Two two-tape Turing Machines, the first a DPDA, the second not.

A DPDA that recognizes the language of balanced paren strings. Convention: start with heads on blank to left of input.

Start: Put down ^

\((.,R, \) \)
\(/,R \)
\(/,S \)
\(/,L \)

Push on 1

Reached end of input

\(/,S \)

\(\Sigma: () \)
\(\Gamma: \) \wedge \text{blank} \)

Negative count

End on positive count

TM deciding

DOUBLEWORD

Find midpoint of input

0/0, R
1/1, R

START

Odd

Even

1/1, R
0/0, R

\[x \] is even, \(x = wv \)

Copy \(v \) to Tape 2

[\(x \) is odd, so reject]

Non-PDA state

Copy

Note: lead bit of \(v \) overwrites the ^ marker.

\[1/1, L \]
\[1/1, L \]

Move 1 left

success—\(n \) chars match.

Homer-SelmanExercise 1.1

Input Alphabet: \(\{0, 1\} \)

Work Alphabet: \(\{0, 1, ^, \$, \text{blank}\} \)

Initially, write input \(x \) on Tape 1, with head on its first bit.

\(L(M) = \{ww : w \in \{0, 1\}^*, \text{ for any } w\} \)