 1\}$

Regular $N_K = (0+1)^K \{0 \ldots 0\}$

$NFA\ N_K = \begin{array}{|c|c|}
\hline
& \circ \\vdots \\
\hline
\end{array}$

Fact: The smallest DFA M_K s.t. $L(M_K) = L_K$ has 2^K states!

Strategy: One state for every last K bit read.
Accept for K bits begin\text{\text}ing with 1
For $K = 3$, $2^3 = 8$ states

Extra: How do we know that 2^K states are needed? A preview:
Consider the two states 110 and 111 at the top, which we got to upon reading $x = 110$ and $y = 111$, respectively. Now suppose the next two chars are $z = 00$. Then $xz = 11000$, which does not belong to L_3 because the third char from the right is a 0. But $yz = 11100$, which does belong to L_3. We can say $L_3(z) \neq L_3(yz)$ for short, thinking of $L_3(xz)$ as the broken function for $w \in L_3$. This means the DFA needed different states to process x and y. If it did not, it would have needed to give the same answer to xz and yz. Similar reasoning applies to any two states, taking $z = 00$, $w = 0$, or $z = 1$ depending on where the states' binary labels differ. So the DFA needs all 8 states.