Suppose we have a CFG \(G = (V, \Sigma, R, S) \) in Chomsky, NF. Set \(K = \mid V \mid, \ N = 2^K \).

Consider any \(x \in L(G) \) with \(\mid x \mid > N \) and take a parse tree \(T \) for \(x \) from \(S \).

By ChNF, \(T \) is a binary tree with all non-leaf nodes labeled by terminal chars.

Key Fact: By \(N \geq 2^K \), if \(\mid x \mid > N \) then \(T \) has a path with at least \(K+1 \) internal nodes. By Pigeonhole Principle some variable repeats along that path. Take a repeated variable \(D \) in the bottom \(K+1 \) nodes.
Redrawing central region of tree

I claim:

1. More done D to upper D. Kills the set: $x' = yuvwz = \text{ahhhbcchbd,} \text{d, bbbdd}$ nodes.
2. Repeat the lower D as the upper D for $i = 2$ times. Get $x^{(2)} = \text{ahhhbcchbd, bddbd,} \text{d, bbbdd}$.

Summary:

Original $x = yuvwz$

Got $x' = yu^0v^{(0)}w^0z = yuvz$

Got $x^{(2)} = yu^2v^{(2)}w^2z = yuvwz$ since $w = \epsilon$.

I show with $w = \epsilon$.

Always at least one of u and w must be nonzero.

Call this $x^{(0)}$.

Original $x = yuvwz$
Theorem: Given any context-free language L, there are numbers $K, N > 0$ such that for all $x \in L(G), \ |x| > N$, we can break $X = yu^i v w^j z$ s.t. $(\forall i \geq 0)$, the string $x^{(i)} = yu^i v w^j z$ belongs to L, and when $|uvw| \leq N$, and $u, w \neq \epsilon$. $G = (V, \Sigma, R, S)$

Proof: By L being a CFL, L has a grammar G in GNF. Take $K = |V|$ and $N = 2^K$. The breakdown follows as above.

Contrapositive: Suppose for all $N > 0$ there exists $x \in L(G)$ with $|x| > N$ s.t. for all breakdowns $X = yu^i v w^j z$ where $|uvw| \leq N$ and $u, w \neq \epsilon$, there exists $i \geq 0$ such that $x^{(i)} = yu^i v w^j z \notin L$. Then L is not a CFL.

This statement yields a "proof script" for proving that certain languages L are not context-free.
Let any \(N > 0 \) be given. Take \(x = _ \). Consider any possible breakdown \(x = yuvwz \) subject to \(|uw| \leq N \) and \(u \neq \emptyset \) and \(v \neq \emptyset \). Take \(i = _ \). Then \(x(i) = yuvwz \) does not belong to \(L \) because \(_ \).

Some \(N \) and the breakdown are arbitrary, \(L \) is not a CFL, by the CFL Pumping Lemma.

Example: \(L = \{ a^n b^n c^n : n \geq 1 \} \). Let \(N > 0 \) be given. Take \(x = a_N b_N c_N \). Then \(x \in L \). Visualize any possible breakdown \(x = yuvwz \) as:

\[X: \]

```
ad----a  b  b----b  c  c----c
```

- Compass arms cannot be wider than \(N \).
- At least the \(u \) or \(v \) arm must be opened.

Hence the compass cannot keep all of the \(a, b, c \) in balance.

Hence \(x(0) = yuv \geq \) subtract at least one \(a, b, \) or \(c \).

\[_ \] \(x(0) \notin L \) because we cannot keep \#a = \#b = \#c in it. So \(L \) is not a CFL.