Def: A language A mapping-reduces to a language B if there is a computable function $f: \Sigma^* \rightarrow \Sigma^*$ such that for all x:

$$\text{dom}(f) = \Sigma^* \quad \text{and} \quad x \in A \iff f(x) \in B.$$

Theorem: Suppose $A \leq_m B$. Then:

1. If B is decidable, then A is decidable.
2. If B is Turing-enumerable, then A is Turing-enumerable.
3. If B is co-Turing-enumerable, then A is Turing-enumerable.

Proof: (1) We can take a total TM M_B s.t. $L(M_B) = B$ and a total TM T that computes $f(x)$. Construct M_A:

We will build a TM M_A s.t. $L(M_A) = A$ and A is total. M_A is a composition of two total routines so it is total. M_A accepts x if M_B accepts y (which $= f(x)$) accepts $y \in B \iff x \in A$ by "$A \leq_m B$ via f".

$L(M_A) = A$

For (2), re-do diagram with M_B not a solid box.
Take a TM \(M' \) s.t. \(L(M') = B \) but since we only know \(B \in \text{RE} \) we \(M' \):

\[\downarrow \text{input} x \]

\[\text{Do } y = T(x) \]

\[\text{If } y \text{ and } \text{when all} \]

\[M_B \]

\[\vdash \text{accept} \]

\[\text{by code} \]

\[\text{by size} \]

For all \(x \), \(M_a \) accepts \(x \) if \(M_B \) accepts \(y \)

\[\vdash x \in A \]

\[y = f(x) = T(x) \]

\[\text{by size} \]

\[\text{by reduction} \]

\[\vdash L(M_a) = A \]

\[\vdash \text{C} \]

Note:

\[\forall x : x \in A \Leftrightarrow f(x) \in B \]

\[\Rightarrow \forall x : x \in A \Leftrightarrow f(x) \in B \]

\[\Rightarrow A \leq_m B \]

So \(\text{B} \in \text{CORE} \land A \leq_m B \Rightarrow \text{CORE} \land A \leq_m B \Rightarrow \text{CORE} \Rightarrow A \in \text{CORE} \).

Contraposible: Suppose \(A \leq_m B \) Then:

- (a') If \(A \) is undecidable, then \(B \) is undecidable.
- (b') If \(A \) is not Turing recognizable, then neither is \(B \).
- (c') If \(A \notin \text{CORE} \) then \(B \notin \text{CORE} \).

Example reduction:

\(A'' = K \)

\(B'' = \text{Atm} \)

\(K \leq_m \text{Atm} \) via \(f(x) = \langle x, x \rangle \)

\(x \in K \Rightarrow x \) is a TM that \(\text{accepts} \langle x, x \rangle \in \text{Atm} \)

The function \(f(x) = \langle x, x \rangle \) is easily computable.

Define \(\text{NE} = \text{INST} = \text{A TM} \)

Ques: Is \(L(M) \neq \emptyset \)?

Ques: Is \(L(M) = \emptyset \)?
Theorem: \(A_{TM} \leq_m N_E_{TM} \), so \(N_E_{TM} \) (and \(E_{TM} \)) are undecidable.

Domain: \(\langle M, w \rangle \)
- **Range:** TMs. Hence our goal is to build \(M' = f(M, w) \) by a computable \(f \), such that:
 \[\langle M, w \rangle \in A_{TM} \iff \langle M' \rangle \in N_E_{TM} \]
- \(A = A_{TM} \) \(B = N_E_{TM} \)
- \(w \in \Sigma^* \)
- \(A' = A_{TM} \) \(B' = N_E_{TM} \)

Then for all instances \(\langle M, w \rangle \) of the \(A_{TM} \) problem,
- \(A_{TM} \) accepts \(w \) \(\iff \) for all \(z \), \(M' \) accepts \(z \) \(\iff \) \(L(M') = \Sigma^* \)
- \(M \) does not accept \(w \) \(\iff \) for all \(z \), \(M' \) does not accept \(z \) \(\iff \) \(L(M') \neq \emptyset \)
- \(\langle M, w \rangle \in A_{TM} \) \(\iff \) \(\langle M' \rangle \in N_E_{TM} \)

And the code \(\langle M' \rangle = f(M, w) \) is computable "by hand".

So \(A_{TM} \leq_m N_E_{TM} \) via \(f \) because \(\langle M, w \rangle \in A_{TM} \iff \langle M' \rangle \in N_E_{TM} \)

Added:
This reduction embodies an important idea: The "All-Or-Nothing Switch".
- \(A_{TM} \) accepts \(w \) \(\iff \) \(L(M') = \Sigma^* \). So you have \(\langle M, w \rangle \in A_{TM} \iff \langle M' \rangle \in \text{ALL}_{TM} \)
- \(A_{TM} \) does not accept \(w \) \(\iff \) \(L(M') = \emptyset \). And also \(\langle M, w \rangle \in A_{TM} \iff \langle M' \rangle \in N_E_{TM} \).

This has the same reduction function \(f \) reduces \(A_{TM} \) to \(\text{ALL}_{TM} \) and to \(N_E_{TM} \). It follows that \(\text{ALL}_{TM} \) is likewise undecidable, indeed, not co-re. Whereas \(N_E_{TM} \) is c-e.

\(B_{TM} \) is not c-e. either. The way to show that is to show \(A_{TM} \leq_m \text{ALL}_{TM} \) too. This uses a different idea I call the "Delay Switch." — to come in Tuesday's lecture.