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Abstract—Localizing and manipulating features such as but-
tons, snaps, or grommets embedded in fabrics and other flexible
materials is a difficult robotics problem. Approaches that rely
too much on sensing and localization that occurs before touching
the material are likely to fail because the flexible material can
move when the robot actually makes contact. This paper ex-
perimentally explores the possibility of using proprioceptive and
load-based tactile information to localize features embedded in
flexible materials during robot manipulation. In our experiments,
Robonaut 2, a robot with human-like hands and arms, uses
particle filtering to localize features based on proprioceptive
and tactile measurements. Our main contribution is to propose
a method of interacting with flexible materials that reduces
the state space of the interaction by forcing the material to
comply in repeatable ways. Measurements are matched to a
“haptic map”, created during a training phase, that describes
expected measurements as a low-dimensional function of state. o ) ) o
We evaluate localization performance when using proprioceptive Fig- 1. Robonaut 2 hand localizing a bump in a piece of flexitiéeste.
information alone and when tactile data is also available. The
two types of measurements are shown to contain complementary
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that offerincreasinglypbetter accuracy. IF:)ianIIy, the paper exploes in the enVIronm_e_m’ the goal ,Of manlpylatlon localizatian i
this localization approach in the context of two flexible materials {0 track the position of the object held in the hand. Also, the
insertion tasks that are relevant to manufacturing applications. ~ kind of information available from range sensors or landmar
bearing estimates is of a similar complexity to that which
is available from touch sensors. Our basic approach is to
interact with a known object during a controlled trainingaph
Flexible materials manipulation is an important class afhereby a map is created that describes how the material
problems. Many “general assembly” tasks in automobileofact‘feels.” Then, during localization, the touch measurersare
ries that are currently performed by humans involve insigll matched to the map using Bayesian filtering. Many approaches
cables, carpets, and flexible plastics. Similarly, manufang to flexible materials state estimation utilize high-dimensl
clothing, shoes, and other soft goods is labor-intensieabge models of the space of possible material deformations (for
robots are unable to manipulate flexible materials reliablgxample [2], [3]). Instead, a key insight of this paper isttha
Aside from its practical value, studying flexible material$s frequently possible to manipulate a flexible materialtinots
manipulation is interesting for its own reasons becauseymaa way that it always deforms in a certain way. As a result,
existing approaches cannot easily be applied to the probtemit is possible to reduce the dimensionality of the model by
is admittedly possible to manipulate flexible material with assuming that this deformation always takes place. Our work
estimating the state of the interaction once manipulatias happlies this idea to the problem of localizing “haptic featt
begun (for example, see the towel folding work in [1])such as buttons, grommets, or snaps in flexible materials
However, if there is no mechanism for tracking state durin@rough touch.
manipulation, then there is no possibility of reacting to un The details of this approach are explored experimentally
foreseen events. Given that the system is already intatactusing Robonaut 2 [4] for three features embedded in flexible
with the object, it is natural to attempt to use a sense offtougaterials: a bump in flexible plastic, a snap in fabric, and
to track state. a grommet in fabric (see Figure 4). Two types of touch
This paper applies ideas used in mobile robot localization fnformation are considered: proprioceptive measuremghes
manipulation. There is a strong analogy: whereas the goal@nfiguration of a compliant hand during manipulation) and
o . S tactile measurements using load-based sensors. We exgoerim
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I. INTRODUCTION



tained in the tactile data is qualitatively different frotrat in

the proprioceptive data. Finally, we demonstrate an auithti
improvement in performance that results from modeling the
tactile data as a mixture of Gaussians. Bringing the pieces
together, we are able to demonstrate an expected locatizati
accuracy of less tha.2 inches using a combination of
proprioceptive information and load-based tactile infation.

The practical advantages of the approach are illustratéiein
context of two insertion tasks (see Figures 13 and 14). This
paper is an expanded and more complete review of this work
relative to [5].

A. Related Work

This paper is one of the first to consider the problem of
tactile state estimation while manipulating a flexible maie Fig. 2. Robonaut 2 hand. Note the three tactile sensor cagsaoh finger
Nevertheless, there is a large body of relevant prior workune cap on each phalange).

The problem of localizing inflexible objects using tactile
information has received considerable attention from alvem

of different intellectual directions. An early approacnemers fiexible dynamics into account have more broad applications
the problem of localizing an object with unknown objecpne way of incorporating better material models into thepla
shape parameters by fitting contact position and surfageaor ing process is to calculate low-energy states for the riadter
measurements to a model [6], [7]. Noting that object shapeggen end-point configurations and plan accordingly [2D][2
known in many practical situations, Jia and Erdmann propogg ] wakamatsu and Hirai consider the more general problem
an application of observability theory that estimates Wi&ct of manipulation planning for arbitrary flexible objects [22
position and pose of a known object when single point contaghever, this work assumes linear strain dynamics. Tian and
is made [8]. Okamura and Cutkosky take a geometric approaglj propose a non-parametric extension of the above linear
to localizing surface features on inflexible objects usiagtit  ,o4el [17]. Their work also considers the grasping problem

exploration [9]. ~_where the ramifications of object deformation on grasp point
Recently, there has been an effort to apply Bayesian filierigejection is explicitly considered.

to the problem of localizing inelastic objects through fouc Another related body of work is concerned with flexible
interactions. Chhatpar and Branicky apply particle filtgrto  materials modeling. This is important in computer grapliss
the problem of localizing the pose of a peg with respect to\ge|| as robotics applications. A standard approach modiels t
hole [10]. Rather than using an analytical measurement Modgeformable object using a set of small masses that interact
they create a model during a training phase where the rolgth each other through springs or other potential function
slides the peg over the hole in a series of “sweeps” [11],.[1|ements [23], [24], [3], [25]. For example, Buriat al. find

This approach to interacting with a material (especiallg thnass-spring parameters that generate model deformatiats t
notion of “sweeping” over a material) is related to the fabripest fit a series of mechanical tests performed on the object
interaction procedure described in this paper (SectioB)ll- ysing a particle filter [3]. Morris and Salisbury find paraerst

In [13], Petrovskayaet. al. localize an inelastic object by for a3 potential function-based model that are damped and

making repeated contact with a single end-effector. In thignerate object geometries closest to what is observed [25]
work, localization occurred in the space of spatial objextgs

(6 DOFs) using a particle filter and a maximum likelihood Il. SYSTEM AND SETUP

measurement model. Gadeyne and Bruyninckx take a similar_ . L . . .
y y [I'h|s section introduces the finger tactile sensors and finger

approach where Markov localization is applied to the pmibletor ue control and then describes the interaction scenario
of localizing the planar pose (3 DOFs) of an inelastic fixture q

part based on tactile measurements [14]. In this work, the
measurement model incorporated a numerical integratem stA- Tactile sensors and finger torque control
Corcoran and Platt found an analytic solution to the aboveThe tactile sensors used in this work are composed of
integration for polyhedral objects and use it to realizetigpa strain gauges mounted in the load path between the contact
object localization using contact position informatiors]1  surfaces of the Robonaut 2 (R2) finger and the finger structure
Much flexible material manipulation literature focuses othrough which contact loads are reacted to the ground [26].
knot tying, and surgical suturing in particular. Remeleal. Figure 2 shows the basic structure of the hand. Notice that
perform a comprehensive analysis of the contact stateseaad each finger has three “contact caps” on it — one cap on
sible transitions that can occur for a deformable lineaedbj each phalange. Each of these caps is mounted to a spring
(a rope or cable) [16]. As pointed out in [17], it is not stiyct element instrumented with strain gauges. Strain gauges are
necessary to model the material compliance in order to plamall patches of silicone or metal that measure mechanical
knots [18], [19]. However, planning techniques that take ttstrain and are affixed to surfaces on the load path. When a




(a) Bump in flexible plastic (b) Snap in cloth (c) Grommet in cloth

Fig. 4. The three features embedded in flexible materials uséidei experiments.

position: 7; = K (g4 — q). Finger joint positions are measured
using hall sensors on the output of each joint. The arm joint
positions are measured using accurate optical absoluigomos
sensors. All the joint position sensors are calibratedtively
accurately. Hand position estimates relative to the bamadr
are accurate to withifi.25 inches. Fingertip position estimates
relative to the palm are accurate to within hundredths of an
Fig. 3. Internals of the tactile load cell used in the experitae inch.

B. Interaction scenario

load is applied to an elastic material (aluminum or steel, fo ope key idea of this work is to interact with the flexible
example), the load causes elastic deformations in the rbtematerial such that it deforms in repeatable ways. As a result
that can be measured using strain gauges. The principlejtofs ynnecessary to model all possible deformations of the
operation is that when the R2 hand touches something (fa&terial. We only need to model the particular interaction
example, refer to Figure 1), it is these caps that actuallgemascenario illustrated in Figures 1 and 5(a). In this scepario
contact with the environment. When this occurs, the sens@fe flexible material loosely hangs from a test rig such that
in the spring element measure the load. Figure 3 illustiiéies it swings freely with respect to the robot in different direc
spring element itself. Notice that it has a roughly cylindli tjons. The robot grasps the material between its thumb and
shape that facilitates mounting on the human-sized R2 fingﬁ;reﬁngers (index and middle fingers). The forefingers apply
The spring element is grounded to the robot finger at the edgggonstant light squeezing force against the thumb which is
of the cylinder and attached to the contact shell by a cenigg|q fixed. Then, the robot pulls its hand away from the fixed
plate with two screw holes. Each tactile sensor producespgint in the direction of the arrow illustrated in Figure b(a
total of eight signals. No two different loads applied to th@ue will refer to a single pull as a “swipe.” Each swipe
sensor produce the same measurements. In order to minimig@ers a distance of typically two or three inches at a speed
the effects of uncontrolled variables such as temperature approximatelyl.3 inches per second. During each swipe,
mechanical shifts in the sensor itself, the vector of signahe thumb is commanded to hold a constant position with
produced by a single sensor is normalized on every timestggge stiffnesses in its four joints. In the index and middle
Since the R2 hand is extrinsically actuated (it is driven bijngers, the adduction/abduction and the medial/distaitgoi
motors located in the forearm), it is necessary to actuate thre commanded to hold fixed positions with large stiffnesses
tendons in order to realize joint torques. The proximal finger joints apply a constant closing torque
where is the vector of tendon velocitie8,is the internal gych that each finger pushes with approximatefy Newtons
tendon velocityy is the vector a finger joint positiong,is the against the thumb in the direction of closing (see Figurg)5(a
vector of joint velocities, and’ is full rank and non-diagonal  As the hand pulls, the material is squeezed between the

in general. _ thumb and fingers so that it complies with the hand in
Following [27], our control law calculates a desired tendog particular and repeatable way. As the fingers move over

position, z4, that decouples joint velocities: the material, proprioceptive and tactile sensor measureme
2g =1 — kg + PT K, (ra — Pf), respond to the mechanical stiffness characteristics of the

material. Haptic features such as buttons or grommets have
where x describes tendon positions, describes tendon ve- mechanical properties different from that of the surrongdi
locities, f describes tendon tensionB, describes the linear material. As a result, we expect to be able to localize these
relationship between tendon velocities and joint velesitand features based on sensor measurements. The evaluations in
K, and kq are the PD parameters of the torque controllethis paper are performed for the three features illustrated
This control law moves the tendons so as to maintain tiiégure 4. The bump in Figure 4(a) is used to fixture the flexible
desired torqueyy. If a joint stiffness is desired rather thanplastic in the context of a factory assembly task. The snap in
a contact torque, the desired torque is a function of joifigure 4(b) and the grommet in Figure 4(c) are embedded in
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Fig. 5. lllustration of the training phase. (a) illustratee robot hand performing a “swipe” from left to right. (b) s¥®the state locations of the rougt#g000
state-measurement sample pairs collected during traininga2e25 x 2.25 inch patch on the surface of the material. (c) illustratesnglsi proprioceptive
signal (distance between the middle fingertip and the thumloy c@riation: 0.01 to 0.97 inches) over the state spaceill(ditrates a single tactile sensor
signal (from the middle fingertip force sensor, color vaaati-0.457 to +0.351 volts) over the state space.

a simulated thermal blanket that is an important part of manyFigures 5(b), 5(c), and 5(d) illustrate data collected dur-
extra-vehicle NASA tasks. ing a training session. The data corpus represented censist
of approximately25000 state-measurement pairs sampled in
the locations indicated in Figure 5(b) over approximately a
2.25x2.25 inch patch in the neighborhood of the plastic bump.
When the robot interacts with a haptic feature such d%e data was collected by performing 6 “scans” of the entire
a button or grommet, it “feels” a characteristic signal thatgion. Each of the 23 swipes in a scan are approximatély
enables it to localize the feature. We consider two types iofches apart. Each swipe consists of approximately 182 data
sensor informationproprioceptiveinformation that measures points collected approximately011 inches apart. In principle,
finger displacements and force sensor information thattjre one would expect this procedure to generate samples in a
senses the magnitude and direction of loads applied to teries of parallel line€).1 inches apart. However, stiction,
finger. Coriolis, and inertial effects in the robot arm joints as lwel
as forces generated by interaction with the material cause
the variation evident in Figure 5(b). Figures 5(c) and 5(d)
illustrate an example of a proprioceptive signal and a force
During training, a haptic “map” is created that associateensor signal sampled from a nearest neighbor function on a
each point in state space with a measurement. Since thgularly spaced grid defined over tB5 x 2.25 inch patch
material is sgqueezed between the thumb and forefingesgiere each grid cell is @02 x0.02 inch square. Each point in
we know already that it is touching the thumb and that the grid takes the measurement value of the nearest sample in
is locally tangent to the finger and thumb surfaces at tltee corpus. Figure 5(c) shows the distance between the thumb
point of contact. The remaining dimensions of uncertaingnd middle finger. The measurement values range between
describe where contact occurs on the surface of the materia01 inches (blue) and.97 inches (red). Figure 5(d) shows
We parametrize the surface of the material by a local twihe response of one of the tactile sensor signals in the middl
dimensional coordinate frame. State is defined to be tfieger. Although the physical quantity being measured &istr
location of the thumb tip in this coordinate frame. Duringve only report the voltage response of the sensor because the
training, a corpus of data is collected that pairs state wigensor is uncalibrated. Voltage is related to strain thinoag
proprioceptive and force sensor measurements in the dontesknown (but constant) linear parameter. The measurement
of the swipe interaction described earlier. In order to imbtavalues range between0.457 volts (blue) and0.351 volts
accurate measurements of state, the material is held in(red). As one might expect, the two types of measurements
jig so that it is roughly immobile with respect to the basare aligned. The same forces that cause the thumb and middle
frame. Then, data is collected by systematically perfogmiffinger to separate as they travel over the bump are also
a series of swipes so that the entire region of interest h@sorded by the force sensor. Notice that the proprioceptiv
been “scanned.” In this paper, each “scan” consist2®f data (Figure 5(c)) has the largest response when the middle
swipes. A series of scans are performed during trainingnThdinger is on top of the bump while the tactile data (Figure b(d)
while the material remains immobilized in the jig, one or morhas the greatest response on the edges of the bump.
additional “test” scans are performed. The fact that theenst Figures 5(c) and (d) are characterized by variations in
location is exactly the same during training and testindhtss|a measurements that form horizontal lines. Comparison with
us to evaluate localization accuracy by comparing locatima Figure 5(b) indicates that these lines are associated Wwéh t
estimates with the known position of the hand and the matergeometry of the scan process during training. If two swipes
during the test scans. that are performed nearby to each other at different times

IIl. L OCALIZATION

A. Training Phase



have slightly different measurement responses, then thisby applying a system model:

manifested by a line. There are two main sources for this

variation: sensor error and shifts in the flexible materiairy Pz 2201, u1:0-1)

training. Sensor error has two effects. First, sensor drror _ /P(xt|$t—17Ut—l)P(xt—1|Z2:t—1»Ul:t—2)d$t—1- (1)

the finger tension sensors causes the finger torque controlle

to produce slightly different torques, thereby squeezing t|n the second step, the posterior distribution is updated in

material slightly more or less tightly and causing variatioproportion to the likelihood of having generated the observ
in the fingertip load cell measurements. Second, error fReasurements;:

the fingertip sensors themselves directly contributes ® th
P(z¢|xy)P(xe| 220 —1, U1:0—1)

variation. This paper models both of the above sources of P(x;|z.;, u1.4_1) = )
sensor error as independent and identically distributet) (i P(zi]z2:0-1)
Gaussian noise. Equations 1 and 2 constitute an optimal solution to the

The other main source of variation in the training data igroblem of tracking state in a Markov system. However,
shifts in the position of the flexible material during traigi they ignore the question of how the posterior distribution
Our training procedure is to fixture the material such that ths represented. Two popular solutions to this problem are
position of the thumb in the base frame is roughly propoetionthe Kalman filter and the particle filter. The Kalman filter
to state (the position of the thumb in the coordinate framig optimal, but makes strict (linear system, Gaussian Hoise
of the material). If the material is perfectly fixtured withassumptions regarding the system and measurement models.
respect to the jig (which is itself fixtured with respect t@ thAnother alternative, the particle filter, does not make ¢hes
ground), then the system should make the same measuremegsgictive assumptions. However, it can fail when theipkrt
in the same state on average. However, we have obsergathple set does not estimate the posterior distributioh wit
some degree of uncontrolled shifting in the material duringpfficient accuracy.
training. These shifts appear to be stochastic in somemegib  The observation dynamics in the flexible materials domain
state space and relatively deterministic in others. Fomgta, of this paper that are modeled during the training phase
when a finger swipes near the edge of a feature, it walre highly non-linear. (We assume observation noise to be
stochastically either remain on top of the feature or it wlitle Gaussian but the observation model itself to be non-lipear.
off (this effect can be observed on the top edge of the bumpAs a result, the Kalman filter (or extended Kalman filter)
Figure 5(c) where there are a few relatively pronounceds)ineis inappropriate. The experiments in this paper were all
Whether the finger slides off or not is stochastic. Howevas, thperformed using the standard sample importance resampling
particular effect only occurs on the edges of the featuras —(SIR) version of the particle filter [28] using @5-particle
the middle of a bump or in a featureless region of state spasample set. At each time step in the SIR particle filter, the
state measurements are likely to be less noisy. This papeocess update (Equation 1) is implemented by sampling from
handles the possibility of state estimation errors in taiing the posterior distribution over states conditioned oncactiVe
set by modeling the likelihood of a measurement in ternassume a Gaussian motion model:
of a neighborhood of states in the training set surrounding
the query state. In Section IlI-C and IlI-D, we model this P(et1|ur) = N(z; f(ze, w), Q), ®)
likelihood with a Gaussian fit to the measurements frofjheresr,,, = f(x,u,) denotes the nominal process dynamics
the training set neighborhood. In Section IV, we model thgnd () is the covariance of the process noisg is set to
likelihood as a mixture of Gaussians fit to measurements fraf— ¢ia4(0.0004) in all experiments presented in this paper).
the neighborhood. The measurement update (Equation 2) is implemented by

weighting each of the particles proportional to the measure
ment likelihood. In order to prevent the sample set from
B. Bayesian filtering collapsing at one of the modes of the posterior distribytion

_ . 13 percent of the particles are chosen uniformly randomly at
One way to localize the unobserved state of the flexibley.n time step.

material in the grasp is to use Bayesian filtering. Bayesian

filtering is especially appropriate for flexible materiatate ] )

estimation because it handles noisy observations and ggoce: Proprioceptive measurements

dynamics well. The goal of Bayesian filtering is to track the Bayesian filtering can be used to perform localization using
unobserved state of a stochastic system as it changes. Iprisprioceptive information alone. We encode propriocepti
assumed that state;, is Markov. At every time step, the information in terms of the pairwise distances between the
measurements;, depend only on the current state. Startinthree fingers. Recall that during interaction with the mater
with a prior distribution over state??(z(), Bayesian filtering only the proximal flexion joints in the index and middle finger
recursively updates a posterior distributidx|zo.+, u1.:—1), are under torque control. The rest of the joints in the hand
wherez; is the state at time and zo.; = {22,...,2:} is the are commanded to hold fixed positions with a high stiffness.
set of measurements between titl@nd timet¢. The update As a result, there are no more than two dimensions of finger
to the posterior (also called the “belief state”) is accasi@d position variation. These two dimensions are represerded t
in two steps. First, the prediction step updates the digioh the system in terms of the three pairwise distances. Althoug
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Fig. 6. Relative finger positions as a function of palm positiColor denotes the magnitude of each pairwise distande reit indicating a large distance
and dark blue indicating a small distance. (a) shows the ristdbetween the tips of the index and middle fingers (colomtian: 0.01 — 0.97 inches); (b)
shows the same for the index finger and thumb (color variatid®d 6 0.93 inches); (c) shows the same for the middle finger amehtih(color variation:
0.09 — 0.96 inches). (d) illustrates average localizatierfggmance using only pairwise distance measurements.

this is a redundant representation, the extra data helpagee Lo
out the sensor and state estimation error in the training set
described in Section IlI-A.

During the measurement update, the particle filter weights
each particle by the likelihood of the measurements. The
likelihood of a proprioceptive measurement;, given that
the system is in state is modeled by a locally-weighted
Gaussian distribution defined with respect to thestates
nearest (Euclidean distance)
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whereN (z; i, X) denotes the Gaussian pdf ovewith mean,

. . Fig. 7. Comparison of average localization performance fettlinee flexible
1, and covarianceX. The mean is J o g P

materials shown in Figure 4 when only proprioceptive infoiipratis used.
1 Average performance for the flexible bump is the blue solid, lfoethe snap
2q(z) = — Z zq(z4), (4) s the green dashed line, and for the grommet is the black diitedResults

are aligned with feature location.
;€ Nk ()

wherez,(z) denotes the distance measurement associated with

statez in the training set, an&Vy(z) = {z1, ...,z } denotes
the set ofk states nearest (Euclidean distance)ztoThe bump training set. As in Figure 5(c) and (d), each of these
covariance is images is sampled over a grid coverin&5 x 2.25 inch

1 . o area with each grid celd.02 inches on a side. The color
La(z) = % Z (za(zi) — 2a) (za(xi) —24)" - (5)  denotes the magnitude of the pairwise distance averaged ove
i € N () a local neighborhood 080 nearest neighbors (Equation 4).
Notice that we are not fitting a measurement function withigure 6(a) through (c) can be understood intuitively. &ith
constant measurement noise. At a query point, our modBe index finger or the middle finger travel over the bump.
estimates both the mean and covariance parameters of Y@aen a finger crosses the bump, the bump pushes it away from
Gaussian based on a local neighborhood of data pointsti{¢ thumb. At rest, the middle finger is raised slightly above
the training set. This model incorporates state unceptamt the index finger. When the middle finger crosses the bump, it
the training set. In regions of state space where the averdg@ves away from both the index finger and the thumb. When
gradient of the measurement function with respect to statethhe index finger crosses the bump, it moves away from the
large, Equation 5 calculates a large covariance. In cantrd§umb and towards the middle finger.
the locally weighted sample covariance in a region where The localization performance of this model using the three
all neighboring states have the same expected measurenpaitwise distance measurements for a plastic bump dataset
should be similar to the underlying measurement noise.cdotiis illustrated in Figure 6(d). This experiment was perfotdme
that this approach lumps together measurement covariamsing a test scan collected just following collection of the
caused by material slippage during training with measurgmeraining scans. Recall that the material was fixtured in #mes
covariance variation intrinsic to the flexible materiakifs jig and in the same way during both training and testing. &inc
Figure 6(a) through (c) shows the neighborhood means fmaterial position can be assumed to be constant in both the
the three pairwise distances as a function of state for th&tipl training and testing data, measurements of hand position du



ing testing correspond give us a “ground-truth” measurémen
of hand-material position relative to the training data.the
experiments, we compare state (the location of the hand rela
tive to the material) estimated using proprioceptive infation
with the ground-truth measurement of state calculateddase
on hand position measurements. Figure 6(d) shows localizat
error averaged over 20 test swipes in an additional test scan
of the material. As in training, the test swipes comprising t
scan are approximately.1 inches apart over approximately a
2.25 square inch area. Approximately32 measurements are
made during each swipe with each measurement an average ozl
of 0.011 inches away from its neighbors. A single swipe takes
approximately two seconds. The particle filter is updateckon Ik 25 i3 a5 =y Tias
per measurement. Error is equal to the L2 distance between Position (inches)
weighted average particle location (the mean of the sampled
distribution) and the ground truth state. Figure 6(d) sh@wsFig. 9. Comparison of average localization performance usingrioceptive
fast initial drop in localization error that is caused by th&easurements alone (the dotted blue line) and average lwafizperfor-
. . . L mance when both proprioceptive and tactile measurements edg(the black

system immediately realizing that it isot on top of the line).
bump. After this, localization error begins to fall agairveen
—12.5 and —13. This is exactly the point where the thumb-
index distance begins to change significantly in Figure .6(HYleasurements continue to be informative for the entire time
Localization error reaches its minimum betwee3.5 and while the fingers are touching the snap.
—14 inches. Since the three pairwise distances also reach
their maxima in this region, we know that error is minimized. Tactile measurements
when one finger is completely on top of the bump. Average The fact that it is possible to achieve localization accyrac
Iocahzauonlerror t_)rlefly reaches aminimum nea5 mphe;. of approximately).25 inches briefly using only proprioceptive
However, since this low error estimate does not persistayf Minformation suggests that it should be possible to do very we
be difficult to assure that the particle filter converges véth it (aciile data is incorporated as well. The fingertip tatil
low error estimate. _ _ ~sensors provide more descriptive information — although ou

Figure 7 shows a comparison with average localizatiqgaq-pased sensors are still limited because they onlyigeov
performance for the snap (dashed green line) and the grommgte and torque information rather than direct informatio
(dotted black line). Training data was collected for these t regarding the contours or texture of the surface. As was the
other features similarly to how the plastic bump data Wase for the proprioceptive measurements, the tactileuneas
collected as described in Section Ill-A. The data are aligngenis are also subject to sensor noise that will be assumed to
with the center of the feature at zero. Localization errar fg)e Gaussian. In addition, the tactile data measurementimode
all three features becomes smallest just before reach®g Hyst also take into account the state estimate noise caused
center of the feature. This suggests that the most relevggt shifis in the flexible material. As a result, we model the

measurements are made as the fingers are just beginning,9ije data as a single Gaussian defined over locally-vieith
move over the feature. Notice that as the fingers move P&8imple moments:

the center of the feature, localization error for the bumg an

snap gets worse while error on the snap remains roughly P(zi|z) = N (213 2(2), Be(2)) -
constant. This suggests that the proprioceptive measmsmMerne mean is,
made after reaching the feature center are less informfative

the bump and grommet but continue to be informative for Zi(x) = — Z ze(x4), (6)
the snap. When the measurements are not informative, notice ;€N (x)

that our Gaussian noise assumption (E_quapon 3) Fause%%rezt(:ﬂ) is a function that evaluates to the vector of tactile
gradual increase in the entropy of the distribution, legdaan si?nals for state: in the training set andV () is the set of
ts

increase In the expected error. But why are the MEeASUreMEIIS 3 nearest states. The covariance over the local region is:
less informative for the bump and the grommet but not for

the snap? Since the grommet is relatively narrow compareds, ;) = 1 Z (2e(@) — 5:(2)) (22(2) — 2:(2)T. (@)

with the snap and bump, the fingers quickly leave the surface k 2 ENp (2)

of the grommet and measurement informativeness drops. l,:Aosrsuming that the proprioceptive and tactile data are econdi

the bump, once the fingers are on top of it, the Proprioceptiy8  lly independent given state, the joint likelihood fet
measurements are equally consistent with any other latatio oduct:

. - r
on top of the bump. Therefore, there is some flexibility foP B
motion error to integrate once the fingers reach the top of the P(af) = P(zal2) P(2]). (8)
bump. In contrast to the grommet and the bump, the snap isThe tactile data can be visualized using a singular value
both large and haptically informative over its entire extendecomposition. We perform the analysis for a grid with2
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Fig. 8. First four eigenvectors of the tactile data.

square inch cells over@a25x 2.25 square inch patch (the same
patch illustrated in Figures 5 and 6). Let= (z1,...,2,)7
be the vector ofn = 24802 cells. Letz{(x) be i'" element
of 2;(x). Let 2i(x) = (2i(x1),. .., 2i(x,))T. Form measure-
ments, the dimensionality of the information containedha t
smoothed measurements is the rank of:

= (3} (x),...,2"(x)).

Strain measurement (volts)

For the flexible bump training data, the middle fingertip sens
produced seven dimensions of tactile data. The singulaesal s
of I for this 7 x 24802 matrix are1.9361, 1.2055, 1.0716, *hz e me s "Xlinchesy T EE T e

0.7418, 0.2446, 0.1883, and0.0664. The first four eigenvectors

are IIIL.JStrated in Figure 8. A _couple; of _pomts b.ear m.enhml Fig. 10. Measurements associated with 3Genearest states for a trajectory
First, in contrast to the proprioceptive information (Rig&(a) rough state space.

through (c)), most of the sensor response occurs on the edges

of the bump. Furthermore, the first four eigenvectors redpon

differently to different parts of the edge of the bump. Usinghches. This is counter-intuitive because in the Bayesugti
only the first four eigenvectors, it should be possible to dogtting, additional data should only improve the estiniakés
good job localizing where along the edge of the bump contagiggests that below-13.95 inches, the tactile data likelihood
with the finger occurs. The plot shows localization error - model is inaccurate and causes localization errors. The nex
Figure 9 compares the performance of Bayesian localizatigaction shows that a more accurate tactile measurement mode
using a combination of proprioceptive and tactile data (th&n reduce the impact of this effect.
solid line) with the performance using just the propriodept
data (the blue dotted line — same as in Figure 6(d)). The
particle filter parameters as well as the flexible plastic pum
training and test data sets are the same as those used idntil this point, we have modeled state uncertainty in the
Section IlI-C. Error (L2 norm) is measured with respect ttraining set by fitting a single Gaussian to the measurements
the relative hand-material state during testing (recalt the associated with a neighborhood of training set states aheut
material continued to be fixtured in exactly the same way duguery point. However, Figure 10 illustrates that this uteiaty
ing training and testing). As before, these results areamest is not always Gaussian. Figure 10 shows measurements from
over 20 test swipes comprising an additional test scan. Téte fione tactile signal in the middle fingertip associated with th
thing to notice about Figure 9 is that incorporating theikact £ = 30 nearest states in the training set for a particular
data definitely improves localization accuracy — especialtrajectory in state space. In this trajectory, the middigén
between—13 and —13.5 inches. This is consistent with whatskirts the edge of the bump. For states less tha.2, there is
may be observed by comparing Figures 6 and 8: the tactiitle variance among the signals of tBe neighbors. However,
data has a larger response earlier than the propriocemiee dduring the portion of the trajectory where the finger intésac
When only proprioceptive information is used, the fingertipwith the bump, there is a clear bimodal distribution over
must actually be displaced by the feature before locatima signals within the neighborhood. Sometimes the finger slips
possible. The tactile information allows localization tocar off of the bump and produces the lower trajectory in Figure 10
while the forces that cause the fingertip displacements @emetimes the finger remains on the bump and produces the
acting. The other notable feature of Figure 9 is that loa#ilim upper trajectory. Clearly a single Gaussian distributisrai
performance is actually worse betweer13.95 and —14.25 poor fit for this data. Given state uncertainty in the tragnin

IV. GAUSSIAN MIXTURE MEASUREMENT MODEL



associated states that are far from the query state:
o(zi) =N (2i]z, Ez)

whereX,, is another user-defined parameter. In the subsequent
experiments, we have seél, = diag(0.0075) and ¥; =
diag(0.001).

The results of incorporating this model into Bayesian lo-
calization are illustrated in Figure 11. As before, thesmiits
are averaged over 20 test swipes. This version of locadizati
is identical with that used in Section IlI-D except that the

Error magnitude (inches)

95 T et ostion sy ! likelihood of tactile megsurement@,(zdz) in Equation 8, is
modeled as the Gaussian mixture. Figure 11(a) compares the
(a) performance of the Gaussian mixture version of localiratio

(the solid line) with the performance of the single Gaussian
model (the dotted blue line) from Figure 9. Just as locdbrat
performance was improved by incorporating tactile informa
tion in addition to proprioceptive information, perforntanis
again improved by adopting the Gaussian mixture model over
a single Gaussian model. Correct localization occurs exarli
than it did with the single Gaussian model and there is less
integration of error once the fingertips move off the edge of
the bump.

Figure 11(b) compares average localization performance fo
the flexible plastic bump with the average performance fer th

Error magnitude (inches)

0 0.

e ! Rg;;tive postion (inches) i s shap and the grommet. Comparing with Figure 7, the mixture
of Gaussians model improves localization performance lfor a
(b) three features. However, notice that Figure 11(b) ind&ate

that the mixture of Gaussians is capable of localizing the
Fig. 11. Performance of the Gaussian mixture measurement meeteiged  Plastic bump and the snap before the fingers actually touch
over a test scan consisting of 20 swipes. The solid line irill(strates local- the feature (the center of the feature is at the origin of the
ization error on the plastic bump for the mixture of Gaussianasuement coordinate frame) This sugaests that the model is overifitdo
model. The dotted line shows average localization errotfersingle Gaussian . ) gg_ . . . .
model (repeated from Figure 9). (b) compares the averagerpafwe for training data. The early localization is a result of infotia
the plastic bump (the blue solid line) with the average pemtoice for the content in the “featureless” region of the flexible matepiabr
shap (the green dashed line) and the grommet (the black dotegdiking the to contacting the feature Looking at Figure 8. notice that
mixture of Gaussians measurement model. The centers of the fdarees . . L ) N
are aligned with zero on the horizontal axis. there is subtle information content prior to touching thenpu

(otherwise, we would expect the non-bump measurements to

be perfectly uniform). This subtle information does notsexi
set, we need a measurement model that associates some statée proprioceptive information alone (Figure 6). Frone th
with a multimodal measurement distribution. perspective of contact mechanics, we hypothesize that the

A number of techniques can be used to fit a model &iffness and surface properties of the flexible plasticehav

a multimodal distribution. A variant of EM could be useclight variations over the “featureless” region as a furcwf
to fit a mixture of Gaussians [29]. Alternatively, Gaussiaf1e distance of the contact point to the edge of the plastic,
process regression might be used to fit a non-parameff}¢ Position of the contact with respect to the bump, or
model [29], [30]. However, this paper leaves these mofkfferences in the surface properties of the plastic. Algto
sophisticated models to future work. Currently, we takezgda We have found this pre-feature model to be repeatable with
learning approach that models the multimodal distributisn "€Spect to data collected on different days, we expect Wt o
a Gaussian mixture defined directly over the training data. fonger time horizons, this pre-feature tactile variatisnnot
particular, we model the likelihood of a tactile measuremefepeatable.
vector, z;, as:

P(zlr)=n Y ¢@)N (z2(2:). %),  (9)

;€D

A. Modeling off-feature states as a single state

One way to address the long time horizon overfitting prob-
lem is to divide state space in the training set intmarfeature
whereD,. is the set of all states in the training data sefz) region and amff-featureregion that are defined manually. For
is the tactile measurement in the training set correspandiall states in the off-feature region, the measurementilikeld
to statex, ¥, is a user-defined spherical variance, anis is modeled by a single likelihood function that models data
a normalizing constant(x;) is a radial basis function thattaken from the entire region. This prevents the filter from
penalizes the contributions from elements of the data st wdifferentiating between off-feature states. Essentiallg are



lumping all off-feature state hypotheses into a single null
hypothesis with a single likelihood model.

Consider the case of two tactile sensors (for example, L2
the index and middle finger tips) with positions and b
and corresponding measurement vectgrsand z¥ such that
2z = {2, 20}. Whereas in earlier sections, the measure-
ment likelihood was conditioned on the palm position, now
marginalize over the two sensor positions:

Error magnitude (inches)

Pz}, z|) = Y P(za)P(2{|b)P(a,b]z). ~ (10)
a,b

Define functions A(x) and B(x), that evaluate to the position Felatve postion (nehes)
of sensorsa and b, respectively, when the palm is at (@)
ApproximateP(a, b|z) to bel whena € A(x) andb € B(x)

and zero otherwise. Then, Equation 10 becomes:

P(z|r) = > P(z{]a)P(z/b).  (11)
(a,b)eA(z)x B(x)

If a is in the on-feature region, then we estim&é:{'|a) as
before using Equation 9. Otherwise, we estimate:

P(zfla) = N(2{|Zop s, Boss)s (12)

where Z,;5 and X, are the sample mean and covariance
taken over all points in the off-feature region.

Figure 12 illustrates the results of aggregating off-featu
states. These results were obtained using the same plastic
bump dataset that was used to produce the results in Fig- (b)
ure 11. The solid line in Figure 12(a) shows the error for
the on-feature/off-feature approach averaged over a ¢ast SFig. 12. Performance of the on-feature/off-feature apgrgaolid lines) com-
comprised of 20 swipes. The dashed line shows error for digred with the undifferentiated mixture of Gaussians apgrdéotted lines).
previous approach reproduced from Figure 11. A expectae dodted ines show the Gaussian mixture performance ormop. (2
this new model does not localize the feature before the fingehows average localization error. (b) shows average kmtadn variance. The
come into contact with it. Figure 12(b) shows variance in th@igin on the horizontal axis denotes the center of the featu
particle set averaged over the 20 test swipes. The new model
has a high variance that persists until the fingers come into e L
contact with the feature at approximatelys inches prior to thumb inside the recess of th(_a bgmp. This is part of_a Iarger
the bump center (the bump has approximately a one infdFtory @ssembly task. The objective of the grommet inserti
outer diameter). From a practical perspective, the deere4@SK iS (o localize a grommet using touch sensing and insert
in variance when the fingers contact the feature is useflif _grommet_onto a fastener_. This is part O_f a NASA t_ask:
for signaling that the localization system has reached thefirst; consider the thumb-in-bump task (illustrated in-Fig
on-feature region and probably has a good state estimafe® 13). Before localizing the bump, it was assumed that
Essentially, this on-feature/off-feature approach tiamss the 1€ Pump position was known to within a square region
continuous state estimation problem into a hybrid estiomati WO inches on a side. Given this approximate location, the
problem where the hypothesis space consists of the spacéotgﬁOt re_ache_zd to the nominal bump POS'“Q” and c_ompllan_tly
on-feature states and the binary possibility that the syste closed its flnge_rs ar_ound 'Fhe plastic using the interaction
in an off-feature state. The likelihood of the binary ofafare Procedure described in Section II-B. Then the robot peréarm

hypothesis is the marginal likelihood of all particles iretbff & SWiPe. During the swipe, the bump was localized using
feature region. the single-Gaussian model of the proprioceptive infororati

the mixture of Gaussians model of the tactile information,
o and the separate modeling of the featureless regions @ll th
B. Applications techniques proposed in this section). If, at any point dyrin
The main motivation for using touch sensing to localfiltering, the variance (the trace of the covariance matoik)
ize haptic features is that it can improve the robustness tbe filer particles fell below a given threshold, then filbgri
manipulation tasks involving soft materials. This subgect stopped and the thumb was inserted into the bump. Otherwise,
illustrates this advantage in the context of two tasks: atjga an additional swipe was performed. The insertion itself was
manipulation task and a grommet insertion task. The olwectiperformed using a hand-coded procedure, parametrizedeby th
of the plastic manipulation task is to locate a bump in thmaximum likelihood bump location, that changed all finger
flexible plastic using touch sensing and move the tip of theints to stiffness mode, moved the thumb into the bump,

Average variance (inches)

0.5 1

-15 -1

-0.5 0
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() (d) (e) ®

Fig. 13. lllustration of the thumb insertion task. The ohjeztis to insert the thumb into the recessed plastic bump. Frdajethrough (d) illustrate the
swipe. Frames (e) and (f) illustrate the thumb insertion.

(b) (d)

Fig. 14. lllustration of the grommet insertion task. Framesti@ugh (e) illustrate the swipe. Frame (f) illustrates theertion.

and simultaneously gripped the plastic from the other siédeound the fabric and performed a swipe (Figure 14(b-d)). As
using the fingers. The diameter of the interior of the bumip the bump insertion experiment, the localization techei)
was approximately0.85 inches. The diameter of the thumbproposed in this section were applied. Filtering was stdppe
tip was approximatel\0.65 inches. In order to successfullywhen particle variance dropped below a threshold. At this
insert the thumb into the bump, the localization error cdagdd point, the robot gripped the fabric tightly (Figure 14(ejjda
no greater than approximately35 inches. Any greater error moved to an insertion location (Figure 14(f)) calculatethgs
would cause the thumb to “pop” out of the bump during ththe maximum likelihood grommet position and the fastener
insertion. location that is assumed to be known (we assume that the
While we do not have quantitative statistics on the succe@stener is fixtured to a large object that can be localizéus
and failure rate of this insertion task, it was qualitatvelOther methods.) The insertion was performed under Cartesia
very successful. We believe that most failures were asttiastiffness control with a stiffness center located at thp gdint.
with sensor calibration problems. As a result, we developedrhis task was much more difficult than the thumb insertion
short calibration procedure that was performed beforeingnn task because the required tolerances were very small. kr ord
localization experiments or demonstrations. This prooedu- t0 successfully insert the grommet, localization errorldou
tomatically relaxes all finger tendons, resets the tensifimea b€ no greater thaf.2 inches. Since this is very close to the
offsets, and recalculates tendon gains after re-tengidi@ifi]. €xpected localization error for the grommet (see Figuré@))1(
Out of the more thanl00 attempts, the thumb insertion€ven a small errors in force sensor calibration caused this
task succeeded approximate% percent of the time. Of task to fail. Compared with the thumb-in-bump insertion, we
those attempts that did not succeed, almost all failures wéxecuted this task relatively few times (only approximpatel
attributed to a failure to run the calibration procedurepto 20 times). The task was likely to succeed when executed
the test or a failure in another part of the system. directly after taking a training data set. However, our egst

We also applied our localization technique to a gromm&@S subject to sufficient drift.in the sensors that We.could no
insertion task. The objective was to localize a grommet embeEXecute successfully on a different day without taking a new
ded in fabric that was placed in the robot hand in an unkno/@!Ning set.
position, grasp the grommet, and insert the grommet onto a
fastener. (This was actually guarter turnfastener that must V. DiscussioN
be turned after insertion to lock the fabric in place. Howeve This paper has examined methods of using proprioceptive
in this paper we ignore the turning part and just perform thend tactile measurements to estimate the position of arfeatu
insertion.) The grommet was placed in the robot hand in gsuch as a button, snap, or grommet) embedded in a flexible
unknown (but constrained to the region of states from whighaterial such as thin plastic or fabric. We have character-
the swipe would cause the fingers to pass over the bump) cared the relative utility of the two types of measurements
figuration (Figure 14(a)). Then, the hand compliantly ctbsewith respect to localization performance and shown thay the



contain different kinds of information. We have demonsttat since our current procedure requirés minutes of training
that using both types of information rather than just proprtime to recognize a single feature, it would clearly become
oceptive information results in a sizable gain in localimat infeasible to train the system on large classes of objects in
performance. Given the state estimation errors inhereatiin reasonable period of time. An alternative approach might be
training mechanism, we have found the tactile measureméattake a compositional approach where the system is trained
model to be multimodal and proposed a mixture of Gaussiattsrecognizeparts of a feature rather than an entire monolithic
model that results in an additional improvement in locditma feature. For example, the system might be trained to rezegni
performance. Finally, we have explored two applicationswf a library of curves with different curvatures and oriergas.
approach that are relevant to manufacturing and space- appkatures would be described in terms of located collectibns
cations: a flexible plastic manipulation application (Figgd3) curves. While this approach would extend the representtion
and a grommet insertion application (Figure 14). Althougbapabilities of this approach, the challenge would be taotifie
the study in this paper of localization during manipulatiothe relevant atomic shape primitives.
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