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2.3.1 Clause Form Syntax
part 1

Atomic Propositions:
e Any letter of the alphabet
e Any letter with a numeric subscript
e Any alphanumeric string.
Literals:
If P is an atomic proposition, P and —P are literals.

P is called a positive literal
- P is called a negative literal.
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2.3.1 Clause Form Syntax
part 2

Clauses: If Lq,..., L, are literals
then the set {L1,...,L,} is a clause.

Sets of Clauses: If (1, ..., (), are clauses
then the set {C1,...,C,} is a set of clauses.
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2.3.2 Clause Form Semantics

Atomic Propositions

Intensional: [P] is some proposition in the domain.

Extensional: [P] is either True or False.
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2.3.2 Clause Form Semantics

Literals

Positive Literals: The meaning of P as a literal is the same as it
is as an atomic proposition.
Negative Literals:

Intensional:
[—P] means that it is not the case that [P].

Extensional: [-P] is True if [P] is False;
Otherwise, it is False.
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2.3.2 Clause Form Semantics

Clauses

Intensional:
{L;s,...,L,}] = [L;] and/or ...and/or [L,].

Extensional:
[{Lis,...,Ly}] is True
if at least one of [L;], ..., [Ls] is True;
Otherwise, it is False.
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2.3.2 Clause Form Semantics

Sets of Clauses

Intensional:

{Cy,...,Ch}] = [C;] and ...and [C,,].

Extensional:
[{Cq,...,Ch}] is True if [C;] and ...and [C,] are all True;
Otherwise, it is False.
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Clause Form Proof Theory: Resolution

Notion of Proof: None!
Notion of Derivation: A set of clauses constitutes a derivation.

Assumptions: The derivation is initialized with a set of
assumption clauses ACq, ..., AC,.

Rule of Inference: A clause may be added to a set of clauses if
justified by resolution.

Derived Clause: If clause C'() has been added to a set of clauses
initialized with the set of assumption clauses AC1,..., AC,, by

one or more applications of resolution,

then ACy,..., AC, - CQ.
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Resolution

{PaLla'"7Ln}7{_'P7Ln—|—17'°'7Lm}
(L1, Loy Loty ooy Lo}

Resolution is sound, but not complete!
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Example Derivation

{=TomlIsTheDriver, -~ TomlsThePassenger} Assumption
{ TomlIsThePassenger, BettylsThePassenger} — Assumption

{ TomIsTheDriver} Assumption
{=TomlIsThePassenger} R,1,3
{ BettylsThePassenger} R,2,/
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Example of Incompleteness

1Py FAPQ}

but
Resolution does not apply to {{P}}.
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Resolution Refutation

e Notice that {{P},{—P}} is contradictory.

e Notice that resolution applies to {P} and {—P}
producing {}, the empty clause.

e If a set of clauses is contradictory, repeated application of
resolution is guaranteed to produce {}.
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Implications

Set of clauses {P1,...,P,,Q1,...,Qm} is contradictory.
means (Pt A... AP, ANQ1 A ... \NQ,,) is False in all models.
means whenever (P A...AP,) is True, (Q1 A...ANQ,,) is False.

means whenever (P; A...A P,) is True =(Q1 A ... A Q) is
True.

means Py,..., P, E(Q1 N ... ANQmn).
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Negation and Clauses

o ~{Li,....L,}={{-L1},....,{°L,}}.

-A ifL=A
._IL:
A ifL=-A
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Resolution Refutation

To decide if C1,...,C, = CQ:
1. Let S ={C1,...,C,} U-CQ

2. Repeatedly apply resolution to clauses in S.
(Determine if {C1,...,Cp} U-CQ F {})

3. If generate {}, C4,...,C, E CQ.
(If {Cq,...,Cr}U-CQF {} then C4,...,C, E CQ)

4. If reach point where no new clause can be generated,
but {} has not appeared, C1,...,C, = CQ.
(£ {Ch,...,Cu} U=CQ Y {} then Cy,...,Cy I CQ)
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Example 1

To decide if {P} E {P,Q}
S = {{P}7 {_'P}7 {ﬁQ}}

1. {P}  Assumption
2. {=P} From query clause
3. {1 R1,2
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Example 2

To decide if

{=TomlsTheDriver,—~TomlsThePassenger},
{ TomlIsThePassenger, BettylsThePassenger},

{ TomlIsTheDriver} = { BettylsThePassenger}

1. {—=TomlsTheDriver,—TomlsThePassenger} Assumption

2. {TomlsThePassenger, BettylsThePassenger} Assumption

3. {TomlIsTheDriver} Assumption

4. {—-BettylsThePassenger} From query clause
5. {TomlIsThePassenger} R,2,4

6. {—TomlsTheDriver} R,1,5

7. {} R,3,6
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Resolution Efficiency Rules

Tautology Elimination: If clause C' contains literals L and —L,
delete C' from the set of clauses.

Pure-Literal Elimination: If clause C contains a literal A (—A)
and no clause contains a literal =A (A), delete C' from the set

of clauses.

Subsumption Elimination: If the set of clauses contains clauses
C1 and C5 such that C7 C (5, delete Oy from the set of clauses.

These rules delete unhelpful clauses.
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Resolution Strategies

Unit Preference: Resolve shorter clauses before longer clauses.

Set of Support: One clause in each pair being resolved must

descend from the query.
Many others

These are heuristics for finding {} faster.
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Example 1 Using prover

prover(6): (prove ’(P) ’(P or Q))

1 (P) Assumption
2 ((" P)) From Query
3 (" Q) From Query
4 nil R,2,1,{}
QED
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Example 2 Using prover

prover(5): (prove ’(((” TomIsTheDriver) or (~ TomIsThePassenger))

D W N -

5

(TomIsThePassenger or BettyIsThePassenger)
TomIsTheDriver)
’BettyIlsThePassenger)
(TomIsTheDriver) Assumption
((" TomIsTheDriver) (- TomIsThePassenger)) Assumption
(TomIsThePassenger BettyIsThePassenger) Assumption
((” BettyIsThePassenger)) From Query
(TomIsThePassenger) R,4,3,{}

Deleting 3 (TomIsThePassenger BettyIsThePassenger)

because it’s subsumed by 5 (TomIsThePassenger)

6

((" TomIsTheDriver)) R,5,2,{}

Deleting 2 ((7 TomIsTheDriver) (- TomIsThePassenger))
because it’s subsumed by 6 ((” TomIsTheDriver))
7 nil R,6,1,{}

QED
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Example 1 Using SNARK

snark-user(29): (assert ’P)
nil
snark-user(30): (prove ’(or P Q))
(Refutation
(Row 1
P
assertion)
(Row 2
false
(rewrite “conclusion 1))

)

:proof-found
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Properties of Resolution Refutation

Resolution Refutation is sound, complete, and a decision procedure
for Clause Form Propositional Logic.

It remains so when Tautology Elimination, Pure-Literal
Elimination, Subsumption and the Unit-Preference Strategy are

included.

It remains so when Set of Support is used as long as the

assumptions are not contradictory.
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Translating Standard Wips

into Clause Form

Every set of clauses,

{{Li1,-- s Lin by s{Lmas -y Linm,, }}

has the same semantics as the standard wip

(L1a Ve VLin )N A(Lma VooV L, )
That is, there is a translation from any set of clauses into a
well-formed proposition of standard propositional logic.

Question: Is there a translation from any well-formed proposition
of standard propositional logic into a set of clauses?

Answer: Yes!
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Translating Standard Wips
into Clause Form
Conjunctive Normal Form (CNF)

A standard wip is in CNF if it is a conjunction of disjunctions of
literals.

(L1aV---VLip )N AN(LmiV--VLnn,))

Translation technique:
1. Turn any arbitrary wip into CNF.

2. Translate the CNF wip into a set of clauses.
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Translating Standard Wips
into Clause Form
Useful Meta-Theorem:
The Subformula Property

If A is (an occurrence of) a subformula of B,
and = A < C,
then = B < B{C/A}
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Translating Standard Wips
into Clause Form
Step 1

Eliminate occurrences of < using
(A B)s (A= B)AN(B=A))
From: (LivingThing < (Animal V Vegetable))

To:
((LivingThing = (Animal VV Vegetable))
A((Animal V Vegetable) = LivingThing))
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Translation Step 2

Eliminate occurrences of = using
= (A= B)< (mAV B)

From:
((LivingThing = (Animal V Vegetable))
A((Animal vV Vegetable) = LivingThing))

To:
((—LivingThing V (Animal vV Vegetable))
A(=(Animal V Vegetable) V LivingThing))
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Translation Step 3

Translate to miniscope form using

—~(AANB) < (mAV -B)
-(AV B) < (mAAN-B)
—(-4) <= A

From:
((=LivingThing V (Animal V Vegetable))
A(—(Animal vV Vegetable) V LivingThing))

To:
((=LivingThing V (Animal V Vegetable))
A((—Animal A - Vegetable) V LivingThing))
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Translation Step 4

CNF: Translate into Conjunctive Normal Form, using
=(AV(BANC)) < ((AVB)AN(AV())

From:
((—=LivingThing V (Animal V Vegetable))
A((mAnimal N\ = Vegetable) V Living Thing))

To:
((—LivingThing V (Animal vV Vegetable))
A((—mAnimal V LivingThing) N (= Vegetable V/ LivingThing)))
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Translation Step 5

Discard extra parentheses using the associativity of A and V.

From:
((—=LivingThing V (Animal V Vegetable))
A((—~Animal V LivingThing) A (- Vegetable V Living Thing)))

To:

((=LivingThing V Animal VV Vegetable)
A(—Animal vV LivingThing)
A(— Vegetable V LivingThing))
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Translation Step 6

Turn each disjunction into a clause,

and the conjunction into a set of clauses.

From:

((=LivingThing V Animal VV Vegetable)
A(—Animal vV LivingThing)

A(— Vegetable V LivingThing))

To:
(- LivingThing Animal Vegetable)

(
(—Animal LivingThing)
(= Vegetable LivingThing))
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Use of Translation

A17 sy An ‘:Standard B
iff
The translation of A; A--- A A,, A —B into a set of clauses is
contradictory.
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Connections

Modus Ponens
A,A= B
B

Modus Tollens
A= B,-B
—-A

Disjunctive Syllogism

AV B,-A

B

Chaining
A= B B=C
A=C

Resolution

{A}> {_'A7 B}
{B}

Resolution

{_'A7 B}7 {_'B}
{—A}

Resolution

{A7 B}7 {_'A}

{B}

Resolution

{—-A,B},{-B,C}

{_'A> C}
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More Connections

Clause

(=A1,...,=An, C1,...,C}

Horn Clause

{-Ay,...,0A,,C}

Set of Support

Rule

(AL A---ANA) = (CLV---

Rule
(AyAN---NA,) =C
Prolog Clause
C:-Aq,..., A,

Back-chaining
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prover Example

prover(57): (prove ’((LivingThing <=> (Animal or Vegetable))
(LivingThing & (~ Animal)))
’Vegetable)
(LivingThing)  Assumption
((7 Animal)) Assumption
((” Animal) LivingThing) Assumption
((~ Vegetable) LivingThing) Assumption

OO HH W NN =

((" LivingThing) Animal Vegetable) Assumption
6 ((” Vegetable)) From Query

Deleting 3 ((” Animal) LivingThing)

because it’s subsumed by 1 (LivingThing)

Deleting 4 ((~ Vegetable) LivingThing)

because it’s subsumed by 1 (LivingThing)
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prover Example, continued

(LivingThing)  Assumption
((" Animal)) Assumption

((7" LivingThing) Animal Vegetable) Assumption

o O N -

((” Vegetable)) From Query

7 ((7 LivingThing) Animal) R,6,5,{}
Deleting 5 ((” LivingThing) Animal Vegetable)
because it’s subsumed by 7 ((” LivingThing) Animal)

8 (Animal) R,7,1,{}

9 ((” LivingThing)) R,7,2,{}
10 nil R,9,1,{}
QED
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