Defn: A Turing machine M runs in time $T(n)$ if for all inputs $x \in \Sigma^*$, $M(x)$ halts within $n = |x|$ steps.

If M is an NTM, then we need all computations use $\leq t(n)$ steps:

$\text{DTIME}(t(n)) = \bigcup_{k=1}^\infty \text{NTIME}[t(n)]$.

$N^P = \bigcup_{k=1}^\infty \text{NTIME}[t(n)]$. "Nondeterministic Polytime".

The class P ("Polynomial Time") is defined to be $\bigcup_{k=1}^\infty \text{DTIME}[n^k]$.

What belongs to P — which problems are decidable in polytime?

- Every regular language L is in P: Take a DFA M for L, and M is a DTM that runs in time n, in fact.
- $L \in P$.\Longleftrightarrow L is regular.

More generally, the DFA problem is in P.

INST: A DFA M and an input w to M, (coded as $X = (M, w)$)

Question: Does M accept w? But $\text{TIME}(n, n^2) = \text{poly}(n)$ time?
How about \(\text{ALL-NFA} \)? It turns out that converting NFA to DFA is difficult for NFA.

FACT: Every CFL belongs to \(\text{P} \). The previous algorithm that took a \(\text{CFG} \) \(G \) in \(\text{CNF} \) st. \(L(G) = L \) and tried all derivations of length \(n-1 \) does not run in \(\text{P} \) time given a \(\text{CFG} \). In text (skim) there is a \(\text{D-Programming} \) algm in \(\text{O}(n^2) \) the \(\text{Not in Text} \) \(A_{\text{CFG}} = \{ \langle G, w \rangle : \text{WEL} \} \) is in \(\text{P} \) because there is a faster \(\text{CNF} \) conversion, not in the textbook.

- \(\text{CFG} \), \(\text{EPS} \) \(\{ \langle G \rangle : \varepsilon \in L \} \) are in \(\text{P} \) by \(\text{marking algm} \). They use an unbounded while loop, but each iteration either marks a new variable or the whole thing shrivels. \(\text{Time} \) \(\text{O}(1R|M|) \).

- How about \(\text{ALL-\langle G \rangle} \)? Undecidable, so certainly not in \(\text{P} \) or \(\text{NP} \).
A language \(L \) belongs to \(\text{NP} \) if and only if there are a polynomial \(q(n) \) and a language \(V \in \text{P} \) - a polynomial-time verifiable TM - \(V \) such that for all \(x \in \Sigma^* \):

\[
x \in L \iff (\exists y : 1 \leq q(|x|)) \land x, y \in V
\]

ie such that \(M_V a(\text{ybb} \leq |x|, y) \).

When \(x \in L \), any such \(y \) is called a certificate or witness.

Proof: if \(L = L(N) \) where \(N \) is an NTM running in \(\text{time } n^K \)

then given \(x \in L \), \(y \) can be an accepting computation history of \(N \) on \(x \).

Hence \(\text{time } = O(\text{length of } y) = O(n^K, n^K) = n^K = poly(n) \).

Consequently, given \(q \) and \(M_V \), build an NTM \(N \) that, on any input \(x \), guesses \(y \) and verifies \((x, y) \in V \) by running \(M_V \).

The prime example of a language in \(\text{NP} \) is \text{SAT}:

SATISFIABILITY (SAT):

Inst: a Boolean formula \(\phi(x_1, \ldots, x_n) \in \{x_1, \overline{x_2}, x_3\} \land (x_1, \overline{x_2}, \overline{x_3}) \)

Query: Is there a truth assignment \(x_1 = a, \ldots, x_n = a_n \), \(\phi(a_1, \ldots, a_n) \in \{0, 1\} \)\(^3\),

that \(\text{makes } \phi(a_1, \ldots, a_n) = \text{TRUE}^2 \) \(\phi \) can be satisfied, indeed.

Equivalently, is \(\neg \phi \) not a tautology?

by all assignments except \((0, 1) \), \((0, 0) \), \((0, 0) \), \((1, 0) \), \((1, 0) \), \((1, 1) \), \((1, 1) \).

**TAUT = \exists B : \text{fs } \forall : \text{fs is a tautology}\) is \(\neg \phi \) the complement of SAT.
Theorem: SAT \in NP, also TAUT \in NP.

Proof: If \(\phi \) is satisfiable, we can guess a satisfying assignment \(\vec{a} \) of \(\phi \) and check it, which is easily verifiable.

Since TAUT = SAT, TAUT \in NP. \(\Box \) so TAUT \in P.

Definition: A language \(A \) mapping reduces to a language \(B \) in polynomial time if there is a function \(f \) (computable in polynomial time) s.t. \(\forall x : x \in A \iff f(x) \in B \).

Theorem: If \(\text{NP} \subseteq \text{coNP} \) then \(\text{P} = \text{NP} \).

Definition: If \(B \in \text{NP} \) and for all \(A \in \text{NP} \), \(A \leq_m^P B \) then \(B \) is \text{NP-complete}.

Theorem: SAT is \text{NP-complete} (Cook-Levin Theorem, 1970).

Proof: Let any \(A \in \text{NP} \) be given. Show \(A \leq_m^P \text{SAT} \). Take \(\forall \exists \in \text{SAT} \).

\[\forall x : x \in A \iff \exists y < x, y \in B \text{ where } 1 + q(n) \text{ for a polynomial } q. \]

Burn: Move initial \(x \) to bottom as handshakes as circuits \& NAND gates

\[C_n = \begin{cases} 1 & \text{if } (\forall y < x) \exists y \text{ s.t. } 1 + q(n) \text{ for } \text{polynomial } q. \end{cases} \]

Every NAND gate functions correctly and the output will be \(W \) s.t. \(\phi \in SAT \), where \(\phi = W \wedge (A \wedge q) \text{ or } \forall \exists \).