Name and St.ID#:

CSE396 Prelim I Answer Key Spring 2017

(1) (24 pts.)

Define A to be the language of strings = € {a,b}* such that x either begins with aa or ends with
bb, but not both. Design a DFA M such that L(M) = A. A node-arc diagram that shows the start
and final states clearly is good enough, plus the correctness of your M must be clear either from
your theoretical technique or from strategic comments on how M works.

Answer: First let us design a DFA M for the “ends with bb” property:

start

Now take Mj to be complementary machine in which states 1 and 2 are accepting and state 3
is not. We design M to have two non-accepting states s and p plus a copy of each machine, for 8
states in all. At s, if the first char of the input z is a b then we know it didn’t start with aa, so by
the XOR we need z to end in bb. Since we already have one b, the arc goes to state 2 of My, not
state 1. If x begins with an a then we go to state p. At p, if we then get a b we know again that x
doesn’t start with aa, and we’re actually in the same situation as when = begins with b, so we go to
state 2 of M;. If we get an a at state p, then that’s the second a at the start, so we shift mode into
not wanting to end in bb. So we go to the start state 1’ of the complementary machine M{. That
completes M such that L(M) = A and also its verification:

start




The other good way was to draw a second small DFA M such that L(Ms) = aa(aUb)* and then
make M to be the Cartesian product of M; and M using XOR. M> is in some ways simpler to draw
than M; but it has a dead state which technically makes 4 states total—and since the processing
has to go on even after the “aa” part is dead you can’t make it a dead state for all of M. So you’re
doing a 3 x 4 Cartesian product which could make you liable for 12 states, but if you carry it out in
an economical “as-needed” manner then you get the same 8 states as above. Let’s call the states of
Ms as so,qa,12,ds to go with 1,2,3 for M; as above. With Cartesian labels, the states 1,2,3 in the
above diagram become (1, d2), (2,d2), (3,dz2) since they are paired with the dead state of M;. And
s = (1, s2) since it is the start state of both machines, and p = (1,¢2). Then 1’ = (1,72) and since 79
is a “nirvana” state of My, the remaining labels are 2/ = (2,72) and 3’ = (3,72). The final states are
(3,d), (1,72), and (2,72), being the reachable states that have either 3 from Mj or ro from Ms, but
not both.

(2) (18 4+ 3 + 6 = 27 pts.)

Let N = (Q,%,6,s, F) be the NFA with Q@ ={1,2,3}, ¥ ={a,b},s=1, F={3}, and J given
by the arcs (1,¢,3), (1,a,1), (1,a,2), (2,a,1), (2,b,3), and (3,b,2), shown by:

(a) Calculate a DFA M such that L(M) = L(N) (no “comments” needed if the method is clear).

(b) Find a string = such that N can process z from 1 to any one of its three states—figuratively
speaking, such that z “lights up” all three states of V.

(c¢) Are there strings w that N cannot process at all, so that N “dies”? Most in particular, can w
have the form zz—that is, begin with your string = from part (b) which turned all states on?

Answer: The e-arc gives us “Whenever 1, then also 3” and in particular makes the start state of
the DFA be {1,3} not just {1}. This is crucial because € belongs to L(/N) but we need the “3” to
recognize that the start state of M is accepting. Starting this way also lets us henceforth only have
to worry about trailing €’s by the “Roman soldier” reasoning in lecture. We can thus make a table
that is IMHO more useful than what the text does:

é(lva) - {17273} é(lvb) =0
5(2,a) = {1,3}  8(2,b) = {3}
SBa) =0 036 = {2}

Doing a breadth-first search from S = {1, 3} then gives us:

A(S,a) = 4(1,a)Ud(3,a) ={1,2,3} U ={1,2,3}
A(S,b) = 4(1,b)Ud(3,b) =0uU{2} ={2}.



Notice we already “lit all the lights” on an a. Since we got there on an a, we automatically know
that A({1,2,3},a) = {1,2,3}, but this need not be true of A({1,2,3},b). Indeed, we get

A({1,2,3},0) = 0(1,b) Ud(2,b) US(1,b) =0U{3}U{2} ={2,3}

only, which is what begins the long decline and ultimate fall of the Nondeterministic Empire. Sol-
diering on with breadth-first search, we need to expand the new states {2} and {2,3}. We get:

A({2},a) = 0(2,a) ={1,3} (back to start)
A({2},0) = 0(2,b) ={3} (but this counts as new)
A({2,3},a) = 40(2,a)Ud(3,a) ={1,3} Ul ={1,3}
A({2,3},b) = 0(2,b)Ud(3,b) = {3} U{2} ={2,3} (not new)
A({3},a) = 4(3,a) =10 (our 6th state but it’s dead)
A({3},b) = 4(3,b) ={2} (not new).

Since we automatically know A((, a) = A((,b) = ), we’re done—we’ve closed the machine M. The
final states of M are “everything with 3” so we get:

start

Note we already answered part (b) with z = a. For (c¢) note from the DFA diagram that there is
a long and tortuous path from the “all-on” state {1,2,3} to the dead state in five steps processing
z = babba. This makes xz = ababba unprocessable by N. The shortest “dying string” from the start
is bba, but ababba has the extra “insult-plus-injury” of first turning all the states on. (Grading was
4 points for w = bba but xz = ababba (or the equivalent) needed for the full 6 points.)

(3) (5 x 5 = 25 pts.) Multiple Choice.
Note the first three questions refer to the NFA N in problem (2).

1. When we eliminate state 2 from the NFA N in problem (2), we need to update which items
involving only states 1 and 3:
(a) Just the two arcs in the diagram, (1,a,1) and (1,€,3).
(b) Besides those two arcs, we need to add a self-loop (3, bb, 3), but nothing from 3 back to 1.

(c) Because state 2 has incoming and outgoing arcs from both 1 and 3, we need to update
2 X 2 = 4 entries.

(d) Because of the e-arc, we can just combine the states 1 and 3 together, getting a simple
1-state GNFA after eliminating state 2.



Answer: (c).

2. Regarding the languages L;; and L;3 of N—whether before or after eliminating state 2 it
doesn’t matter—which of the following is true for this particular machine?
L1y € L.
( ) L1 1 ULy 3+

Ly contains (a U aa)*, which simplifies to a*.

(a)
(b)
()
(d) All of the above.

Answer: (d) All of the above. Part (a) comes because of the e-arrow—it isn’t true in general—
and (b) follows from that and the fact that L(N) = L; 3 by definition. When you carry out the
step of of eliminating state 2 above, you get a loop on aa as well as the original loop on a at
state 1. Since the aa-loop can be simulated by two go-rounds of the a-loop, which is another
way of saying (aa)* C a*, you can just discard it, which means (a U aa)* = a*. And a* was
already part of L1 1.

3. A valid regular expression for L(V) is:

(a) (aaUa U (abUe€)(bb)*ba)*(e U ab)(bb)*.

(b) (aUb)* since state 1 could be accepting too.
)
)

(c

(

(

(aa U abUba Ubb)* since N accepts all even-length strings.
(d) (

a U ab(bb)*ba)*ab(bb)*.

Answer: Without going through the whole NFA-to-regesx exercise, we can eliminate (b) be-
cause (aUb)* is all strings and we know there are strings that N rejects. And we can eliminate
(c) because we found an odd-length string that IV accepts (and N doesn’t accept all even-length
strings anyway, it’s “fake news”). That leaves (a) versus (d), both of which look “close.” Well,
the trouble with (d) is that the ‘ad’ part in the middle is made mandatory, which rules out not
only € but also the all-lights-on string a as possibilities. Hence it’s too strict. Item (a) happens
to be right—but there are a bunch of other right ones including taking the hint from 2(c) and
simplifying it to (a U ab(bb)*ba)*(e U ab)(bb)*.

4. The symmetric difference of a language A with its complement A in ¥* always equals:
(a) 0.
(b) {e}.
(c) A.
(d) A

—no waitl—X*.

Answer: Well, I intended to make a question whose answer was (), but this wasn’t it—correct
is ¥*. One might say (d) was “closest” but CSE396 isn’t horseshoes or atom bombs, so any
answer had to be accepted and this became a free 5 points.

5. For a general language L, the relation = ~; y when xy € L is:



Answer: Consider L = {ab,baa}. Since L has no double words, there is no string x such
that xz € L, so x &~ x never happens, so the relation is as irreflexive as can be. Nor is it
symmetric, because a &1 b but not vice-versa (likewise ba ~r a but not vice-versa). This
already torpedos (a,b,c) but let’s consider “transitive”: We have a ~ b and b ~, aa, but
not a &~y aa because aaa ¢ L. So the answer is (d). Very few got this; so many said (a)
that this became an instance of bewaring “rosy expectations” in favor of colf logic—which is
one of the ulterior messages of the course. [This, the “xz” part of 2(c), part 3(c) above, and
getting problem 4 exactly right were the main “A-level points” on the grading scheme, plus
the 3 points for comments/strategy in problem 1. In fact, problem 1 had scores averaging 2-3
points lower than expected, but the freebie on 3(d) offset this so the difficulty tuning for the
pre-set curve was pretty-much on-target.]

(4) (24 pts.)

Over ¥ = {0,1}, define L = {z : #00(x) = #10(z) }. Recall from Problem Set 4 that for any
u,x € ¥*, #u(x) is the number of times u occurs as a substring of x, counting occurrences that
overlap. Prove via the Myhill-Nerode technique that L is not a regular language.

Answer: Take S = (00)*, which is clearly infinite. Let any z,y € S (x # y) be given. Then
there are numbers m,n > 0 such that x = (00)™ and y = (00)". (We could also postulate m < n
without loss of generality but we won’t need this.) Consider taking, ummm..., z = (10)™ Then
xz = (00)"™(10)™ which looks like it is in L, but wait—because of the overlaps a string like w =
(00)2(10)? = 00001010 has #00(w) = #00(x) = 3, not 2, which # #10(w). So we actually need
to take z = (10)>™~! to make xz € L. Then yz = (00)"(10)>"~! and since #00(yz) = 2n — 1 #
2m — 1 = #10(yz), we do get yz ¢ L. Since z,y € S are arbitrary, S is PD for L, and since S is
infinite, L is not regular by the Myhill-Nerode Theorem.

Except there’s one little niggle: taking S = (00)* allows m = 0, but what does “z = (10)?m~1)”
mean when m = 0? It says (10)~! but we don’t have negative powers of strings. If we stipulate
that it means € then we’re still OK since then zz = ¢- ¢ = € and € € L. But we can totally avoid
this “obnoxious edge case” by taking S = (00)" instead. Then we get m,n > 1 and the above proof
becomes airtight.

We can also take S = 07 = 00* (note that 00* is not the same as (00)*, which was an unforseen
error). Then when we let any z,y € S be given we get z = 0™*! and y = 0""! with n # m. Then
we can exactly say #00(x) = m and take z = (01)™ after all. This was another completely-correct
answer given by several. [Most, however, did the simple zz = (00)™(10)"™ thing and fell victim to
optical appearances to say xz € L, forgetting the overlaps. This was a 4-point deduction, mitigated
to —3 if there was some attempt to justify with “because” and something tangible, not just saying
“rz € L” and moving on. The A-level points were reckoned as 3 on problem 1, 2 on 2, 8 for 3(c) and
3(e)—mot 10 because 2 pts. part credit was given for answering “d” on 3(c)—and 4 here, making 17,
but I figured problem 1 brought 3 more because it was a little longer than comparable problems in
past years, so that made the usual 20 out of 100.]

END OF ExaAM



