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Abstract We consider the partially observable control problem whereit is poten-
tially necessary to perform complex information-gathering operations in order to
localize state. One approach to solving these problems is tocreate plans inbelief-
space, the space of probability distributions over the underlying state of the system.
The belief-space plan encodes a strategy for performing a task while gaining infor-
mation as necessary. Most approaches to belief-space planning rely upon represent-
ing belief state in a particular way (typically as a Gaussian). Unfortunately, this can
lead to large errors between the assumed density representation and the true belief
state. We propose a new computationally efficient algorithmfor planning in non-
Gaussian belief spaces. We propose a receding horizon re-planning approach where
planning occurs in a low-dimensional sampled representation of belief state while
the true belief state of the system is monitored using an arbitrary accurate high-
dimensional representation. Our key contribution is a planning problem that, when
solved optimally on each re-planning step, is guaranteed, under certain conditions,
to enable the system to gain information. We prove that when these conditions are
met, the algorithm converges with probability one. We characterize algorithm per-
formance for different parameter settings in simulation and report results from a
robot experiment that illustrates the application of the algorithm to robot grasping.

1 Introduction

A fundamental objective of robotics is to develop systems that can function robustly
in unstructured environments where the state of the world isonly partially observed
and measurements are noisy. For example, robust robot manipulation is well mod-
eled as partially observable problem. It is common to model control problems such
as these as partially observable Markov decision processes(POMDPs). However,
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in general, finding optimal solutions to POMDPs has been shown to be PSPACE
complete [12]. Even many approximate approaches are computationally complex:
the time complexity of standard point-based algorithms, such as HSVI and SAR-
SOP, is exponential in the planning horizon [17, 9, 15]. A growing body of work
is focused on finding correct rather than optimal solutions to the partially observ-
able control problem. Many of these approaches search for plans inbelief space,
the space of probability distributions over the underlyingstate space. The idea of
planning in belief space can be traced back to some of the early dual control work
where differential dynamic programming was used to find robust policies in stochas-
tic domains [1]. More recent work has explored the application of different planning
and re-planning mechanisms to the belief space planning problem [13, 6, 11]. Al-
though these approaches are well suited to finding complex information-gathering
behavior, they do so at the expense of solving a planning problem that is higher
dimensional than the underlying perfectly-observable planning problem. Another
recent class of approaches avoids this complexity by evaluating large numbers of
candidate trajectories in the underlying state space in terms of the information that
is likely to be gained during execution and the chances of colliding with prob-
lem constraints [18, 14, 5]. Although these approaches plandirectly in the (lower-
dimensional) state space, it may be necessary to create a large number of plans
before finding one with satisfactory information-gathering properties.

One drawback with the belief space planning work cited aboveis the assump-
tion that belief state (the probability distribution over underlying system state) is
Gaussian. Unfortunately, this assumption is unwarranted in many robot naviga-
tion and manipulation applications (witness the popularity of the particle filter in
these applications). Furthermore, directly extending an approach such as in [13] to
non-Gaussian distributions quickly results in a computationally complex planning
problem because of the high dimensionality of typical non-Gaussian parametriza-
tions (for example, see [2]). This paper considers the problem of planning in non-
Gaussian belief spaces. We propose an algorithm that, undercertain conditions, is
provably correct and also computationally efficient. Belief space planning implic-
itly necessitates tracking belief state using a Bayes filter. Our key idea is to separate
the representation used to track belief state from the representation used for plan-
ning. During execution of the plan, system state is tracked using an arbitrary Bayes
filter implementation that is selected by the system designer (a particle filter, for
example). For the purposes of planning, however, this potentially high-dimensional
belief state representation is projected onto a low-dimensional sampled represen-
tation. Plans are created that generate observations that differentiate a hypothesis
sample from the other samples while also reaching a goal state. If the true belief
state diverges too far from the nominal belief space trajectory during execution of
the plan, then a re-planning cycle is triggered and the process iterates. The dimen-
sionality of this planning problem is linear in the dimensionality of the underlying
state space. This compares favorably with other algorithms[13, 6, 11, 1] which
must solve planning problems quadratically larger than thefully observable prob-
lem. Perhaps surprisingly, this approach can be proved to solve the belief space
planning problem (under certain conditions) with probability one when as few as
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two samples are used for planning. Moreover, our experiments indicate that, for rel-
atively simple problems at least, it is unnecessary to use large numbers of samples
in order to obtain good plans. After defining the problem in Section 2, this paper
describes the algorithm in Section 3 and proves convergencein Section 4. In Sec-
tion 5, we experimentally characterize the performance of algorithm as a function of
the number of samples used. Finally, in Section 6, we apply the algorithm to a robot
grasping problem where a robot must simultaneously localize and grasp objects in
the environment.

2 Problem Statement

We are concerned with the class of control problems where it is desired to reach
a specified goal state even though state may only be estimatedbased on partial
or noisy observations. Consider a discrete-time system with continuous non-linear
deterministic process dynamics1, xt+1 = f (xt ,ut), where state,x, is a column vector
in Rn, and action,u ∈ Rl . Although state is not directly observed, an observation,
zt = h(xt)+ vt , is made at each timet, wherez∈ Rm is a column vector andvt is
zero-mean Gaussian noise with covarianceQ.

Bayes filtering can be used to estimate state based on the previous actions taken
and observations perceived. The estimate is a probability distribution over state rep-
resented by a probability density function (pdf),π(x;b) : Rn→ R+ with parameter
vector,b ∈ B. The parameter vector is called thebelief stateand the parameter
space,B, is called thebelief-space. For deterministic process dynamics, the Bayes
filter update can be written:

π( f (x,ut);bt+1) =
π(x;bt)P(zt+1|x,ut)

P(zt+1)
. (1)

The Bayes update calculates a new belief state,bt+1, givenbt , ut , andzt+1. It will
sometimes be written,bt+1 = G(bt ,ut ,zt+1). In general, it is impossible to imple-
ment Equation 1 exactly using a finite-dimensional parametrization of belief-space.
However, a variety of approximations exist in practice [4].

Starting from an initial belief state,b1, the control objective is to achieve a task
objective with a specified minimum probability of success,ω ∈ [0,1). Specifically,
we want to reach a belief state,b, such that

Θ(b, r,xg) =
∫

x∈Bn(r)
π(x+xg;b)≥ ω, (2)

whereBn(r) = {x∈Rn,xTx≤ r2} denotes ther-ball inRn for somer > 0, andω de-
notes the minimum probability of success. There are strong similarities between this

1 Although we have formally limited ourselves to the case of deterministic process noise, we find
in Section 6 that empirically, our algorithm performs well in environments with limited amounts
of process noise.
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control problem and the more general Partially Observable Markov Decision Pro-
cess (POMDP) problem. Both define a partially observable control problem. How-
ever, whereas the objective of a POMDP is to minimize expected cost, our objective
is to reach a goal region with a specified minimum probability. Also, in contrast
to the more general POMDP problem, we have only allowed deterministic process
dynamics.

3 Algorithm

Our algorithm can be viewed as a receding horizon control approach that creates
and executes nominal belief space plans. During execution,we track a belief dis-
tribution over underlying state based on actions and observations. If the true belief
state diverges from the nominal trajectory, our algorithm re-plans and the process
repeats. Our key contribution is a planning problem that, when solved optimally on
each re-planning step, is guaranteed, under certain conditions, to enable the system
to gain information.

3.1 Creating plans

The key to our approach is a mechanism for creating horizon-T belief-space plans
that guarantee that new information is incorporated into the belief distribution on
each planning cycle. Given a prior belief state,b1, define a “hypothesis” state at
the maximum of the pdf,x1 = argmaxx∈Rn π(x;b1). Then, samplek−1 states from
the prior distribution,xi ∼ π(x;b1), i ∈ [2,k], such that the pdf at each sample is
greater than a specified threshold,π(xi ;b1)≥ϕ > 0, and there are at least two unique
states among thek−1. We search for a sequence of actions,uT−1 = (u1, . . . ,uT−1),
that result in as wide a margin as possible between the observations that would
be expected if the system were in the hypothesis state and theobservations that
would be expected in any other sampled state. As a result, a good plan enables the
system to “confirm” that the hypothesis state is in fact the true state or to “disprove”
the hypothesis state. If the hypothesis state is disproved,then the algorithm selects
a new hypothesis on the next re-planning cycle, ultimately causing the system to
converge to the true state.

To be more specific, letFt(x,ut−1) be the state at timet if the system begins in
statex and takes actionsut−1. Recall that the expected observation upon arriving in
statext is h(xt). Therefore, the expected sequence of observations is:

ht(x,ut−1) =
(

h(F1(x,u1))
T , . . . ,h(Ft−1(x,ut−1))

T)T
.

We are interested in finding a sequence of actions that minimizes the probability
of seeing the observation sequence expected in the sampled states when the system
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is actually in the hypothesis state. In other words, we want to find a sequence of
actions,uT−1, that minimizes

J̃(x1, . . . ,xk,u1:T−1) =
k

∑
i=2

N
(

h(xi ,uT−1)|h(x1,uT−1),Q
)

whereN(·|µ ,Σ) denotes the Gaussian distribution with meanµ and covarianceΣ
andQ = diag(Q, . . . ,Q) is the block diagonal of measurement noise covariance
matrices of the appropriate size. When this sum is small, Bayes filtering will more
accurately be able to determine whether or not the true stateis near the hypothesis
in comparison to the other sampled states.

The above expression for observation distance is only defined with respect to the
sampled points. However, we would like to “confirm” or “disprove” states in regions
about the hypothesis and samples – not just the zero-measurepoints themselves.
This can be incorporated to the first order by defining small Gaussian distributions
in state space with covariance,V, about the samples and taking an expectation:

J(x1, . . . ,xk,u1:T−1) =
k

∑
i=2

Eyi∼N(·|xi ,V),y1∼N(·|x1,V)N
(

h(yi ,uT−1)|h(y1,uT−1),Q
)

=
k

∑
i=2

N
(

h(xi ,uT−1)|h(x1,uT−1),Γ (xi ,uT−1)
)

, (3)

where Γ (x,uT−1) = 2Q+HT(x,uT−1)VHT(x,uT−1)
T +HT(x

1,uT−1)VHT(x
1,uT−1)

T ,
(4)

Ht(x,u1:t−1) = ∂ht(x,u1:t−1)/∂x denotes the Jacobian matrix ofht(x,u1:t−1) at x,
andV is the appropriately sized block diagonal matrix ofV. Rather than optimizing
for J(x1, . . . ,xk,u1:T−1) (Equation 3) directly, we simplify the planning problem by
dropping the normalization factor in the Gaussian and optimizing the exponential
factor only. Let

Φ(xi ,uT−1) = ‖h(xi ,uT−1)−h(x1,uT−1)‖2Γ (xi ,uT−1)
.

The modified cost function is:

J̄(x1, . . . ,xk,u1:T−1) =
1
k

k

∑
i=1

e−Φ(xi ,uT−1). (5)

The optimization problem becomes:

Problem 1.

Minimize J̄(x1, . . . ,xk,uT−1)+αuT
T−1uT−1 (6)

subject to xi
t+1 = f (xi

t ,ut), i ∈ [1,k] (7)

x1
T = xg,x

i
1 = xi , i ∈ [1,k]. (8)
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Equation 6 adds an additional quadratic cost on action that adds a small preference
for short trajectories. The associated weighting parameter should be set to a small
value (α≪ 1). Problem 1 can be solved using a number of planning techniques such
as rapidly exploring random trees [10], differential dynamic programming [8], or
sequential quadratic programming [3]. We use sequential quadratic programming to
solve the direct transcription [3] of Problem 1. Although direct transcription is only
guaranteed to find locally optimal solutions, we have found that it works well for
many of the problems we have explored. The direct transcription solution will be
denoted

uT−1 = DIRTRAN(x1, . . . ,xk,xg,T), (9)

for samples,x1, . . . ,xk, goal state constraint,xg, and time horizon,T. Note that the
dimensionality of Problem 1 isnk – linear in the dimensionality of the underlying
state space with a constant equal to the number of samples. This compares favor-
ably with the approaches in [13, 6, 11] that must solve planning problems inn2-
dimensional spaces (number of entries in the covariance matrix).

3.2 Re-planning

After creating a plan, our algorithm executes it while tracking the belief state using
the user-supplied belief-state update,G. If the actual belief state diverges too far
from a nominal trajectory derived from the plan, then execution stops and a new
plan is created. The overall algorithm is outlined in Algorithm 1. The outerwhile
loop iteratively creates and executes plans until the planning objective (Equation 2)
is satisfied. Step 2 sets the hypothesis state to the maximum of the prior distribution.
Step 3 samplesk−1 additional states. Step 4 of Algorithm 1 calls the CREATEPLAN

function (Algorithm 2). CREATEPLAN has two steps. First, it solves Problem 1 with
the final value (first condition, Equation 8) constraint. Then, CREATEPLAN calcu-
lates a corresponding belief trajectory forward by assuming that the hypothesis state
is equal to the true state. If the resulting trajectory does not reach a belief state
that satisfies thewhile loop condition in step 1 of Algorithm 1, then CREATEPLAN

solves Problem 1 again, this time without the final value constraint. Steps 6 through
12 execute the plan. Step 9 updates the belief state given thenew action and ob-
servation using the user-specified Bayes filter implementation. Step 10 breaks plan
execution when the actual belief state departs too far from the nominal trajectory,
as measured by the KL divergence,D1

[

π(·;bt+1),π(·; b̄t+1)
]

> θ . The second con-
dition, J̄(x1, . . . ,xk,ut−1)< 1−ρ , guarantees that thewhile loop does not terminate
before a (partial) trajectory with cost̄J < 1 executes. We show in Section 4 that the
second condition guarantees that the algorithm makes “progress” on each iteration
of thewhile loop.
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Input : initial belief state,b, goal state,xg, planning horizon,T, and belief-state update,G.
1 while Θ(b, r,xg)< ω do
2 x1 = argmaxx∈Rn π(x;b);
3 ∀i ∈ [2,k],xi ∼ π(x;b) : π(xi ;b)≥ ϕ;
4 b̄1:T ,uT−1 = CreatePlan(b,x1, . . . ,xk,xg,T);
5 b1 = b;
6 for t← 1 to T−1 do
7 execute actionut , perceive observationzt+1;
8 bt+1 = G(bt ,ut ,zt+1);
9 if D1

[

π(x;bt+1),π(x; b̄t+1)
]

> θ and J̄(G ,ut−1)< 1−ρ then
10 break
11 end
12 end
13 b= bt+1;
14 end

Algorithm 1: Belief-space re-planning algorithm

Input : initial belief state,b, sample set,x1, . . . ,xk, goal region,G , and time horizon,T.
Output: nominal trajectory,̄b1:T andu1:T−1

1 u1:T−1 = DirTran(x1, . . . ,xk,G ,T);
2 b̄1 = b; ∀t ∈ [1 : T−1], b̄t+1 = G(b̄t ,ut ,h(x1

t ));
3 if Θ(b,G )≤ ω then
4 u1:T−1 = DirTran(x1, . . . ,xk,T);
5 b̄1 = b; ∀t ∈ [1 : T−1], b̄t+1 = G(b̄t ,ut ,h(x1

t ));
6 end

Algorithm 2: CREATEPLAN procedure

3.3 Illustration

Figures 1 and 2 show a simple example that illustrates beliefspace planning. Fig-
ure 1 shows a horizontal-pointing laser mounted to the end-effector of a two-link
robot arm. The end-effector is constrained to move only vertically along the dotted
line. The laser points horizontally and measures the range from the end-effector to
whatever object it “sees”. There are two boxes and a gap between them. Box size,
shape, and relative position are assumed to be perfectly known along with the dis-
tance of the end-effector to the boxes. The only uncertain variable in this problem is
the vertical position of the end-effector measured with respect to the gap position.
This defines the one-dimensional state of the system and is illustrated by the ver-

Fig. 1 SLAG scenario. The
robot must simultaneously
localize the gap and move the
end-effector in front of the
gap.
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Fig. 2 Illustration of CREATEPLAN . (a) An information-gathering trajectory (state as a function
of time) found using direct transcription. Blue denotes the trajectory that would be obtained if the
system started in the hypothesis state. Red denotes the trajectory obtained starting in the true state.
(b) The planned belief-space trajectory illustrated by probability distributions superimposed over
time. Distributions early in the trajectory are light gray while distributions late in the trajectory
are dark. The seven “X” symbols on the horizontal axis denote thepositions of the samples (red
denotes the true state while cyan denotes the hypothesis). (c) The actual belief-space trajectory
found during execution. (d-f) Comparison with the EKF-based method proposed in [13]. (d) The
planned trajectory. (e) The corresponding nominal belief-space trajectory. (f) Actual belief-space
trajectory.

tical number line in Figure 1. The objective is to localize the vertical end-effector
with respect to the center of the gap (state) exactly and movethe end-effector to
the center of the gap. The control input to the system is the vertical velocity of the
end-effector.

Figure 2(a) illustrates an information-gathering trajectory found by DIRTRAN

that is expected to enable the Bayes filter to determine whether the hypothesis state
is indeed the true state while simultaneously moving the hypothesis to the goal state
(end-effector at the center of the gap). The sample set used to calculate the trajec-
tory wasx1, . . . ,xk = 5,2,3,4,6,7,8, with the hypothesis sample located atx1 = 5.
The action cost used while solving Problem 1 wasα = 0.0085. DIRTRAN was ini-
tialized with a random trajectory. The additional small action cost smooths the tra-
jectory by pulling it toward shortest paths without changing information gathering
or goal directed behavior much. The trajectory can be understood intuitively. Given
the problem setup, there are two possible observations: range measurements that
“see” one of the two boxes and range measurements that “see” through the gap. The
plan illustrated in Figure 2(a) moves the end effector such that different sequences of
measurements would be observed depending upon whether the system were actually
in the hypothesis state or in another sampled state.
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Figures 2(b) and (c) show the nominal belief-space trajectory and the actual tra-
jectory, respectively, in terms of a sequence of probability distributions superim-
posed on each other over time. Each distribution describes the likelihood that the
system started out in a particular state given the actions taken and the observations
perceived. The nominal belief-space trajectory in Figure 2(b) is found by simulat-
ing the belief-space dynamics forward assuming that futureobservations will be
generated by the hypothesis state. Ultimately, the plannedtrajectory reaches a be-
lief state distribution that is peaked about the hypothesisstate,x1 (the red “X”). In
contrast, Figure 2(c) illustrates the actual belief-spacetrajectory found during exe-
cution. This trajectory reaches a belief state distribution peaked about the true state
(the cyan “X”). Whereas the hypothesis state becomes the maximum of the nominal
distribution in Figure 2(b), notice that it becomes a minimum of the actual distribu-
tion in Figure 2(c). This illustrates the main idea of the algorithm. Figure 2(b) can be
viewed as a trajectory that “trusts” that the hypothesis is correct and takes actions
that confirm this hypothesis. Figure 2(c) illustrates that even when the hypothesis
is wrong, the distribution necessarily gains information because it “disproves” the
hypothesis state (notice the likelihood of the region aboutthe hypothesis is very
low).

Figure 2 (d-f) compares the performance of our approach withthe extended
Kalman filter-based (EKF-based) approach proposed in [13].The problem setup
is the same in every way except that cost function optimized in this scenario is:

J̄(u1:T−1) =
1
10

(

σ2
T

)T σ2
T +0.0085uT

1:T−1u1:T−1,

whereσ2
T denotes covariance. There are several differences in performance. Notice

that the two approaches generate different trajectories (compare Figures 2(a) and
(d)). Essentially, the EKF-based approach maximizes the EKF reduction in variance
by moving the maximum likelihood state toward the edge of thegap where the gra-
dient of the measurement function is large. In contrast, ourapproach moves around
the state space in order to differentiate the hypothesis from the other samples in
regions with a small gradient. Moreover, notice that since the EKF-based approach
is constrained to track actual belief state using an EKF Bayes filter, the tracking
performance shown in Figure 2(f) is very bad. The EKF innovation term actually
makes corrections in the wrong direction. However, in spiteof the large error, the
EKF covariance grows small indicating high confidence in theestimate.

4 Analysis

We are interested in the correctness of Algorithm 1. Can we guarantee that Algo-
rithm 1 eventually reaches a belief state in the goal region?We show that ifG is
an exact implementation of Equation 1, then Algorithm 1 is expected to localize
the true state of the system after a finite number of iterations of the outer loop. As
the number of iterations of the outer loop goes to infinity, the probability of having
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localized the true system state goes to one. We start by providing a lower bound on
the expected probability of states in a neighborhood of the true state. On a particu-
lar iteration of the outerwhile loop in Algorithm 1, suppose that the system begins
in belief state,b1, while the true state isκ , and executes a sequence of actions,
u = (u1, . . . ,uT−1) (subscript dropped for conciseness). During execution, the sys-
tem perceives observationsz = (z2, . . . ,zT) and ultimately arrives in belief statebT .
The probability of a state,y = FT(x,u), estimated by recursively evaluating Equa-
tion 1 is:

π(y;bT) = π(x;b1)
qx(z,u)
p(z,u)

, (10)

where
qx(z,u) = N(z|h(x,u),Q) (11)

is the probability of the observations given that the systemstarts in statex and takes
actions,u, and

p(z,u) =
∫

x∈Rn
π(x;b1)N(z|h(x,u),Q) (12)

is the marginal probability of the observations givenu. The following Lemma shows
thatπ(y;bT) can be lower-bounded in terms of the proximity ofx to the true state,
κ .

Lemma 1. Suppose we are given an arbitrary sequence of actions,u, and an arbi-
trary initial state, x∈ Rn. Then, the expected probability of y= FT(x,u) found by
recursively evaluating the deterministic Bayes filter update (Equation 1) is

Ez

{

π(y;bT)

π(x;b1)

}

≥ exp(D1(qκ , p)−D1(qκ ,qx)) ,

where qκ , qx, and p are defined in Equations 11 and 12 and D1 denotes the KL
divergence between the arguments.

Proof. The log of the expected change in the probability ofx is:

logEz

{

π(y;bT)

π(x;b1)

}

= logEz

{

qx(z,u)
p(z,u)

}

= log
∫

z∈Rm

qκ(z,u)qx(z,u)
p(z,u)

≥
∫

z∈Rm
qκ(z)(logqx(z,u)− logp(z,u))

= D1(qκ , p)−D1(qκ ,qx),

where the third line was obtained using Jensen’s inequalityand the last line follows
from algebra. Taking the exponential gives us the claim.

Lemma 1 expresses the bound in terms of the divergence,D1(qκ , p), with respect
to the true state,κ . However, sinceκ is unknown ahead of time, we must find a lower
bound on the divergenceD1(qy, p) for arbitrary values ofy. The following lemma



A hypothesis-based algorithm for planning and control in non-Gaussian belief spaces 11

establishes a bound on this quantity. We use the notation that ‖a‖A =
√

aTA−1a
denotes the Mahalanobis distance with respect toA.

Lemma 2. Given an arbitraryu and a distribution,ϖ , suppose∃Λ1,Λ2 ⊆ Rn such
that∀x1,x2∈Λ1×Λ2,‖h(x1,u)−h(x2,u)‖2Q≥ ζ 2 and

∫

x∈Λ1
ϖ(x)≥ γ,

∫

x∈Λ2
ϖ(x)≥

γ. Then

min
y∈Rn

D1(qy, p)≥ 2η2γ2
(

1−e−
1
2ζ 2

)2
,

whereη = 1/
√

(2ϖ)n|Q| is the Gaussian normalization constant.

Proof. By Pinsker’s inequality, we know thatD1(qx, p)≥ 2supz (qx(z,u)− p(z,u))2.

Notice thatp(h(x1,u))≤ η
(

1− γ + γe−
1
2ζ 2

)

. Sinceqx(h(x1,u)) = η , we have:

(qx(h(x1,u))− p(h(x1,u)))
2≥ γ2

(

1−e−
1
2ζ 2

)2
.

We obtain the conclusion by using Pinsker’s inequality.

As a result of Lemmas 1 and 2, we know that we can lower bound theexpected
increase in probability of a region about the true state by finding regions,Λ1 and
Λ2, that satisfy the conditions of Lemma 2 for a givenu. Lemma 3 shows that these
regions exist for anyu with a cost (Equation 3)̄J < 1. The proof uses Lemmas 4
and 5, stated and proved in the appendix.

Lemma 3. Suppose thatu is a plan with costJ̄ = J̄(x1, . . . ,xk,u) defined over the
samples, xi , i ∈ [1,k]. If the maximum eigenvalue of the Hessian of h isλ , then
∃i ∈ [1,k] such that:

∀r ∈R+,∀δ1,δ2∈Bn(r),‖h(xi+δ1)−h(x1+δ2)‖2Γ (xi ,u)≥
[

√

− logJ̄−2(r +cr2)

]

,

where c= λ‖1‖Q/2 and Bn(r) = {x∈ Rn;xTx≤ r2}.

Proof. Considering Equation 3, we know that a cost,J̄, implies that there is at least
one sample,x j , such that

− logJ̄ ≤ Φ(x j ,u)

= ‖h(x j)−h(x1)‖2Γ (x j ,u).

Notice that∀y ∈ Rn, the matrixH(y)TΓ (y,u)−1H(y) is positive semidefinite with
eigenvalues no greater than one. Therefore, we know that∀r ∈ R+,δ ∈ Bn(r),

‖H(y)δ‖2Γ (y,u) ≤ r2.

Using Lemma 4 twice to combine the above equations, we have∀r ∈ R+,δ1,δ2 ∈
Bn(r),
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‖P(x j ,δ1)−P(x1,δ2)‖2Γ (x j ,u) ≥
(

√

− logJ̄−2r

)2

,

whereP(x,δ ) = h(x)−H(x)δ . Using Lemma 5, we have that∀x,∈ Rn and δ ∈
Bn(r),

‖h(x+δ )−P(x,δ )‖2Γ (x,u) ≤ (cr2)2.

Applying Lemma 4 twice gives us the conclusion of the theorem.

We now state our main theoretical result regarding Algorithm 1 correctness. Two
conditions must be met. First, the planner in step 4 of Algorithm 1 must always find
low-cost plans successfully. Essentially, this guarantees that each plan will acquire
useful information. Second, step 8 of Algorithm 1 must use anexact implementation
of the Bayes filter. In practice, we expect that this second condition will rarely be
met. However, our experiments indicate that good results can be obtained using
practical filter implementations (Section 5).

Theorem 1. Suppose∃r,ε ∈R+ such that∀i ∈ [1,k] and∀δ ∈ Bn(r), π(xi +δ )≥ ε
with k≥ 2. Suppose:

1. DIRTRAN (Algorithm 1, step 4) always finds a horizon-T trajectory,u, with cost,

J̄(x1, . . . ,xk,u)≤ exp

[

−
(

2r + r2λhλ T−1
f ‖1‖Q+

√

logϕ2
)2

]

,

whereλh andλ f are the maximum eigenvalues of the Hessian matrix of h and f ,
respectively andϕ > 1 is the threshold parameter in step 3 of Algorithm 1; and

2. G is an exact implementation of the Bayesian filter update (Equation 1) in step 8
of Algorithm 1.

Then, when Algorithm 1 executes,

1. the expected probability of the true state increases on each iteration of the outer
while loop by at least2η2γ2(1−1/ϕ), whereη = 1/

√

(2π)n|Q| is the Gaussian
normalization constant,γ = εVoln(r), and Voln(r) is the volume of the r-ball in
n dimensions; and

2. as the number of iterations of the outer while loop goes to infinity, the true state
becomes the maximum of the belief state distribution with probability one.

Proof. Condition 2 in the premise implies that
√

− logJ̄−2r− r2λhλ τ
f ‖1‖Q ≥

√

logϕ2.

Lemma 3, gives us that∃i ∈ [1,k] such that∀δ1,δ2 ∈ B(r), ‖h(xi + δ1)− h(x1 +

δ2)‖2Γ (xi ,u) ≥
√

logϕ2. Then, Lemma 2 gives us that

min
y∈R2

D1(qy, p)≥ 2η2γ (1−1/ϕ)2 ,
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whereγ = εVoln(r). Lemma 1 gives us the first conclusion. The constraint that
ϕ > 1 implies that the right side of the above equation is positive. As a result, the
probability of the true state is expected to increase on eachiteration of the outer
while loop and we have the second conclusion.

At the end of Section 3.1, we noted that the planning problem solved in step 4
of Algorithm 1 was linear in the dimensionality of the underlying space. Theorem 1
asserts that the algorithm is correct with as few as two samples. As a result, we know
that the linear constant can be as small as two.

5 Experiments
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Fig. 3 (a) the experimental scenario. (b) a path found by Algorithm 1 with a nine-sample planner.
It starts in the upper right and ends at a point directly in front of the right-most box. The red circles
denote where re-planning occurred. (c) belief state entropyas a function of time step. The solid
black line corresponds to the trajectory shown in (b). The dashed blue lines correspond to five
additional nine-sample runs.

From a practical perspective, the preceding analysis is useful because it tells
us that if we execute thewhile loop in Algorithm 1 a sufficient number of times,
we can expect to localize the state of the system with arbitrary accuracy (we can
drive Θ(b, r,xg) arbitrarily low). However, for this result to hold, we require the
planner to find low cost paths each time it is called and for thetracking Bayes
filter to be an exact realization of Equation 1 (the premise ofTheorem 1). Since
these conditions are difficult to meet in practice, an important question is how well
the approach works for approximately accurate Bayes filter implementations and
for planners that only succeed some of the time. Furthermore, we are interested in
knowing how the performance of the algorithm changes with the number of samples
used to parametrized the planner. Figure 3(a) illustrates the experimental scenario.
A two-link robot arm moves a hand in the plane. A single range-finding laser is
mounted at the center of the hand. The laser measures the range from the end-
effector to whatever object it “sees”. The hand and laser areconstrained to remain



14 Robert Platt, Leslie Kaelbling, Tomas Lozano-Perez, and Russ Tedrake

horizontal. The position of the hand is assumed to be measured perfectly. There
are two boxes of known size but unknown position to the left ofthe robot (four
dimensions of unobserved state). The boxes are constrainedto be aligned with the
coordinate frame (they cannot rotate). The control input tothe system is the planar
velocity of the end-effector. The objective is for the robotto localize the two boxes
using its laser and move the end-effector to a point directlyin front of the right-most
box (the box with the largestx-coordinate) so that it can grasp by extending and
closing the gripper. On each time step, the algorithm specified the real-valued two-
dimensional hand velocity and perceived the laser range measurement. If the laser
missed both boxes, a zero measurement was perceived. The (scalar) measurements
were corrupted by zero-mean Gaussian noise with 0.31 standard deviation.
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Fig. 4 Histogram probability distributions (a-d) and planner sample sets (e-h) at time steps 10,
100, 200, and 300 during the path shown in Figure 3(b).

Figure 3(b) illustrates the path of the hand (a point directly between the two
jaws of the gripper) found by running our algorithm parametrized by nine samples.
The state space was four dimensional and comprised of two boxlocations rang-
ing between[−1,1] on thex-axis and[−2,2] on they-axis. The hand starts in the
upper right corner at(5,5) and ends at a point directly in front of the lower right
box. The blue line shows the path and the red circles identifythe points along the
path at which re-planning occurred (there are 14 re-plan events in this example).
The tracking Bayes filter was implemented using a gridded histogram filter com-
prised of 62500 bins over the four-dimensional space (the position of each of the
two boxes was denoted by a point in a 10×25 grid). At the start of planning, the
prior histogram distribution was assumed to be uniform. Thecost function opti-
mized by the DIRTRAN planner (Equation 6) was parametrized byα = 0.01 and
V = diag(0.5) (Equations 3 and 4). The planning horizon wasT = 50. The algo-
rithm did not terminate until the histogram Bayes filter was 90% confident that it
had localized the right-most box to within±0.3 of its true location (ω = 0.9 in step
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1 of Algorithm 1). Figure 4(a)-(d) show snapshots of the histogram distribution at
time steps 10, 100, 200, and 300. (This is actually a two-dimensional projection of
the four dimensional distribution illustrating the distribution over the location ofone
box only.) Figure 4(e)-(h) show the nine samples used to parametrize the planning
algorithm at the four snapshots. Initially, (in Figures 4 (a) and (e), the distribution
is high-entropy and the samples are scattered through the space. As time increases,
the distribution becomes more peaked and the sample sets become more focused.
The solid black line in Figure 3(b) shows the entropy of the histogram distribution
as a function of time step. As expected, entropy decreases significantly over the tra-
jectory. For comparison, the five additional blue dotted lines in Figure 3(c) show
entropy results from five additional identical experiments. Note the relatively small
variance amongst trajectories. Even though the algorithm finds a very different tra-
jectory on each of these runs, performance is similar. Theseresults help answer two
of the questions identified at the beginning of the section. First, Figure 4 suggests
that in at least one case, the histogram filter was adequate torepresent the belief state
in the context of this algorithm even though it is a coarsely discretized approxima-
tion to the true distribution. The black line in Figure 3(c) suggests that DIRTRAN

was an effective tool for planning in this scenario. The six additional runs illustrated
in Figure 3(c) indicate that these results are typical.
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Fig. 5 (a) comparison of entropy averaged over six runs for four different planner sample set
sizes (36 samples, solid black line; 9 samples, dashed blue line; 4 samples, dotted magenta line; 2
samples, dash-dot green line). (b) comparison of the six thirty-six-sample runs (solid black) with
the six two-sample runs (dashed blue). (c) a path found using a two-sample planner.

The other question to be answered concerns the effect of the number of samples
on algorithm performance. To find an answer, we have run the algorithm in the sce-
nario described above for four contingencies where the planner was parametrized by
two, four, nine, and thirty-six samples. Figure 5(a) compares the average (over six
runs each) information-gathering performance for the fourcontingencies. Although
increasing the number of samples improves algorithm performance, the gains di-
minish as the number of samples increases. Figure 5(b) compares the two-sample
runs with the thirty-six-sample runs and demonstrates thatthe improvement is sta-
tistically significant. The comparison of Figure 5(c) with Figure 3(b) suggests that
(in this experiment, at least) the trajectories produced bythe high-sample planner
are better than those produced by the low-sample planner because the high-sample
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planner does a better job covering the space in front of the boxes. These results show
that it is valuable to expend computational effort planningan information-gathering
trajectory, even in this simple example. The results also show that the performance
of our algorithm smoothly degrades or improves with fewer ormore samples used
during planning. Even with the minimum of two samples, the algorithm is capable
of making progress.

6 Robot Grasping application

We apply our approach to an instance of the robot grasping problem where it is
necessary to localize and grasp a box. We refer to this version of the problem, where
perception is incorporated into the problem statement, as “simultaneous localization
and grasping” (SLAG). Two boxes of unknown dimensions are presented to the
robot. The objective is to localize and grasp the box which isinitially found directly
in front of the left paddle. This is challenging because the placement of the two
boxes may make localization of the exact position and dimensions of the boxes
difficult.

6.1 Problem setup

(a) (b) (c)

Fig. 6 Illustration of the grasping problem, (a). The robot must localize the pose and dimensions
of the boxes using the laser scanner mounted on the left wrist. Thisis relatively easy when the
boxes are separated as in (b) but hard when the boxes are pressed together as in (c).

Our robot,Paddles, has two arms with one paddle at the end of each arm (see
Figure 6(a)). Paddles may grasp a box by squeezing the box between the two pad-
dles and lifting. We assume that the robot is equipped with a pre-programmed “lift”
function that can be activated once the robot has placed its two paddles in opposi-
tion around the target box. Paddles may localize objects in the world using a laser
scanner mounted to the wrist of its left arm. The laser scanner produces range data
in a plane parallel to the tabletop over a 60 degree field of view.
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Fig. 7 Example of a box localization task. In (a) and (d), the robot believes the gap between the
boxes is large and plans to localize the boxes by scanning thisgap. In (b) and (e), the robot has
recognized that the boxes abut each other and creates a plan to increase gap width by pushing the
right box. In (c) and (f), the robot localizes the boxes by scanning the newly created gap.

We use Algorithm 1 to localize the planar pose of the two boxesparametrized
by a six-dimensional underlying metric space. The boxes areassumed to have been
placed at a known height. We reduce the dimensionality of theplanning problem
by introducing an initial perception step that localizes the depth and orientation of
the right box using RANSAC [7]. From a practical perspective, this is a reasonable
simplification because RANSAC is well-suited to finding the depth and orientation
of a box that is assumed to be found in a known region of the laser scan. The remain-
ing (four) dimensions that are not localized using RANSAC describe the horizontal
dimension of the right box location and the three-dimensional pose of the left box.
These dimensions are localized using a Bayes filter that updates a histogram distri-
bution over the four-dimensional state space based on lasermeasurements and arm
motions measured relative to the robot. The histogram filteris comprised of 20000
bins: 20 bins (1.2 cm each) describing right box horizontal position times 10bins
(2.4 cm each) describing left box horizontal position times 10 bins (2.4 cm each)
describing left box vertical position times 10 bins (0.036 radians each) describing
left box orientation. While it is relatively easy for the histogram filter to localize the
remaining four dimensions when the two boxes are separated by a gap (Figure 6(b)),
notice that this is more difficult when the boxes are pressed together (Figure 6(c)).
In this configuration, the laser scans lie on the surfaces of the two boxes such that it
is difficult to determine where one box ends and the next begins. Note that it is diffi-
cult to locate the edge between abutting boxes reliably using vision or other sensor
modalities – in general this is a hard problem.
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Our implementation of Algorithm 1 used a set of 15-samples including the hy-
pothesis sample. The algorithm controlled the left paddle by specifying Cartesian
end-effector velocities in the horizontal plane. These Cartesian velocity commands
were projected into the joint space using standard JacobianPseudoinverse tech-
niques [16]. The algorithm was parametrized by process dynamics that modeled
arms motions resulting from velocity commands and box motions produced by
pushes from the arm. Box motions were modeled by assuming zero slip while push-
ing the box and assuming the center of friction was located atthe center of the area
of the box “footprint”. The observation dynamics describedthe set of range mea-
surements expected in a given paddle-box configuration. Forplanning purposes, the
observation dynamics were simplified by modeling only a single forward-pointing
scan rather than the full 60 degree scan range. However, notice that since this is a
conservative estimate of future perception, low cost plansunder the simplified ob-
servation dynamics are also low cost under the true dynamics. Nevertheless, the ob-
servation model used fortracking(step 8 of Algorithm 1) accurately described mea-
surements from all (100) scans over the 60 degree range. The termination threshold
in Algorithm 1 was set to 50% rather than a higher threshold because we found our
observation noise model to overstate the true observation noise.

Our hardware implementation of the algorithm included somesmall variations
relative to Algorithm 1. Rather than monitoring divergenceexplicitly in step 9, we
instead monitored the ratio between the likelihood of the hypothesis state and the
next most probable bin in the histogram filter. When this ratiofell below 0.8, plan
execution was terminated and thewhile loop continued. Since the hypothesis state
must always have a maximal likelihood over the planned trajectory, a ratio of less
than one implies a positive divergence. Second, rather thanfinding a non-goal di-
rected plan in steps 3-5 of Algorithm 2, we always found goal-directed plans.

Figure 7 illustrates an example of an information-gathering trajectory. The al-
gorithm begins with a hypothesis state that indicates that the two boxes are 10 cm
apart (the solid blue boxes in Figure 7(a)). As a result, the algorithm creates a plan
that scans the laser in front of the two boxes under the assumption that this will
enable the robot to perceive the (supposed) large gap. In fact, the two boxes abut
each other as indicated by the black dotted lines in Figure 7(a). After beginning the
scan, the histogram filter in Algorithm 1 recognizes this andterminates execution of
the initial plan. At this point, the algorithm creates the pushing trajectory illustrated
in Figure 7(b). During execution of the push, the left box moves in an unpredicted
way due to uncertainty in box friction parameters (this is effectively process noise).
This eventually triggers termination of the second trajectory. The third plan is cre-
ated based on a new estimate of box locations and executes a scanning motion in
front of the boxes is expected to enable the algorithm to localize the boxes with high
confidence.
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Fig. 8 “Easy” and “hard” experimental contingencies. (a) shows images of the 12 randomly se-
lected “easy” configurations (both box configurations chosen randomly) superimposed on each
other. (b) shows images of the 12 randomly selected “hard” configurations (boxes abutting each
other). (c) and (d) are plots of error between the maximum a posteriori localization estimate and
the true box pose. Each line denotes a single trial. The red “X” marks denote localization error at
algorithm termination.

6.2 Localization Performance

At a high level, the objective of SLAG is to robustly localizeand grasp objects even
when the pose or shape of those objects is uncertain. We performed a series of ex-
periments to evaluate how well this approach performs when used to localize boxes
that are placed in initially uncertain locations. On each grasp trial, the boxes were
placed in a uniformly random configuration (visualized in Figures 8(a) and (c)).
There were two experimental contingencies: “easy” and “hard”. In the easy contin-
gency, both boxes were placed randomly such that they were potentially separated
by a gap. The right box was randomly placed in a 13×16 cm region over a range
of 15 degrees. The left box was placed uniformly randomly in a20×20 cm region
over 20 degrees measured with respect to the right box (Figure 8(a)). In the hard
contingency, the two boxes were pressed against each other and the pair was placed
randomly in a 13×16 cm region over a range of 15 degrees (Figure 8(b)).

Figures 8(c) and (d) show right box localization error as a function of the num-
ber of updates to the histogram filter since the trial start. 12 trials were performed
in each contingency. Each blue line denotes the progress of asingle trial. The ter-
mination of each trial is indicated by the red “X” marks. Eacherror trajectory is
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referenced to the ground truth error by measuring the distance between the final po-
sition of the paddle tip and its goal position in the left corner of the right box using
a ruler. There are two results of which to take note. First, all trials terminate with
less than 2 cm of error. Some of this error is a result of the coarse discretization
of possible right box positions in the histogram filter (notealso the discreteness of
the error plots). Since the right box position bin size in thehistogram filter is 1.2
cm, we would expect a maximum error of at least 1.2 cm. The remaining error is
assumed to be caused by errors in the range sensor or the observation model. Sec-
ond, notice that localization occurs much more quickly (generally in less than 100
filter updates) and accurately in the easy contingency, whenthe boxes are initially
separated by a gap that the filter may used to localize. In contrast, accurate local-
ization takes longer (generally between 100 and 200 filter updates) during the hard
contingency experiments. Also error prior to accurate localization is much larger
reflecting the significant possibility of error when the boxes are initially placed in
the abutting configuration. The key result to notice is that even though localization
may be difficult and errors large during a “hard” contingency, all trials ended with
a small localization error. This suggests that our algorithm termination condition
in step 1 of Algorithm 1 was sufficiently conservative. Also notice that the algo-
rithm was capable of robustly generating information gathering trajectories in all of
the randomly generated configurations during the “hard” contingencies. Without the
box pushing trajectories found by the algorithm, it is likely that some of the hard
contingency trials would have ended with larger localization errors.

7 Discussion

Creating robots that can function robustly in unstructuredenvironments has always
been a central objective of robotics. In order to achieve this, it is necessary to de-
velop algorithms capable of actively localizing the state of the world while also
reaching task objectives. We introduce an algorithm that achieves this by planning in
belief-space, the space of probability distributions overthe underlying state space.
Crucially, our approach is capable of reasoning about trajectories through a non-
Gaussian belief-space. The fact that we can plan effectively non-Gaussian belief
spaces makes our algorithm different than most other beliefspace planning algo-
rithms currently in the literature. The non-Gaussian aspect is essential because in
many robot problems it is not possible to track belief state accurately by project-
ing onto an assumed Gaussian density function (this is the case, for example, in the
two-box example described in this paper). This paper provides a novel sufficient
condition for guaranteeing that the probability of the truestate found by the Bayes
filter increases (Lemma 1). We show that our algorithm meets these conditions and,
as a result, converges to the true state with probability one(Theorem 1). Although
our theoretical results hold only under strict conditions,our experiments indicate
that the algorithm performs well in practice. We empirically characterize the effect
of changing the number of samples used to parametrize the algorithm on the result-
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ing solution quality. We find that algorithm performance is nearly optimized using
very few (between two and nine) samples and that, as a result,the planning step in
our algorithm is computationally efficient. Finally, we illustrate our approach in the
context of a robot grasping problem where a robot must simultaneously localize and
grasp and object that is known only to be found somewhere in front of the robot.
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Appendix

Lemma 4. If ‖x‖2A ≥ θ 2, ‖δ‖2A ≤ ε2, andθ ≥ ε, then‖x− δ‖2A ≥ (θ − ε)2, where
x,δ ∈ Rn, θ ,ε ∈ R+, and A= AT ≥ 0,

Proof. By the triangle inequality, we have‖x‖A ≤ ‖δ‖A+ ‖x− δ‖A. Rearranging,
this becomes‖x− δ‖A ≥ ‖x‖A−‖δ‖A. We obtain the conclusion by squaring both
sides and substitutingθ andε.

Lemma 5. If f(x) = ( f1(x), . . . , fn(x))
T is a vector-valued function with Jacobian

matrix F, and each scalar-valued component, fi , has a Hessian matrix with a max-
imum eigenvalue ofλ f , then∀x∈X ,δ ∈ Bn(r),

‖ f (x+δ )−P(x,δ )‖2A≤
r4λ 2

f

4
‖1‖2A,

where1 is a column vector of n ones, P(x,δ ) = f (x) + F(x)δ is the first-order
Taylor expansion off, λA is the maximum eigenvalue of A, and Bn(r) is the r-ball in
dimension n.

Proof. For all i ∈ [1,n], the Taylor remainder isRi(x,δ ) = f (x+δ )−P(x,δ ). By the
Taylor remainder theorem, we know that|Ri(x,δ )| ≤ 1

2δ TCiδ , whereCi is the Hes-
sian of fi . Notice that∀δ ∈Bn(r), δ TCiδ ≤ r2λ f . LetR(x,δ )= (R1(x,δ ), . . .Rn(x,δ ))T .

Then‖R(x,δ )‖2A≤
r4λ 2

f
4 ‖1‖2A and we have the conclusion.


