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Abstract— Conventionally, tendon-driven manipulators im-
plement some force-based controller using either tension feed-
back or dynamic models of the actuator. The force control
allows the system to maintain proper tensions on the tendons.
In some cases, whether it is due to the lack of tension feedback
or actuator torque control, a purely position-based controller
is needed. This work compares three position controllers for
tendon-driven manipulators that implement a nested actuator
position controller. A new controller is introduced that achieves
the best overall performance with regards to speed, accuracy,
and transient behavior. To compensate for the lack of tension

control, the controller nominally maintains the internal tension
on the tendons through a range-space constraint on the actuator
positions. These control laws are validated experimentally on
the Robonaut-2 humanoid hand.

I. INTRODUCTION

Tendon transmission systems are often used in the actu-

ation of fingers for high degree-of-freedom (DOF) hands.

The remote actuation allows for significant reductions to the

size and weight of the fingers, features that are important for

dexterous manipulation. Since the tendons can only transmit

forces in tension, the number of actuators must exceed the

manipulator DOF’s to achieve fully determined control of the

finger. This redundancy entails a null-space that is needed to

maintain some minimum level of tensioning on the tendons.

Accordingly, an ideal control law for such a system would

be a force-based controller with tension feedback. Through

the feedback, the tendons can always be kept taut and

appropriate levels of tensioning can be maintained. Even

without the tension feedback, the force controller may em-

ploy dynamic models of the actuator to estimate the tensions.

Occasionally, however, such force controllers are not viable

and a purely position-based control law is desired. In cases

where tension feedback is not available, a lower force control

loop is not developed, or the control bandwidth does not

allow for sufficiently high joint stiffnesses, a position-based

controller is needed.

Many researchers have presented force-based controllers

for tendon-driven fingers. Most of the systems have applied

such force control using tension feedback. This includes

almost all the robotic finger applications [1]–[5], as well

as a few larger manipulators [6], [7]. Others have applied
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Fig. 1. Schematic of a simple finger with tendons.

the force control using the alternative modeling approach,

using either dynamic models of the actuation [8]–[10] or

static models of the tendon [11]. A purely position-based

controller, however, is desired that requires neither force

sensing or modeling.

The challenge is to develop a controller that can achieve

the desired performance while maintaining suitable tensions

on the tendons. This work will focus on three criteria. First,

the controller needs to produce a fast response time with low

steady-state error. Second, it needs to produce no transient

overshoot. The overshoot can cause spikes in the tension

as either the tendons fight each other or hard limits are

struck. Eliminating the overshoot thus becomes important

in the absence of tension feedback, and it applies to both

the joint and actuator spaces. Third, the controller must be

able to maintain the internal, or null-space, tensions on the

tendons. Given some initial state of tensioning, the controller

needs to maintain the internal tensions to keep the tendons

from either going slack or applying excessive loads. Without

tension sensing, this objective can be nominally achieved by

eliminating the null-space motion amongst the tendons.

This work compares several position controllers for

tendon-driven manipulators. A new controller is presented

that achieves superior transient performance compared to

equivalent proportional-integral (PI) based controllers. This

controller implements a nested actuator position loop with a

range-space constraint to eliminate the null-space motion.

The controllers are validated experimentally on the three

DOF fingers of the Robonaut-2 (R2) humanoid hand.

II. FINGER KINEMATICS

Before introducing the control laws, an understanding of

the finger kinematics is needed. For that purpose, consider

the schematic of a representative tendon-driven manipulator

shown in Fig. 1. q and τ represent the column matrices

of positions and actuated joint torques, respectively. x and

f represent the column matrices of tendon positions and

tensions, respectively. The relationship between the n joint
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torques and the m tendon tensions follows, where m > n.

τ = Rf (1)

R ∈ R
n×m is known as the tendon map, consisting of the

joint radii data. For the system to be tendon controllable, R

must satisfy two conditions: it must be full row rank, and

there must exist an all-positive column matrix lying in its

null-space [12]. Inversely, the solution for f follows, where

R+ is the pseudoinverse of R, I is the identity matrix, and

λ is arbitrary.

f = R+τ + f int (2)

f int

.
= (I − R+R)λ

f int represents the internal tensions, lying in the null-space

of R and producing zero net torques. The matrix [I −R+R]
provides the projection operator into the null-space of R.

Given quasi-static conditions, f = f int whenever zero ex-

ternal forces act on the finger. The bold symbols throughout

represent column matrices.

This same R expresses the relationship between the ac-

tuator and joint velocities. Based on the principle of virtual

work, the actuator velocity equals RT q̇ when the tendons are

inextensible [11]. Allowing for elastic tendons, the actuator

velocity becomes the sum of this joint contribution plus the

rate-of-change of the length, l, of the tendons.

ẋ = RT q̇ + l̇ (3)

Assuming a constant R and integrating these velocities:

x = RT q + ∆l, (4)

where ∆l is a change in length relative to the zero-positions

length, i.e. the length of the tendons when x = 0 and q = 0.

We will model the tendons as linear springs of stiffness kt

and assume they remain taut. If the system is defined such

that the zero-positions length equals the unstretched length

of the tendons, the forces become proportional to ∆l.

f = kt∆l

τ = ktR∆l (5)

Solving for ∆l in this expression reveals both a range-space

and null-space component:

∆l = 1

kt

R+τ + ∆lint (6)

∆lint
.
= (I − R+R) δ,

where δ is arbitrary. ∆lint represents the change of length

in the null-space of R, i.e. the change in length that effects

only the internal tensions, not the joint torques. Hence,

the first term on the right hand side of (6) represents the

change in length due to external loads, while the second term

represents the change in length due to the internal tensions.

Substituting into (4) provides the final relation for the tendon

displacement.

x = RT q +
1

kt

R+τ + ∆lint (7)
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Fig. 2. The control architecture. The lower, actuator position loop allows
the Finite-Difference controller to actively constrain the actuator motion to
the range-space.

In the absence of tension feedback, the only way to keep

the internal tension constant is to eliminate the internal

motion, ∆lint. This implies that the actuator position must lie

in the range-space of RT . Assuming we have zero external

forces and an accurate kinematic model, staying in the range-

space will keep the static tensions on each tendon constant,

preventing the tendons from either going slack or being

overloaded. Of course, an external load may cause the actual

tensions to drop to zero or to reach excessive highs, however,

the tensions will return to their original state once the load

is removed.

III. CONTROL LAWS

Based on these kinematics, a set of control laws can

now be presented. The controller implements a two-tiered

architecture with an upper loop regulating joint positions and

a lower loop regulating actuator positions. Shown in Fig. 2,

the upper loop passes actuator position commands down to

the lower loop. Not only is it common for actuators to operate

a well-tuned position controller, but this hierarchy also exists

to accommodate the range-space constraint needed by the

first of the three control laws presented here. We assume here

that the lower loop has been tuned to maximize performance

with a first-order response behavior (i.e. without overshoot).

A. Finite-Difference Law

The first control law implements a discrete version of a

velocity controller, feeding back the current position of the

actuators combined with incremental changes from the joint

error. We thus refer to it as the Finite-Difference controller.

Based on the velocity relation in (3) with a constant tendon

length, the commanded position is:

xd = x − kpR
T ∆q, (8)

where ∆q = q−qd, qd is the desired joint position, and kp

is a scalar constant gain.

This control law commands actuator increments only in

the range-space, thus introducing no internal motion. It works

well in producing a fast response that closes the steady-state

error and maintains an over-damped behavior. The problem,

however, is that it does not actively constrain the actuator

positions to the range-space. Although the increment always

lies in the range-space, the actual positions can deviate

due to external disturbances or actuator saturation effects.

These errors are then propogated due to the incremental

nature of the controller. This effect is exacerbated by the

inability of the tendons to resist compression. Consider thus
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any case in which the finger is externally constrained: the

tendons opposing the joint error in tension remain restrained,

while the tendons supposedly in compression run away. This

internal motion will dissipate the internal tension, possibly

even leaving the finger uncontrollable due to the slack in the

tendons.

To resolve this problem, the output of the control law

needs to be projected into the range-space of the finger.

This will allow the lower actuator loop to actively servo to

the range-space. That projection is achieved by the operator

R+R. Noting that R+R is symmetric, the new commanded

position follows.

xd = R+R
(

x − kpR
T ∆q

)

= R+Rx − kpR
T ∆q (9)

This results in our final Finite-Difference control law. This

controller produces the same positive transient and steady-

state performance as (8); however, it resists the internal

motion even when disturbed. Note that the initial relation

in (8) could have been implemented with a single-loop

controller, setting the motor input proportional to RT ∆q.

The range-space constraint of (9), however, requires the

nested actuator position loop of Fig. 2.

B. Feed-Forward Law

The second control law is the first of two laws based on PI

compensators. This law implements a feed-forward term for

the final position of the actuators with a PI term to eliminate

steady-state error. From (4), the predicted position of the

actuator equals RT qd, given a constant tendon length. Since

the kinematic model may not be perfect, the PI compensator

is needed to eliminate the errors. Referred to as the Feed-

Forward controller, the commanded position follows.

xd = RT qd − RT

(

kp∆q +

∫

ki∆qdt

)

(10)

The feed-forward term results in a fast rise-time, while

the PI term results in zero steady-state error. Unfortunately,

we will see that any non-zero PI gain unavoidably causes

overshoot in the transient response. Such overshoot is quite

undesirable as previously described. Accordingly, only low

gains can be used, resulting in a step response with a fast

rise time but slow settling time.

C. Pure PI Law

To avoid the overshoot problem of the previous controller,

the third control law implements only a PI compensator.

Referred to as the Pure PI controller, that relation follows.

xd = −RT

(

kp∆q +

∫

ki∆qdt

)

(11)

Compared to the previous law in (10), this law can be

tuned to prevent overshoot and can thus achieve a faster

settling time. As shown in the next section, a purely first-

order response can be achieved by setting ki = akp, where

a−1 is the time-constant for the actuator position loop. In

theory, this control law can thus be tuned to provide the same

performance as the finite-difference controller. In practice,

however, the two are not equal. Comparing (9) and (11), the

two are identical except for the swapping of the position

feedback for the integrator. Eliminating the inherent lag

of the integrator allows the Finite-Difference controller to

implement higher gains, and thus a faster response, before

the onset of instability or overshoot.

IV. TRANSFER FUNCTION ANALYSIS

To understand the performance of these controllers, con-

sider the transfer function for each. The following analysis

provides the theoretical validation for the claims of the

previous section. Experimental validation will follow in the

next section.

To start the analysis, consider the equation of motion for

the finger.

M q̈ + η = τ + τ e (12)

M is the joint-space inertia matrix. η represents the sum of

the Coriolus, centripetal, gravitational, and frictional forces.

And τ e represents the torques produced by external forces.

For our purposes here, zero external forces are assumed.

These dynamics need to be expressed as a function of the

actuator positions. Consider first the joint torques from (4)

and (5):

τ = ktR
(

x − RT q
)

. (13)

Substituting this back into the equation of motion,

1

kt

(M q̈ + η) + RRT q = Rx. (14)

The passive forces here are scaled by the inverse of the

tendon stiffness. For dexterous fingers, this term becomes

negligible due to both the low inertia of the fingers as

well as the high stiffness of the tendons. For example, the

R2 finger weighs only 0.125 lbs while the tendon stiffness

is on the order of 400 lbs/in. We will thus neglect these

passive forces. In addition, we will model the actuator with

a first-order transfer function and a time-constant of a−1.

Accordingly, the relation can be expressed in the Laplace

domain as follows, where Q(s) and X(s) represent the

Laplace transforms of q(t) and x(t), respectively.

RRT Q = RX

=
a

s + a
RXd. (15)

Consider now the transfer function for the Finite-

Difference controller (9). Assuming the motion is limited

to the range-space as expected, we can substitute x = RT q.

xd = R+R
(

RT q
)

− kpR
T ∆q (16)

Substituting the transform of this result into (15) produces

the following transfer function for the control law, revealing

a desirable first-order response.

Q =
akp

s + akp

Qd (17)
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Fig. 3. A model of the Robonaut-2 index finger.

Next, consider the transfer function for the Pure PI

controller. Substituting from (11), the following second-

order function arises.

Q =
akps + aki

s2 + a(1 + kp)s + aki

Qd (18)

The system can be reduced to a first-order system by setting

ki = akp.

Q =
akp

s + akp

Qd (19)

This indicates that the Pure PI controller, in principle, can

be tuned to produce the same exact result as the Finite-

Difference controller. In practice, however, the implementa-

tion issues of communication delays and discrete processing

rates favor the Finite-Difference controller.

Finally, consider the transfer function for the Feed-

Forward controller.

Q =
a(1 + kp)s + aki

s2 + a(1 + kp)s + aki

Qd (20)

As shown in the Appendix, this transfer function will nec-

essarily overshoot given any non-zero gains. Of course, the

overshoot can be slight and acceptable given relatively low ki

gains. With such low gains, however, the settling time will be

considerably long. Not only will the system always overshoot

in theory, but in practice, the overshoot is even greater due

to the communication delays and actuator saturation effects

of any implementation.

V. EXPERIMENTAL RESULTS

A. Mechanical System

The control laws were tested on the index finger of the R2

humanoid hand [13]. A model of the finger is shown in Fig.

3. The finger has four tendons and three independent DOF’s:

a yaw, a proximal pitch, and a medial pitch. The yaw joint is

perpendicular to both pitch joints, and the tendon mapping

matrix follows.

R =





0.15 0.15 −0.15 −0.15
0.265 −0.195 0.265 −0.195

0 0 0.195 −0.195



 in (21)

The system is actuated by brushless DC motors with

planetary reduction gearheads. Ball-screws provide the linear

conversion for the motor power, which is then transmitted
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Fig. 4. A filtered step input (dotted line) is commanded to the joints. The
controller produced a fast response with satisfactory steady-state error. No
overshoot was exhibited in either the joint or actuator spaces, which was an
important controller specification.

to the finger through a tendon-conduit arrangement. This

arrangement consists of a polymer cable threaded through

a steel extension spring. Joint angles are sensed through

Hall-effect sensors, and actuator positions are sensed by

incremental encoders on the motors. An initialization routine

tensions up the tendons and defines the encoder positions. All

position commands for the joints are filtered by a trajectory

generator to enforce a top speed.

B. Finite-Difference Step Response

Two experiments were conducted with the Finite-

Difference controller. The first experiment demonstrated the

step response for a change in position. Starting at an initial

joint position of [0, 0, 2] degs, a step command of [0, 60, 60]
degs was commanded. The response is shown in Fig. 4. The

joint moved quickly to the commanded position with the

over-damped response desired, closing the steady-state error

to about 3 degrees error. In the actuator space, the controller

demonstrated the desired over-damped response as well.

C. Finite-Difference Disturbance Response

The second experiment tested the response of the Finite-

Difference controller to external forces or disturbances. The

initial version of the controller without the range-space pro-

jection, (8), failed under such conditions. The force created

a joint error which the sliders attempted to compensate for

as dictated by the kinematics. While the antagonist sliders

pulling against the disturbance were restrained, the protag-

onist sliders pushing against it slid forward uninhibited.

Since the joint errors were unaffected by this motion, the

protagonist sliders continued to slide until they reached a

hard stop or the force abated. This motion released the

internal tension on the tendons, either reducing the passive
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Fig. 5. A steady external force pushed the finger from time 2-6 s in one
direction, and then from time 11-15 s in the opposite direction. Responding
to the joint error, the protagonist tendon in each case slid forward until it
was limited by the range-space constraint. Releasing the force, the tendons
snapped back to position.

stiffness of the joints or even introducing backlash due to

the slack in the tendons.

The present controller solved that problem by using the

range-space projection, as the following experiment demon-

strated. A steady external force was applied to the finger

tip causing a displacement in the medial joint. Shown in

Fig. 5, a negative force was applied for a set time and then

released, followed by a positive force that was applied for

a similar time. Given the subsequent joint displacement, the

protagonist tendon slid forward a limited distance, as dictated

by the range-space constraint. Upon release of the force, the

actuators snapped back to kinematically consistent positions.

The controller is thus able to nominally preserve the internal

tensions initially placed on the tendons.

D. Feed-Forward & PI Step Responses

The same step response experiment was conducted with

the other two controllers. First, the Feed-Forward controller

was applied without any feedback (kp = ki = 0). Using

this controller, the system would respond at the maximum

speed of the joints; however, significant steady-state errors

ensued. A sample response is shown in Fig. 6, where an error

of over 10 degs resulted. Throughout our experiments, the

PI gains could be increased only slightly without producing

significant overshoot. Applying such low gains would result

in a system with the same fast rise time but a very slow

settling time. A satisfactory balance between overshoot and

settling time for our implementation could not be found.

Consider now the Pure PI controller for the same step

experiment. The system was tuned to its fastest response

resulting in gains of ki = 3 and kp = 1. Since the actuator

time-constant was observed to be 0.2 seconds, kp should
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Fig. 6. The Feed-Forward controller with zero PI gains was applied here.
The observed steady-state error of over 10 degs is due to errors in the
kinematic model. The dotted line is the command to both joints.
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Fig. 7. The Pure PI controller eliminates the steady-state error. Its tran-
sient response, however, is significantly slower than the Finite-Difference
controller.

theoretically equal 0.6 for the first-order response of (19). In

practice, we were able to slightly increase kp for a faster

response, although some higher-order oscillations start to

appear. The results of the experiment are shown in Fig. 7.

This controller did the best job of eliminating the steady-

state error without overshoot; however, its response is much

slower than the Finite-Difference controller. Those higher-

order oscillations can be eliminated by reducing kp.

VI. DISCUSSION

Selecting a position controller for a tendon-driven finger

involves balancing tradeoffs between several factors. First,

the performance should achieve both satisfactory speed and
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accuracy. Second, it should eliminate overshoot in both the

joint and actuator spaces. Finally, it should constrain the

actuator motion to the range-space of RT . In the absence

of tension feedback, this is the only way to maintain the

initial internal tension applied to the tendons.

These criteria arise from the accummulated experience of

the authors with the humanoid hand of R2. In the context

of this application, the Finite-Difference controller provides

the best overall performance. Although it does not fully

eliminate the steady-state error as the other controllers do,

it is significantly faster with accuracy that is sufficient for

many purposes. Its accuracy can be further increased in one

of two ways. First, increasing kp will reduce the error. If

this produces overshoot, the trajectory generator can then

be slowed down. Alternatively, a small integral term with a

limited range can be added to close off the final error.

Applications that are concerned more with the steady-state

rather than the transient behavior may better suit one of the

other two controllers. The Pure PI controller will provide

zero steady-state error without overshoot, but it will require

the longest rise time. With a faster rise-time, the Feed-

Forward controller can also eliminate the steady-state error;

however, it will provide overshoot.
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APPENDIX

PROOF OF OVERSHOOT CLAIM

In section IV, the transfer function for the Feed-Forward

controller (20) is presented with the claim that it must always

overshoot. To validate that claim, consider the following

analysis. That transfer function can be expressed in the fol-

lowing general form, where c1 and c2 are positive constants.

Q =
c1s + c2

s2 + c1s + c2

Qd (22)

This system will necessarily overshoot, regardless of whether

the denominator is under-, critically-, or over-damped. If

the system overshoots when the denominator is overdamped,

then it will necessarily overshoot in the other damping cases.

Hence, it will suffice us to show that the system will always

overshoot given overdamped poles.

Given the assumption of an overdamped plant, the system

has two distinct real poles denoted as a and b.

a = −
1

2
c1 +

1

2

√

c2
1
− 4c2

b = −
1

2
c1 −

1

2

√

c2
1 − 4c2 (23)

Hence, c2
1 > 4c2 and b < a < 0. Since motion of the

multiple joints are decoupled, we can consider a single joint

independently. Given a step input of 1,

Q =
c1s + c2

s(s − a)(s − b)

=
ab − (a + b)s

s(s − a)(s − b)
, (24)

where c1 = −a − b, and c2 = ab. After expanding this

expression using the partial fractions technique, the inverse

Laplace reveals the following response in the time domain.

q(t) = 1 +

(

a

b − a

)

eat
−

(

b

b − a

)

ebt (25)

This step response overshoots if its maximum is greater

than 1. Solving for the critical point, the peak value can be

expressed as a function of tmax, the time at which it occurs.

q(tmax) = 1 +
a

b
eatmax (26)

This value is always greater than one, indicating that this

overdamped system must always overshoot the input. Since

the system will always overshoot even when the poles are

overdamped, it will exhibit overshoot much more so under

the other possible scenarios.
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