Example CFG:

\[S \rightarrow \epsilon | aB | bA \]
\[A \rightarrow SS | aS | bAAa \]
\[B \rightarrow bs | AB \]

1. \(S \) is immediately nullable, so \(\text{NULL} = \{ \epsilon \} \).
2. Rule \(A \rightarrow SS \), \(SS \in \text{NULL}^* \), so \(\text{NULL prep} = \{ S, A \} \). After that we need only consider the rules for \(B \):
 \[B \rightarrow bs : \text{RHS has a terminal, so never nullable.} \]
 \[B \rightarrow ABB : \text{rule is self-recursive} \]
 \[B \rightarrow AB \] is self-recursive too \(ABB \notin \{ S, A \} \), so \(\text{NULL} = \{ S, A \} \).

I: Add rules deleting some occurrence of nullable vars.

\[S \rightarrow \varepsilon | aB | bA | b \]
\[A \rightarrow SS | S | aS | a | bAAa | bAa \]
\[B \rightarrow bs | b | ABB | B \]

II: Delete \(\epsilon \)-rules. New grammar is \(G_1 \).

\[L(G_1) = L(G) \setminus \{ \epsilon \} \]
Testing some targets - are the variables sound? exact?

\(T_5 = \exists x : \forall y (x \neq y) \land a(x) = b(y) \) ? "equal a, b?"

\(T_A = \exists x : a(x) = b(x) + 1 ? "one more a" \\
T_B = \exists x : b(x) = a(x) + 1 ? "one more b" \\

Is \(S \) sound for \(T_5 \)? We need to suppose A & B are sound for their targets ...

Rule

\(S \rightarrow \epsilon \) : We have \(\epsilon \in T_5. \) Since \(a(\epsilon) = b(\epsilon) = 0 \), so this rule is sound (unconditionally).

\(S \rightarrow a \) : Assuming \(B \) is sound, it generates \(1 \) more b than a. So the total LHS has equal \(a \)s and \(b \)s. Thus this rule is conditionally sound for \(S \).

\(S \rightarrow b \) : Similar, by symmetry, if \(A \) is sound for \(T_A \).

\(A \rightarrow SS \) : alas this busts \(T_A \), and \(T_B \) are voided too. Let's just delete that rule. New grammar \(G' \)

\(S \rightarrow \epsilon | a \) \(BA \) \(B \) \(A \)

\(G' \) : \(A \rightarrow aS | bAa \) \(B \rightarrow bS | ABB \)

Note that in \(G' \), \(A \) is no longer nullable, so \(G' \) is

\(S \rightarrow a B 1 b A \) \(B \rightarrow bS | b1A BB \)

\(G' = A \rightarrow aS | \underline{a} bAa \) \(B \rightarrow bS | b1A BB \)

(When asking about "exact targets" let's use the letter \(E = \exists, \forall, A, B \etc \))
\[E_S = \exists x : \#a(x) = \#b(x) \]
\[E_A = \exists x : \#a(x) = \#b(x) + 1 \]
\[E_B = \exists x : \#b(a(x)) = \#b(x) + 1 \]

To prove they are not show that some variable (so \(x \)) actually compiles with a stronger target \(T'A \) such that \(E_A \neq T'A \).

\[T'_A = \exists x : \#a(x) = \#b(x) + 1 \text{ and: } b \text{ then it's wrong} \]

The string \(x = bbaaab \) belongs to \(E_A \setminus T'_A \).
Thus \(L_A \leq T'_A \setminus \{ e \} \neq E_A \), so \(L_A \neq E_A \) (why, \(L_A \subseteq E_A \)).

Does this knock out \(S \)? i.e. is \(L_S = \{ \} \neq E_S = E_S \setminus \{ e \} \)?
Try \(w = b^4 x = bbaaab \) as a possible counterexample:

\[S \rightarrow aBbA \]
\[A \rightarrow aS \rightarrow aA \]
\[B \rightarrow bSb \rightarrow Bbb \]

\[bbaab \]

We liberalized the rule \(A \rightarrow bAa \to A \rightarrow BAA \).

Does this fix our immediate problem for \(x = bbaaab \)?

Yes: Parse tree

This gives a BM derivation of \(S \):
\[S \rightarrow bA \rightarrow bBAA \rightarrow bbAA \rightarrow bbAA \rightarrow bbaA \rightarrow bbaA \rightarrow bbaS \rightarrow bbaaaA \rightarrow bbaaab = w \].

This \(bbaaab \).
Thus we fixed the problem cases \(x = baab, w = bx \).
Did we fix the entire grammar to make \(L_S = E_S \)?
(And \(L_A = E_A \) and \(L_B = E_B \)? Proved via parsing.
Plus induction/recursion.

Consider any \(x \in E_A \). We need to show that \(A \Rightarrow^* X \)
Cases:
1. \(X \) begins with \(a \). Then either \(X = a, \) where \(A \Rightarrow a, \)
or \(X = ay \) where \(y \notin E \) and \(\#a(1) = \#b(1), \) ie \(y \in E_S \).
By induction on \(L_L \), \(S \Rightarrow^* y \), so \(A \Rightarrow AS \Rightarrow^* aY = X \).
2. \(X \) begins with \(b \). Then \(X = bz \) where \(z \) has \(\geq \)
more \(a \)'s than \(b \)'s. Hence \(z \) can be broken as \(z = u \)
while \(u \) and \(v \) each have \(1 \) more \(a \) than \(b \).
By self-recursion, we get \(A \Rightarrow^* u \) and \(A \Rightarrow^* v \).
Finally we get \(A \Rightarrow BAA \Rightarrow bAA \Rightarrow^* buA \Rightarrow^* buv = X \)

That's the idea. The full proof needs handling \(B \) too
and \(S \) and base cases, for our triple the work.

(Shipped this year)

But the \(Ta \), \(Tb \), is kind of proof will be used
of sand.