Thm. (Contrapositive)
Suppose for all $N > 0$, if $x \in L(G)$, $|x| > N$
s.t. for all breakdows $x = yuvwz$ where $|uvw| \leq N$
and $uw \neq \epsilon$,

$\exists i \geq 0$ s.t. $x^{(i)} = yuv^iz \notin L$,
then L is NOT a CFL.

Template:
Let any $N > 0$ be given,

Take $X =$ ____________
Consider any possible breakdown $x = yuvwz$ subject to $|uvw| \leq N$
and $uw \neq \epsilon$

Take $i =$ ____________
Then $x^{(i)} = yu^iz \notin L$ because ____________

Since N and the breakdown are arbitrary,
then L is not a CFL by CFL Pumping Lemma.
Example 1. \(L = \{ a^i b^j c^k : i < j < k \} \)

Proof: Let any \(N > 0 \) be given.

Take \(X = a^{N+1} b^{N+2} c^{N} \).

Consider all possible breakdowns \(s.t. \ X = yuvwz \) with

\[(6, c^N) \]

\(u/vw = a^n \), \(n \leq N, c^0 \)

\[(6) \]

\(u/vw = \) at least \(c^0 \) has \(a^0 \)'s and \(c^0 \)'s collectively

\((3) \)

\(u/vw \) has at least one \(c^0 \)

(1) "pumping up" to \(X(N+1) \)

\[X(N+1) = yu^2 v w z = y \cdot a^{N+1} b^{N+2} c \neq L \]

for \(uvw = b^6 \)

"pumping down" to \(X^{(s)} = yvz \)

since \(u/vw \) has no \(a^0 \)'s or \(c^0 \)'s,

then \(X^{(s)} = yvz = a^N \cdot b^{N+1} c \neq L \) (CG) by \(uvw \neq \)

at least reduce \(1 \) \(b^0 \)’s.

(2) for \(uvw = c^6 \),

similarly, "pumping down" to \(X^{(s)} = yvz \)

Either \(y, s \) could be \(0 \), not both.

Hence, for \(z \geq 1 \), \(X^{(z)} = yu^z v w z \) has \(N + (z-1) \) \(a^0 \)'s

and \(N + (z-1) \cdot s \) \(b^0 \)’s, \(s \)

since \(y, s \geq 1 \)

take \(i = 3 \), \(X^{(3)} \) has at least \(N+2 \) \(a^0 \)'s and \(N+3 \) \(b^0 \)’s. \(\Rightarrow X^{(3)} \neq L \).
(3) "pumping down" to $X^{(0)} = y v z$,
then $X^{(0)}$ has 0 less than $\geq N+2$ many c's.

$\Rightarrow X^{(0)} \notin L$

Overall, all possible cases violate (Hi) $X^{(i)} \notin L$.

$\exists i, X^{(i)} \notin L$.

Therefore, I is not CFL.

Another way to consider all the breakdowns:

(1) $u = a^m$ for some $m > 0$,
then $X = y u^2 v w^2 z \notin L$, since $\#a(X^{(i)})$ is no less than

(2) $u = b^m$ for some $m > 0$,
then $X^{(0)} \notin L$

since $\#b$ of b's is not less than $\#a(X^{(i)})$.

(3) $u = c^m$, $m > 0$,
then $X^{(0)} \notin L$ since $\#b$ is not less than $\#c(X^{(i)})$.

(4) $u = z$ and replace u by w in the above three cases.
Example 2.

\[L = \{ a^m b^n a^m b^n \} \]

Proof: Let any \(N > 0 \) be given, take \(X = a^n b^n a^n b^n = yuvwz \) with \(|uvw| \leq N \) and \(\text{uw} \neq \epsilon \).

idea: \(yuv \) must touch at least one of the four intervals, and at most two.

so for all possible cases:

"pumping down" to \(X^{(0)} = yuvz \) will reduce at least one of the \(a \)'s or \(b \)'s, thus \(X^{(0)} \notin L \).

\[\Rightarrow \text{overall, } L \text{ is not a CFL.} \]

Q: What kind of model can recognize all those languages?
- Allow to change a char (regular, CFL, not CFL).
- Allow to move left.

Allowing only \(\bullet \) or \(\circ \) doesn't help.
Allowing both define a Turing Machine.
A Turing Machine (TM) or Deterministic TM (DTM),

* allowing to change chars one or more tapes,
* allowing tape head to move left (L) or stay (S)

besides moving right (R).

Def. A Turing Machine is a 7-tuple \(M = (Q, \Sigma, \Gamma, \delta, q_0, \sqcup, F) \)

where:
* \(Q \) is a finite set of states
* \(\Sigma \) is the finite input alphabet
* \(\Gamma \) is the tape alphabet, where \(B \in \Gamma \)
* \(\sqcup \) is the blank (\(\text{in text, or } 10 \text{ etc.} \))
* \(q_0 \) is the start state (\(q_0 \text{ in text} \))
* \(F \) is the set of desired final states

(in text, \(F = \{ q_{\text{acc}} \} \) where also W.L.O.G. there is a unique \(q_{\text{acc}} \))

\(S \subseteq Q \times \Gamma \times \Gamma \times \{ L, R, S \} \times Q \)

Diagram:

\[
\begin{array}{c}
\text{typical tuple} \\
(P, c, d, D, q) \\
\end{array}
\]
TM can decide languages like \(\{a^n b^n c^n : n \geq 1\} \) (not CFL)

Idea:

\[
\begin{array}{c}
\text{AAAABBBCCCC} \# \text{BB} \quad \downarrow \times \\
\text{XBBBBXXDCCC} \# \text{BB} \quad \downarrow \rightarrow \uparrow \\
\text{XXXA XXXX BXX XCC} \# \text{BB} \quad \uparrow
\end{array}
\]

Furthermore:

* M is deterministic if for all \(p \in Q \) and \(c \in \Gamma \), there is at most one tuple in \(S \) that begins \((p, c/\ldots) \).

* M is "completed" if for all \(p \neq qaa, \text{ rej } \) and \(\emptyset \in C \Gamma \), there is a tuple beginning \((p, c/\ldots) \) in the halting states.

Together \(\Rightarrow S \) is a function from \((Q \setminus \{qaa, \text{ rej }\}, X \Gamma) \) to \((\Gamma \times \{L, R, S\} \times Q) \).

Otherwise, if \(\exists \) any pair \((q, c) \) with two or more tuples beginning \((q, c/\ldots) \), then M is an NTM.