Suppose we have a "Target Specification" T of a language T defined by prose, sets, or machine, etc. Suppose we have a CFG G that is trying to "model" T.

G is sound for the spec if $L(G) \subseteq T$.

G is comprehensive for it if $T \subseteq L(G)$.

These concepts were first formalized in logic where G is generalized to a "Formal System F" - think of it like a grammar where a string is generated by 2 or more not just 1. T = the set of true statements. Sound means $L(F) \subseteq T$, $L(F)$ = the set of theorems of F. i.e. "every theorem provable".

Comprehensiveness would mean $T \subseteq L(F)$, i.e. that F could prove every true statement (over a particular logical alphabet) sound and

But, Kurt Gödel proved that no executable formal system can be comprehensive for $T = \exists$ true unprovable.

I.e. for any sound and effective F over the "alphabet of unprovable"

$L(F) \not\subseteq T$. Gödel's Incompleteness Theorem Uncomprehensiveness.
We will think of the concept most with CFGs and apply them even when T is given by another grammar. If we change an original grammar G into G₂, then

- the change is sound if \(L(G) \subseteq L(G₂) \);
- But of course we want \(L(G₂) = L(G) \) comprehensively too.

Defn: A CFG \(G₂ \) is in Chomsky Normal Form (ChNF) if every rule \(A \rightarrow X \) either has \(X \in \Sigma \) or \(X \in \mathbf{N} \).

Our text enables "ChNF" grammars to generate \(\varepsilon \) by the special exception that we can add an extra start symbol \(S₀ \) and rules \(S₀ \rightarrow \varepsilon \) and \(S₀ \rightarrow \varepsilon \) ... all right-hand side \(\varepsilon S \).

Defn: A variable \(A \in \mathbf{V} \) is nullable if \(A \Rightarrow^* \varepsilon \).

Note \(\varepsilon \in L(G) \iff S₀ \) is nullable.

Theorem: Given any CFG \(G \), we can build a CFG \(G₄ \) in ChNF s.t. \(L(G₄) = L(G) \setminus \{\varepsilon\} \) if we regard ChNF strictly \(= L(G) \) if \(\varepsilon \in L(G) \) and we allow the "\(S₀ \)" judicious above.

Step 1: will build \(G₄ \) s.t. \(L(G₄) = L(G) \setminus \{\varepsilon\} \) and \(G₄ \) has no nullable variables.
Algorithm and Proof of Step 1: Given $G = (V, \Sigma, R, S)$

1. First identify the subset $\text{NULLABLE} \subseteq V$ of nullable variables.

2. For every rule $A \rightarrow \bar{X}$ where \bar{X} has nullable variables, add the rules $A \rightarrow \bar{X}'$ for all combinations of deleting one or more occurrences of the nullable variables in \bar{X}.

3. Delete all ϵ-rules $B \rightarrow \epsilon$, incl. any new ones.

We will show this comprehensively except for ϵ itself.

Proof of subset (iii): Let any $y \neq \epsilon$ in $L(G)$ be given. Then we can take some parse tree T for y in the original G.

G has rule $A \rightarrow CDB$ say

G_i also has $A \rightarrow CD$

Pinching out any subtree of T that yields ϵ inside y leaves a valid parse tree in the new G.

That $y \neq \epsilon$ means we don't allow all of T.

$y = \ldots$
Algorithm for telling which vars are NULLABLE.

1. Initialize NULL = \{ A \in V : A \rightarrow \epsilon \text{ is a rule} \}.

2. \text{bool changed = true}

3. While (changed)
 \text{changed = false;}
 \text{for (each rule } A \rightarrow X \text{ in } R \text{) }
 \text{if (} X \in (\text{NULL})^* \text{ and } A \notin \text{ NULL) }
 \text{NULL = NULL } \cup \{ A \}
 \text{changed = true;}

4. Output final NULL.

Two Examples:

\[G = S \rightarrow AB \mid CA \mid \epsilon \]
\[A \rightarrow SS \mid Sa \]
\[B \rightarrow AS \mid c \]

\[S \rightarrow \epsilon \mid (S) \mid SS \text{ NULLABLE = SS} \]

\[G_1 = S \rightarrow (\epsilon) \mid (S) \mid SS \]
\[G_1 \text{ generates all nonempty balanced } (S) \]

Target: NULL = NULLABLE

Sound because if we add A to NULL, then A \Rightarrow X \in \text{ NULL}.

Comprehensive \rightarrow \text{ think about it}.