Knowledge Representation and
Reasoning

Logics for Artificial Intelligence

Stuart C. Shapiro

Department of Computer Science and Engineering
and Center for Cognitive Science
University at Buffalo, The State University of New York
Buffalo, NY 14260-2000

shapiro@cse.buffalo.edu

copyright (©1995, 2004—2006 by Stuart C. Shapiro

Page 1

Contents

1. Introduction it e e 3
2. Propositional Logicc.. i 16
3. Predicate Logic Over Finite Models............. 128
4. Full First-Order Predicate Logic, 173
5. Summary of Part I..... 282
6. Prolog 290
7. A Potpourri of Subdomains............... 313
8. SNeEP S . 330
9. Belief Revision/Truth Maintenance 385
10. The Situation Calculus i i, 437
11, SUMMATY . .ot e 456

vk LN

2.3 Clause Form Propositional Logic

S Y Il X . o e e 92
S EIMANTICS . . ottt 94
Proof Theory: Resolution............... 98
Resolution Refutation 102
Translating Standard Wips into Clause Form 114

Page 91

2.3.1 Clause Form Syntax
part 1

Atomic Propositions:
e Any letter of the alphabet
e Any letter with a numeric subscript
e Any alphanumeric string.
Literals:
If P is an atomic proposition, P and —P are literals.

P is called a positive literal
- P is called a negative literal.

Page 92

2.3.1 Clause Form Syntax
part 2

Clauses: If Lq,..., L, are literals
then the set {L1,...,L,} is a clause.

Sets of Clauses: If (1, ..., (), are clauses
then the set {C1,...,C,} is a set of clauses.

Page 93

2.3.2 Clause Form Semantics

Atomic Propositions

Intensional: [P] is some proposition in the domain.

Extensional: [P] is either True or False.

Page 94

2.3.2 Clause Form Semantics

Literals

Positive Literals: The meaning of P as a literal is the same as it
is as an atomic proposition.
Negative Literals:

Intensional:
[—P] means that it is not the case that [P].

Extensional: [-P] is True if [P] is False;
Otherwise, it is False.

Page 95

2.3.2 Clause Form Semantics

Clauses

Intensional:
{L;s,...,L,}] = [L;] and/or ...and/or [L,].

Extensional:
[{Lis,...,Ly}] is True
if at least one of [L;], ..., [Ls] is True;
Otherwise, it is False.

Page 96

2.3.2 Clause Form Semantics

Sets of Clauses

Intensional:

{Cy,...,Ch}] = [C;] and ...and [C,,].

Extensional:
[{Cq,...,Ch}] is True if [C;] and ...and [C,] are all True;
Otherwise, it is False.

Page 97

Clause Form Proof Theory: Resolution

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of
assumption clauses ACq, ..., AC,.

Rule of Inference: A clause may be added to a set of clauses if
justified by resolution.

Derived Clause: If clause C'() has been added to a set of clauses
initialized with the set of assumption clauses AC1,..., AC,, by

one or more applications of resolution,

then ACy,..., AC, - CQ.

Page 98

Resolution

{PaLla'"7Ln}7{_'P7Ln—|—17'°'7Lm}
(L1, Loy Loty ooy Lo}

Resolution is sound, but not complete!

Page 99

Example Derivation

{=TomlIsTheDriver, -~ TomlsThePassenger} Assumption
{ TomlIsThePassenger, BettylsThePassenger} — Assumption

{ TomIsTheDriver} Assumption
{=TomlIsThePassenger} R,1,3
{ BettylsThePassenger} R,2,/

Page 100

Example of Incompleteness

1Py FAPQ}

but
Resolution does not apply to {{P}}.

Page 101

Resolution Refutation

e Notice that {{P},{—P}} is contradictory.

e Notice that resolution applies to {P} and {—P}
producing {}, the empty clause.

e If a set of clauses is contradictory, repeated application of
resolution is guaranteed to produce {}.

Page 102

Implications

Set of clauses {P1,...,P,,Q1,...,Qm} is contradictory.
means (Pt A... AP, ANQ1 A ... \NQ,,) is False in all models.
means whenever (P A...AP,) is True, (Q1 A...ANQ,,) is False.

means whenever (P; A...A P,) is True =(Q1 A ... A Q) is
True.

means Py,..., P, E(Q1 N ... ANQmn).

Page 103

Negation and Clauses

o ~{Li,....L,}={{-L1},....,{°L,}}.

-A ifL=A
._IL:
A ifL=-A

Page 104

Resolution Refutation

To decide if C1,...,C, = CQ:
1. Let S ={C1,...,C,} U-CQ

2. Repeatedly apply resolution to clauses in S.
(Determine if {C1,...,Cp} U-CQ F {})

3. If generate {}, C4,...,C, E CQ.
(If {Cq,...,Cr}U-CQF {} then C4,...,C, E CQ)

4. If reach point where no new clause can be generated,
but {} has not appeared, C1,...,C, = CQ.
(£ {Ch,...,Cu} U=CQ Y {} then Cy,...,Cy I CQ)

Page 105

Example 1

To decide if {P} E {P,Q}
S = {{P}7 {_'P}7 {ﬁQ}}

1. {P} Assumption
2. {=P} From query clause
3. {1 R1,2

Page 106

Example 2

To decide if

{=TomlsTheDriver,—~TomlsThePassenger},
{ TomlIsThePassenger, BettylsThePassenger},

{ TomlIsTheDriver} = { BettylsThePassenger}

1. {—=TomlsTheDriver,—TomlsThePassenger} Assumption

2. {TomlsThePassenger, BettylsThePassenger} Assumption

3. {TomlIsTheDriver} Assumption

4. {—-BettylsThePassenger} From query clause
5. {TomlIsThePassenger} R,2,4

6. {—TomlsTheDriver} R,1,5

7. {} R,3,6

Page 107

Resolution Efficiency Rules

Tautology Elimination: If clause C' contains literals L and —L,
delete C' from the set of clauses.

Pure-Literal Elimination: If clause C contains a literal A (—A)
and no clause contains a literal =A (A), delete C' from the set

of clauses.

Subsumption Elimination: If the set of clauses contains clauses
C1 and C5 such that C7 C (5, delete Oy from the set of clauses.

These rules delete unhelpful clauses.

Page 108

Resolution Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Set of Support: One clause in each pair being resolved must

descend from the query.
Many others

These are heuristics for finding {} faster.

Page 109

Example 1 Using prover

prover(6): (prove ’(P) ’(P or Q))

1 (P) Assumption
2 ((" P)) From Query
3 (" Q) From Query
4 nil R,2,1,{}
QED

Page 110

Example 2 Using prover

prover(5): (prove ’(((” TomIsTheDriver) or (~ TomIsThePassenger))

D W N -

5

(TomIsThePassenger or BettyIsThePassenger)
TomIsTheDriver)
’BettyIlsThePassenger)
(TomIsTheDriver) Assumption
((" TomIsTheDriver) (- TomIsThePassenger)) Assumption
(TomIsThePassenger BettyIsThePassenger) Assumption
((” BettyIsThePassenger)) From Query
(TomIsThePassenger) R,4,3,{}

Deleting 3 (TomIsThePassenger BettyIsThePassenger)

because it’s subsumed by 5 (TomIsThePassenger)

6

((" TomIsTheDriver)) R,5,2,{}

Deleting 2 ((7 TomIsTheDriver) (- TomIsThePassenger))
because it’s subsumed by 6 ((” TomIsTheDriver))
7 nil R,6,1,{}

QED

Page 111

Example 1 Using SNARK

snark-user(29): (assert ’P)
nil
snark-user(30): (prove ’(or P Q))
(Refutation
(Row 1
P
assertion)
(Row 2
false
(rewrite “conclusion 1))

)

:proof-found

Page 112

Properties of Resolution Refutation

Resolution Refutation is sound, complete, and a decision procedure
for Clause Form Propositional Logic.

It remains so when Tautology Elimination, Pure-Literal
Elimination, Subsumption and the Unit-Preference Strategy are

included.

It remains so when Set of Support is used as long as the

assumptions are not contradictory.

Page 113

Translating Standard Wips

into Clause Form

Every set of clauses,

{{Li1,-- s Lin by s{Lmas -y Linm,, }}

has the same semantics as the standard wip

(L1a Ve VLin)N A(Lma VooV L,)
That is, there is a translation from any set of clauses into a
well-formed proposition of standard propositional logic.

Question: Is there a translation from any well-formed proposition
of standard propositional logic into a set of clauses?

Answer: Yes!

Page 114

Translating Standard Wips
into Clause Form
Conjunctive Normal Form (CNF)

A standard wip is in CNF if it is a conjunction of disjunctions of
literals.

(L1aV---VLip)N AN(LmiV--VLnn,))

Translation technique:
1. Turn any arbitrary wip into CNF.

2. Translate the CNF wip into a set of clauses.

Page 115

Translating Standard Wips
into Clause Form
Useful Meta-Theorem:
The Subformula Property

If A is (an occurrence of) a subformula of B,
and = A < C,
then = B < B{C/A}

Page 116

Translating Standard Wips
into Clause Form
Step 1

Eliminate occurrences of < using
(A B)s (A= B)AN(B=A))
From: (LivingThing < (Animal V Vegetable))

To:
((LivingThing = (Animal VV Vegetable))
A((Animal V Vegetable) = LivingThing))

Page 117

Translation Step 2

Eliminate occurrences of = using
= (A= B)< (mAV B)

From:
((LivingThing = (Animal V Vegetable))
A((Animal vV Vegetable) = LivingThing))

To:
((—LivingThing V (Animal vV Vegetable))
A(=(Animal V Vegetable) V LivingThing))

Page 118

Translation Step 3

Translate to miniscope form using

—~(AANB) < (mAV -B)
-(AV B) < (mAAN-B)
—(-4) <= A

From:
((=LivingThing V (Animal V Vegetable))
A(—(Animal vV Vegetable) V LivingThing))

To:
((=LivingThing V (Animal V Vegetable))
A((—Animal A - Vegetable) V LivingThing))

Page 119

Translation Step 4

CNF: Translate into Conjunctive Normal Form, using
=(AV(BANC)) < ((AVB)AN(AV())

From:
((—=LivingThing V (Animal V Vegetable))
A((mAnimal N\ = Vegetable) V Living Thing))

To:
((—LivingThing V (Animal vV Vegetable))
A((—mAnimal V LivingThing) N (= Vegetable V/ LivingThing)))

Page 120

Translation Step 5

Discard extra parentheses using the associativity of A and V.

From:
((—=LivingThing V (Animal V Vegetable))
A((—~Animal V LivingThing) A (- Vegetable V Living Thing)))

To:

((=LivingThing V Animal VV Vegetable)
A(—Animal vV LivingThing)
A(— Vegetable V LivingThing))

Page 121

Translation Step 6

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

((=LivingThing V Animal VV Vegetable)
A(—Animal vV LivingThing)

A(— Vegetable V LivingThing))

To:
(- LivingThing Animal Vegetable)

(
(—Animal LivingThing)
(= Vegetable LivingThing))

Page 122

Use of Translation

A17 sy An ‘:Standard B
iff
The translation of A; A--- A A,, A —B into a set of clauses is
contradictory.

Page 123

Connections

Modus Ponens
A,A= B
B

Modus Tollens
A= B,-B
—-A

Disjunctive Syllogism

AV B,-A

B

Chaining
A= B B=C
A=C

Resolution

{A}> {_'A7 B}
{B}

Resolution

{_'A7 B}7 {_'B}
{—A}

Resolution

{A7 B}7 {_'A}

{B}

Resolution

{—-A,B},{-B,C}

{_'A> C}

Page 124

More Connections

Clause

(=A1,...,=An, C1,...,C}

Horn Clause

{-Ay,...,0A,,C}

Set of Support

Rule

(AL A---ANA) = (CLV---

Rule
(AyAN---NA,) =C
Prolog Clause
C:-Aq,..., A,

Back-chaining

Page 125

Vv Cyn)

prover Example

prover(57): (prove ’((LivingThing <=> (Animal or Vegetable))
(LivingThing & (~ Animal)))
’Vegetable)
(LivingThing) Assumption
((7 Animal)) Assumption
((” Animal) LivingThing) Assumption
((~ Vegetable) LivingThing) Assumption

OO HH W NN =

((" LivingThing) Animal Vegetable) Assumption
6 ((” Vegetable)) From Query

Deleting 3 ((” Animal) LivingThing)

because it’s subsumed by 1 (LivingThing)

Deleting 4 ((~ Vegetable) LivingThing)

because it’s subsumed by 1 (LivingThing)

Page 126

prover Example, continued

(LivingThing) Assumption
((" Animal)) Assumption

((7" LivingThing) Animal Vegetable) Assumption

o O N -

((” Vegetable)) From Query

7 ((7 LivingThing) Animal) R,6,5,{}
Deleting 5 ((” LivingThing) Animal Vegetable)
because it’s subsumed by 7 ((” LivingThing) Animal)

8 (Animal) R,7,1,{}

9 ((” LivingThing)) R,7,2,{}
10 nil R,9,1,{}
QED

Page 127

