(1) With $\Sigma = \{a, b, c\}$, design a context-free grammar G such that $L(G)$ equals the complement of $\{a^n b^n c^n : n \geq 0\}$. (27 pts. total, 9 for the regular grammar for $\sim a^* b^* c^*$ and 18 for the rest of G, including the observation that the complement of $L(G)$ is not a CFL.)

Answer: First design the DFA M with states s, p, q, d and arcs:

$$
\begin{array}{ccc}
(s, a, s) & (s, b, p) & (s, c, q) \\
(p, a, d) & (p, b, p) & (p, c, q) \\
(q, a, d) & (q, b, d) & (q, c, q) \\
(d, a, d) & (d, b, d) & (d, c, d)
\end{array}
$$

In the complemented machine M', d is the only accepting state, and $L(M') = \sim a^* b^* c^*$. A regular grammar G' such that $L(G') = L(M')$ is then given by:

$$
S' \rightarrow aS | bP | cQ \\
P \rightarrow aD | bP | cQ | a \\
Q \rightarrow aD | bD | cQ | a | b \\
D \rightarrow aD | bD | cD | a | b | c
$$

(Writing A_p, A_q, A_d for the variables was fine too, of course. So was replacing the five terminal rules by the single rule $D \rightarrow \epsilon$. The original definition of regular grammar disallowed ϵ-rules, but a rule $S \rightarrow \epsilon$ is needed as a “patch” on the definition when ϵ is in the language anyway. Note how the issues explored on problem 2 in assignment 2 resurface for grammars.)

Now let’s introduce variables A, B, C that generate lists of 0-or-more a’s, b’s, and c’s, respectively:

$$
A \rightarrow aA | \epsilon, \quad B \rightarrow bB | \epsilon, \quad C \rightarrow cC | \epsilon
$$

and variables T, U that generate $\{a^n b^n\}$ and $\{b^n c^n\}$:

$$
T \rightarrow aTb | \epsilon, \quad U \rightarrow bUc | \epsilon.
$$

Then the language $\{a^m b^n : m < n\}$ is generated by TbB; the terminal b here ensures there is at least 1 more b than a. Finally we put it all together by observing that in strings of the form $x = a^i b^j c^k$, i, j, k are not all equal if and only if $i > j$, $i < j$, $j > k$, or $j < k$:

$$
S \rightarrow S' | aATC | TbBC | AbBU | AUCc.
$$

(Here the order of $aA, bB, \text{and/or} Cc$ can be switched around, but T and U must go where shown.) The grammar G with start symbol S then generates $L = \sim \{a^n b^n c^n : n \geq 0\}$. So L is a CFL, but since its complement is $\{a^n b^n c^n : n \geq 0\}$ back again, which is not a CFL, the class of context-free languages is not closed under complementation.
Let T be the language of all strings that do not have the substring bb. Let G be the following context-free grammar:

$$
S \rightarrow \epsilon \mid b \mid AS \mid SC \\
A \rightarrow a \mid bCaA \\
C \rightarrow aS \mid ACC
$$

(a) Is $L(G) \subseteq T$? OK, it’s not. One of the rules is buggy. Fix it by deleting or changing one occurrence of one variable and call the revised grammar $G’$.

(b) Then prove that your revised grammar $G’$ is sound, i.e., $L(G) \subseteq T$. (9 + 15 = 24 pts.)

Answer: (a) The fault is shown by the derivation $S \Rightarrow SC \Rightarrow bC \Rightarrow bACC \Rightarrow bbCaACC$ and we’re toast. We can “blame” $S \rightarrow b$ or $A \rightarrow bCaA$ but the fixes would involve changing b and the question said to change a variable occurrence. If we change $S \rightarrow SC$ then we’ll get in trouble from $S \rightarrow AS \rightarrow bCaAS \rightarrow bACCaAS \rightarrow bbCaACCaAS$ anyway. So for a single-rule change it comes down to $C \rightarrow ACC$. We can either change A to C or just delete A. The reasoning is similar in either case so let’s delete A to yield the revised grammar $G’$ as:

$$
S \rightarrow \epsilon \mid b \mid AS \mid SC \\
A \rightarrow a \mid bCaA \\
C \rightarrow aS \mid CC
$$

(b) Now to prove that this is sound, first note that the variables A and C preserve additional properties similar to that on problem 2 of assignment 6. Namely, every string derived by A must end in a, and every string derived by C must begin with a. These facts help us verify that every rule prevents a substring bb from occurring as follows. Since no rule has a bb substring already, the only way it can occur is between two variables or b and a variable on the right-hand side of a rule. Let’s check all the rules for this:

- $S \rightarrow \epsilon$, $S \rightarrow b$, $A \rightarrow a$: nothing to do.
- $S \rightarrow AS$: The substring u derived by A must end in a. Therefore the juncture between A and S can cause no issue.
- $S \rightarrow SC$: Now C must derive a substring v that begins with a, so again a bb at the juncture is avoided.
- $A \rightarrow bCaA$: The bC is no problem since eventually it will become bv where v begins with a. And the Ca and aA parts are innocuous because they involve an a.
- $C \rightarrow aS$: Again immediately innocuous.
- $C \rightarrow CC$: The first C could derive a string u ending in b such as by $CC \rightarrow aSC \rightarrow abC$ so there is “danger,” but the second C wards off the danger since the string it derives must begin with a.

Therefore $L(G) \subseteq T$. (In fact, the grammar is comprehensive because $T = (a \cup ba)^*(b \cup \epsilon)$ and G has the sub-derivations $S \Rightarrow AS \Rightarrow aS$ and $S \Rightarrow SC \Rightarrow bC \Rightarrow baS$. These carry out the $((a \cup ba)^*)$ part while leaving the final $(b \cup \epsilon)$ to the rules $S \rightarrow \epsilon \mid b$. FYI, this also means that the rules $A \rightarrow bCaA$ and $C \rightarrow CC$ (or $C \rightarrow CCC$ if you did that instead) are redundant and can be removed without changing the language—this is true even though those rules cannot be directly simulated by 2 or more derivation steps.)

(3) With $\Sigma = \{a, b, c\}$, define $A = \{wc^m w^R : w \in \{a, b\}^*, \; m = |w|\}$. Prove using the CFL Pumping Lemma that A is not a CFL. (This is an easier version of the text problem 2.45 on page 158 (page 132 in older editions) with the string “t” fixed to be all-c’s. (18 pts., for 69 total on the set)

Answer: Given the (choice by the “adversary” of a) “pumping length” $N > 0$, take $x = a^Nc^N a^N$. Then $x \in A$. Let any breakdown $x = yuvwz$ such that $|uvw| \leq N$ and $uw \neq \epsilon$ be given. Then by $|uvw| \leq N$, the “compass” uvw cannot touch both of the a^N intervals. And by $uw \neq \epsilon$, it must touch a nonempty part of one of those intervals and/or the c^N part. Hence when we “pump down” to the string $x^{(0)} = yvz$, we get $a^i c^j a^k$ where at least one of i, k remains equal to N. If both remain equal to N, we must have $j < N$, which violates the “$m = |w|$” clause with $m = j$ and $w = a^N$. Else, we violate the clause that the a^k part must equal the a^i part reversed. So $x^{(0)} \notin A$. Since N and the breakdown are general given the restrictions, this shows A is not a CFL by the CFL Pumping Lemma. (“Pumping up” to $x^{(2)}$ works fine too, but you might feel you have to “pay lip service” to cases that violate the “$wc^m w^R$” format in other ways.)