AN INTRODUCTION TO SHNePS
Stuart C. Shapiro
Computer Science Department

Indiana University

Bloomington, Indiana 47401

TecHnicAL ReporT No. 31

AN INTRODUCTION TO SNEPS

STUART C. SHAPIRO

Reviseo: Decemser, 1976

An Introduction to SNePS

. Stuart C. Shapiro
Computer Science Department
Indiana University

Bloomington, Indiana 47401

Abstract

SNePS (Semantic Network Processing System) is a system for build-
ing directed graphs with labelled nodes and edges and locating nodes
in such graphs according to graph patterns. Rather then being a
general system for processing labelled digraphs, SNePS is restricted
in certain ways, appropriate for its intended use--to model "seman-
tic" or "cognitive" structures. SNePS may be used interactively
by a human to explore various approaches to semantic represzntation,
or it may be used as a collection of functions by a more conplete
natural language understanding program. This paper gives a user-

oriented introduction to SNePS.

Introductinn

SNePS (Semantic Network Processing System) i3 a system for
bullding directed gravhs with labelled nodes and edges and loca-
ting nodes 1n such graphs according to graph patterns. Ratner than
being a general system for processing labelled digraphs, SNePS is
restricted in certain ways, appropriate for its intended use -- to
model "semantic" or "cognitive" structures. SNePS, a revised ver-
sin of MENTAL [Shapiro 1971a, 1971b], is written in LISP 1.6 and
runs on a DEC-system-10.

Edge labels represent binary semantic relations which are used
to structure thg network and about which no information can be
stored in the network. For example, the cases of Fillmore, 1968,
might be such labels. The user of SNePS is free to choose and
declare his own set of labels. There are two kinds of edges, regular
edges and auxiliary edges. Regular edges come in pairs, one repre-

senting a descending relation, the other the ascending converse of

the first. Auxiliary edges do not come in pairs and do not have
converses. If a path of descending edges goes from node n to node
m, we wlll say that rniode n dominates node m.

There are three kinds of nodes in the network: constant, non-

constant, and auxiliary nodes. Auxiliary nodes are connected to
each other and/or to other nodes only by auxiliary edges. Constant
nodes represent semantic concepts, including anything about which
information may be stored in the network. Nodes which dominate

no other node are called atomic nodes. Atomic constants are called
base nodes and atomic non-constants are called variable nodes.
Non-atomic nodes are called molecular nodes. A molecular node

which dominates any variable node is called a pattern. Molecular

AN

nodes that do not dominate variable nodes are called assertions.

An. azssertion 1s aiso 4 constant 1Iin thnat it represents a particular
semar.tic concept.

Nodes are labelled with LISP avors. 3Some nodes are labelled by
the user. Others are labelled by SNePS3 using Mxxxx where Xxxx is a
series of digits. Normally the user labels only base nodes, although
i1t is possible to create user labelled molecular nodes. It is
impossible to create user labelled variable nodes.

A major restriction designed into SNePS is that the user ecannot
add a new edge4connecting two already exlsting nodes. This would
amount to changlng an assertion or concept into a different one.

An alternative view of this restriction is that whenever a relation-
ship between two or more existing nodes is added, a node representing
that this relationship holds is also added. &n implication of this
restrictlion is that it is impossible to have an edge connecting two
user labelled nodes.

One common use of auxiliary nodes is as SNePS variables.

“hese are to be distinguished both from LI3P variables and from
variable nodes. An atom may have a LISP value and also be the label
of a SNePS variable with a different value, wnich will always be a
set of one or more nodes. The system also creates auxiliary nodes

with the same labels as edges to maintain certain information about

them.

Several SNePS variables are pre-defined in and maintained by
the system. They and their values are:

NODES The set of SNePS nodes

VAREL The set of variable nodes

RELST Thg set of descending ~dge labels

AUXRELST The set of auxillary edge lahels

Auxillary edges ure used by SNe?S for the purposes listed
telow. Additional cnes may be declared by the user. Generally
this 1t done to put "hangings" (see Frieduian, 1973. Brown et al,
1974 added this feuature to their version of SNePS, calling it a
property as opposed to a relation) on nodes, l.e. to point fronm
some SNePS node to some LISP structure that is not a node. Auxi-

liary edges pre-defined by the system and their uses are:

+ CONV Points from the label of a regular edge to the label
of its converse edge

: VAL Points from a SNePS variable to each node in the 1list
that is its value.

: VAR Points from each variable node to the auxiliary node T.

:SVAR Points from each pattern node to each variable node
that it dominates.

There are mechanisms for the user to create temporary nodes.
These are not placed in the NODES or VARBL sets, and unlike normal
SNePS nodes, when a temporary node, t, is created with a regular edge
pointing to another node, n, no converse edge 1is created pointing
from n to t. Temporary SNePS labelled nodes may be accessed by
making them (or nodes dominating them) the wvalue of SNePS variables
or LISP variables, but once they are no longer accessible, they
disappear (are garbage collected).

The SNePS user language consists of a set of functions for
which the unquote convention (see Bobrow and Raphael, 1974) holds.
An atom refers ﬁo itself unless it is unquoted. A 1list is either
a SNePS functlon reference or a list of elements which can be atoms,

unquoted atoms or SNePS function references.

There are several types of unogutes:

(@]
@]

<fr
0—1‘

g
L])1
(@]
&)

(<s=-func»
m<term>...)

(+ <sexp>)

The previously assigned SNerd value of the
SNePS variable, FOO.

A newly created constant ncd
Fo

e, which 1s assigned
as the new SNePS value of G

A newly created variable node, which is assligned
a5 the new SNePS value of FiD.

A newly created temporary variable node, which i
assigned as the new SNePOS value of FOO.

The SNePS value of MO0 is determined during
search as described below.

If <s-func> is a SNePS function, the SNePS value
of the form

The LISP value of <scxp>.

Description with Examples

The following description will contain many examples of SNePS

usage. In all examples, lines beginning with ** are the first

lines of the user's input to SNePS. Subsequent input lines begin

with ¥. Lines without these prompts are SNePS output. Diagrams

of the netwerk will be displayed in which the rewly created struc-

cures will be enclosed in dotted lines. Regular edges will be show:

as labelled solid lines with arrowheads, auxllliary edges as labelled

dashed lines with arrowheads. SNePS nodes will be shown as small

circles with labels, auxiliary nodes as labels only. All examples

are for the purpose of describing SNePS and are not to be taken as

this author's complete current proposal for the actual contents

of a model of human semantlc memory.

The user declares regular edge labels with the SNePS functilon

DEFINE, which is given pairs of relations. The first of each pair

is considered to be the descending relation. Each label is stored

as an auxillary node with the auxiliary relation CONV to its con-
verse label. Euch descending relatlon s added Into the set which
is the SNePS value of the SNePS varlable RELST.

¥¥ (DEFINIL MEMBER MEMBLK* CLASH CLADO®Y)

(MLMBER MEMUIR*)

(CLASS CLASS¥*)

(DEFINED)

¥**((DEFINE A A¥* V V¥ O Q% I I¥))

(A A¥)

(V v¥)

(0 0%*)

(I I¥*)

(DEFINED)

A node is created and its associated network built by the BUILLC
function. The value of the BUILD function is a list of the created
node. The arguments to BUILD are, alternately, an edge label and
a node or set of nodes. The seccond example below demonstrates one

of the unquotes.

**((BUILD MEMBER SOCRATES CLASS HUMAN))
(M0001)

**((BUILD MEMBER #PERSON CLASS HUMAN))
(M0003)

** ((BUILD MEMBER SOCRATES CLASS GREEK))
(MO0OO0U)

The network built by these instructions is shown below.

- - = = - - o
| MOOOU M0001 PERSON
l o 0 4@@§\ é§55: qaiy P

€N 7
| e g L S ¥ o> d’/
| GREEK SOCRATES HUMAN M0002

w—— — m——— —

From now on, we will not show ascending relations in diagrams of

the network, although they should be assumed to be present.

The user may have pleces of the network printed for his inspec-

tion by using the DESCRIBE function.

** ((DESCRIBE M00O1 M0003))

(MO0O1 (CLASS (iIUMAN))(MEMBER (SOCRATES)))

(MO003 (CLASS (HUMAN))(MEMBER (M0002)))
(DUMPED)

The functlon FIND 1s used to locate nodes in the network.

%% ((FIND MEMBER SOCRATES CLASS HUMAN))
(M0001)

The value of FIND is a list of the located nodes, so calls to

FIND may be embedded in other functions.

** ((FIND MEMBER* (FIND CLASS HUMAN)))
(MO002 SOCRATES)

%% ((FIND MEMBER* (FIND CLASS HUMAN)

* MEMBER¥ (FIND CLASS GREEK)))
(SOCRATES)

**¥ ((FIND MEMBER ?PEOPLE CLASS HUMAN))
(M0O003 MOOO01)

This last is a simple use of the ? unquote. It requires that

each located node have a MEMBER relation to some node and places

all these nodes in the SNeP3 value of PEUPLE. This results in the

following addition to the network.

MO0O1 M0003
0.
% S
MEMBER LAS@ g»“s MEMBER
socratesd, 7 > T e —— — YAk pERson
. /
Y < < HUMAN - X~ Mo002
~ -
\ ~o s /
\ PEOPLE ;

—— e e e e e e e —

To simply print the value of a SNeP3 variable, the followling
use of the ¥ unqgunte suffices.
¥% (¥PERSON)
{M000?2)
%% (¥PEOPLE)
(10002 SOCRATES)

Assigned varlables may also be used within functlons.

¥# ((BUILD A *PERSON V KISS O MARY))
“(M0005)

SOCRATES

¥%*((FIND O* (FIND A *PEOPLE V KISS)))
(MARY)

BUILDs may be embedded within BUILDs to simulate the several
sentences that underlie a single surface sentence. For example,

a simpliried representaticn of "John opens a door with a key" might

be:

¥¥ ((BUILD A JOHN V OPEN

* O (BUILD MEMBER* (BUILD CLASS DOOR))

* I (BUILD MEMBER¥ (BUILD CLASS KEY))))
(M0010)

-

: '
; |
L s0uN® - MOOOT '
| Qbui MO0 KEY |
: MEMBER :
| MO006 |
: CLASS |
, DOOR l
L L L i

FINDs may be embedded within BUILDs to simulate descriptive
phrases that refer to previously stored concepts. For example,

a representation of "The person who kissed Mary sees John" might

be:

**((DES E(BUILD A (FIND A* (FIND V KISS O MARY))
» ¥ ((DESCRIBE(BUILD A (FIND JOH&)))

(MOO11l (0 (JOHN))(V (SEE))(A (M002)))

MARY KISS MO002 SEE

Occasionally, we desire to use a perviously built node, but
are not really sure it exists. We want to FIND it if it does exlst,
but BUILD it if it dcesn't. The FINDORBUILD function serves this

purpose. For example the first use of FINDORBUILD below FINDS a

node, whereas the second use BUILDs one.

**((DESCRIBE (BUILD A (FINDOKBUILD A¥ (+INDORBUILD V KISS O MARY
* ' V LIKES 0O MARY)))
(MO012 (O (MARY))(V (LIKES)) (A (MOV02)))

T T T T
MOQO5 , L Moguz]
N -~ 0 b
N o M0002!g !
0
KISS ‘ L1kes |
MARY

¥* ((DESCRIBE (BUILD A (FINDORBUILD 0% (FINDORBUILD A MARY V KISS
* V LIKES O MARY)))
(M0015 (O (MARY))(V (LIKES)) (A (MOO1L4)))

r——.-—.——.-—-—. —— o Sremotmnsad L oy ot — —

] M0Q13

LIKES

Variables may be assigned a value by use of an infix assign-
ment operator. This simulates the use of a pronoun to refer to a

previocusly described concept.

*¥((BUILD A BRUTUS V KILL O CAESAR) = KILLACT)
(M0016)

**((BUILD A JOHN V KNOWS 0 *KILLACT))
(MO017)

10

-
| Mo017 |

; |

|

| A ———=YAL ___ errract |

JoHN | kNows '
l |

| |

| BRTUS KILL CAESAR :

L N

Another infix operator is relative complement, for which the

symbol "~" 15 used,

*% ((BRUTUS CAESAR MARY) - (JOHN MARY))
(BRUTUS CAESAR)

We will further demonstrate the used of relative complement

and the ? unquote after building some more structure.

** ((BUILD A BILL V LOVES O BETTY))
(M0018)

** ((BUILD A BETTY V LOVES 0 BILL))
(M0019)

¥((BUILD A JOHN V LOVES O JOHN))
(M0020)

** ((BUILD A SAM V LOVES O MARY))
(M0021)

**((BUILD A MARY V LOVES O HENRY))
(M0022)

The resultant structure is:

MO019

0020

8, ®
JOHN MARY
To find lovers who are loved, we can do:

**((FIND A* (FIND V LOVES) = L 0% *L);
(MARY JOHN BILL BETTY)

To find lovers who are not loved, we use relative complement.

¥*((FIND A* *L) - (FIND O% *L))
(SAM)

To find those who love themselves, we use the ? unquote. Notice
that 1f we consider the FIND instruction to be a pattern, the located
nodes represent instantiations of that pattern such that the ? vari-
able has a valild substitution in that instantiation. The nodes that

can substitute for the variable go into the set that becomes the

variable's value.
¥*((FIND A ?NARCISSIST V LOVES O ?2NARCISSIST))
(M0020)

** (*NARCISSIST)
(JOHN)

The ? variable operates properly across embedded FINDS such as
we could use to Uind lovers whose love lo returned by the beloved.
¥*((FIND A¥ (FINL V LOVES 0 ?BELOVED)

* 0% (FIND V LOVES A ?BLLOVED)))
(JOHN BILL BETTY)

**(¥BELOVED)
(JOHN BETTY BILL)

Using the variables assighed above, we can find unrequited

lovers.

¥*%((FIND A* *L) - ¥BELOVED)
(MARY SAM)

Additional auxiliary edges may be defined by the user to pro-
vide "hangings" on nodes. PFor example, onc might want to use an
auxiliary edge pointing to an integer to represent the cardinality

of a set. Auxillary edges may be defined with the DEFINE-AUX

function.

** ((DEFINE-AUX CARD))
CARD

(DEFINED AS AUXILIARY RELATIONS)

¥((DEFINE SUB SUB SUP SUP*¥))
(SUB SUB¥)
(SUP SUP¥)
(DEFINED)
¥¥(BUILD A JOHN V OWNS
O (BUILD SUB* (BUILD SUP DOG)

CARD 4)))
(M0025)

¢ M00Q25 —EB 23 1
l
|
I
|

|
‘ A
o™ |

JOHN
[
!

—— oe—— a———— So———

it can be retrieved with the use of a 7 varlable.

- %% ((FIND O%* (VPIND A JOHN V OWNS)
SUB* (FIND SUP DOG)
CARD 2X))
(MOO2Y4)
XA (%Y)
(4)

Storing and Using Patterns

When a $ unquoted variable 1s encountercd, a varlable node 1is
created and made the value of the variable. The variable 1s also
added to the value of the SNePS variable VARBL. This is the only
way a variable node can be created. A variable node has the auxi-

llary relation :VAR to the auxiliary node T. We will diagram

this as:
0m —1' 20 T
We will allow multiple representations of the auxiliary node T in
the diagrams since there 1s no way to get from T to any other riode.
A node which dominates a variable node is called a pattern nodé.

and has the auxiliary relation :SVAR to each variable node dominated
by 1t. The instructions

¥% ((BUILD MEMBER $PERSON CLASS HUMAN))

(M0027)

¥¥ ((BUILD A 3N V LOVES O *N))

(M0029)

build the structure:

PERSON -

MENEER 0o CubSS—o—EoE
SOCRATES M00Q?2

Notice that the variable PERSON has been assigned a new value.

-

The pattern MO02T 1s u stored version of the functilon
(PIND MEMBER 7M0026 CLASS HUMAN) and the pattern M0029 1s a stored
version of (FIND A ?M0O028 V LOVES O ?M0O02&). These pattern nodes
may be used by use of the function NFIND.
*%((NFIND MOO2T))
(M0027 MO003 MO0O1l M0026 10028)
¥((FIND A® (NFIND M0029)))
(JOHN MO028)
Since NFIND finds genc®alizations as well as instances, all vari-
able nodes are included in the answer.
As indicated above, variable nodes are to pattern nodes what ?
variables are to the FIND function. They are assigned values 1in

the same way.

¥%(¥M0026)
(MOO26 M0O002 SOCRATES)
®¥%(*¥M0028)

(JOHN M0023)

To eliminate variable and pattern nodes from the value of NFIND,
the "/" infix operator is useful. The left-hand operand of this
operator is a set of nodes ﬁnd the ri.sht-hand operand is a set of
edge labels. The result is that subset of the given set of nodes

containing nodes that do not have any of the given edges emanatingA

from them. For example:

¥%((FIND A* ¥L) / (0%))
(SAM)

For use with NFIND, we would do the following:

¥%¥((:VAR :SVAR) = VARIABLESR)

(:VAR :SVAR)

*¥((NFIND M0OO0O27) \ (¥®VARIABLES))

(M0003 M0001)

¥ (XMONDH)

(M0O0O02 SOCRATES)

¥%((FIND A* (NFIND M0029) \ {¥VARIABLES3)))
(JOHN)

*% (*1M0028)

(JOHN)

If NFIND is given a set of pattern nodes, it finds all nodes

that match any pattern of the set.

¥*¥((BUILD A $LOVER V LOVES 0 $LOVEE))

(M00Q32)
¥*((BUILD A ¥LOVEE V LOVES 0 *LOVER))
(M0033)
F—— — — m m m e m m e e e —
|
|
|
| Lover ——=YAL _
|
l
|
|
L

4% ((NFIND MQO032 MQO33) \ (¥*VARIABLES))
(MO018 M0019 M0O020 M0021 MQ022)

%% (¥M0030)

(SAM BETTY BILL JOHN MARY HENRY)

%% (%M0031)

(HENRY BILL BETTY JOHN SAM MARY)

The.reason for the above result is that both M0032 and M0033
taken separately match any node with V to LOVES. NFIND returns
the unlon of the two sets and the variable nodes, M0O020 and M0OO31l,
are assigned the union of what they are assigned under each pattern.

NFIND finds generalizations of any molecular node as well as

instances of pattern nodes.

**((DESCRIBE (NFIND M0OO13)))
(MOOL8 (0 BETTY))(V (LOVES))(A (3ILL)))
(M0033 (A (110031))(0 (0030))(:3VAR (MOO31 M0030))(
(M0032 (A (1M0030))(0 (MO031))(:SVAR (MOO30 M0031))(
(M0031 (:VAL (HENRY BILL BETTY JOii SAM MARY))

(A% (M0033)) (0% (M0032))(:VAR (T)))
(FO030 (:VAL (SAM BETTY BTil, JOHN MARY HENRY))

(0% (30033))(A* (110032))(:VAR (T)))
(M0028 (:VAL (JOHN)) (A¥ (M0029)) (0¥ (M0029)) (:VAR (T)))
(110026 (:VAL (M0002 SOCRATES)) (MEMBER¥ (110027))

(:VAR (T)))
(DUMPED)

<<

**¥(DESCRIBE (NFIND M0020)))
(MO020 (O (JOHN))(V (LOVES))(A
(10033 (A (1M0031))(0 (M0030))(:SVAR (1MOO31 M0030))(V (LOVES)))
(M0032 (A (M0030))(0 (M0031))(:SVAR (10030 M0O031))(V (LOVES)))
(M0029 (A (M0028))(0 (M0028))(:SVAR (M0028))(V (LOVES)))
(M0031 (:VAL (HENRY BILL BETTY JOHN SAM MARY))

(A* (1M0033))(0* (M0032))(:VAR (T)))
(M0030 (:VAL (SAM BETTY BILL JOHN MARY HENRY))

(0% (M0033))(A¥ (M0032))(:VAR (T)))
(M0028 (:VAL (JOHN))(A* (M0029)) (0% (M0029))(:VAR (7))
(M0026 (:VAL (M0002 SOCRATES))(MEMBER* (M0027))

(:VAR (T)))

(JOHN)))

“ote that M0029 is not a valid generalization of M00183, although it
1s of MO020.

Temporary Nodes

It is occasionally desirable to build a node specifically for
NPIND to find generalizations and 1nstances of it. In that case,
4o would not want the node itself to be part of the answer. Also,
if the node is a pattern node, we would not want 1its variabtles to
be included in the values of all future calls of NFIND. The functic
TBUILD and the unguote symbol % are provided for this purpose.

The % unquote is like the $ unquote except that the variable
1= causes to be crecated is not added into tre value of VAFEL so

that it will not be found by NFIND.

*E(RX)

(MOO34)

**(*X)

(M0034)

**(¥VARBL)

(110031 MO0230 MO0028 }M0OQZ6)

TBUILD is 1like BUILD except that the node it pullds 1is not added
into the value of the SNePS varlable NODES and no converse edges
are added to the network pointing to that node.
¥*((DESCRIBE (TBUILD MEMBER %X CLASS HUMAN) = P))
(MO036 (MEMBER (M0035))(:SVAR (M0035))(CLASS (HUMAN)))
¥*((FIND CLASS HUMAN))
(M0027 M0O0OO3 MO0O1)
¥%¥ ((NFIND *P))
(M0027 M0003 MOOO1l M0026 M0028 M0030 MOO31)

Miscellaneous Functions

There are three functions for removing Information from the
data base:
(ERASE nodel cen nodek)
removes each rnode from the graph along with any other nodes that
thereby become isolated.

(REMVAR variable variablek)

1
unassigns each of the listed SNePS variables.

(DELREL 1lzbel labelk)

1 -
undefines each of the labels and their converses as valid edge
labels. 1If any edges with these labels are in the graph, they are
not removed. This function is most useful immediately after a typo
has been discovered in a call to DEFINE or DEFINE-AUX.
Two functions are useful for saving networks across runs:
(OUTSYS (fille.ext))

dumps the current contents of the network onto the file file.ext

in a special format.

18

(INSYS (file.ext))
initializes the ne=twork with the contents of file.exzt, which must
have been.creutcd by OUTSYS. If nouacs hnve already been bullt and
INSYS 1is called, proovlems will result.
There are four SNePS variables that are maintained by the system:

(i) The value of NODES 1s the set of all nodes 1n the

gravh.

(1i) The value of VARBL is the set of all variable nodes
in the graph.

(1i1) The value of RELST is the set of all defined descend-
ing relations. '

(iv) The value of AUXRELST is the set of all auxiliary
edges.

Acknowledgenents

I am grateful to Hicholas Vitulli, Nicholas Eastridge, and
Tames McKew who contrivuted to this implementation of SNePS. Compute:
service was providad by the IUPUI Computing Facllities. Graphics

were done by Christopher Charles and Cathy Poole.

References
2reelen

ocrow, D.G., and Raphacl, B. 1974, "New Progruamming Lanpuages
for Artificilal Intelllfrence Research." Computing Surveyy 6,
3: 153-174. .

Brown, J.S.; Burton, R.R.; Bell, A.G. I97%. SOPHIE: A Sorhlstlcated
Instructiona? Lnvironment for Teaching Electronio Trounles
shooting (Ar Exemple of AT 1in CAL), Al Report No. <, Bolt Bery-
nex and Newman Ine., Cambridyge, Musschusetts.

Fillmore, C.J. 1968, "The Case for Cag. ." I'n Bach and Harms
Eds. Universals in Linguistic Theory. Chlcago: Holt, Rinehart,
and Winston, Inec.

Friedman, D.P. 1973. GROPE: A Graph Processing Language znd its
Formal Definition, Ph.D. Dissertation and Technical Report No.

20, Department of Computer Science, The University of Texas at
Austin,

Shapiro, S.cC. 1971a. The MIND System: A Data Structure for Seman-
tlc Information Processing, R-837-PR, The Rand Corp., 3anta Monica,
California.

———————————— - 1%71b. "A Net Structure for Semantic Information
Storage, Deduction and Retrieval." 24 International Joint Con-
ference on Artificial Intelligence: ~Advance Papers of the Con-
ference, Britisn Computer Society, London, 512-5723" S

Appendix: Summary of SNePS Constructs

Unguote Macro Symbols

¥ Previously assigned SNePS value

Creates a new constant node

&r

Creates a new variable node

% Creates a new temporary varlable node

? Assigns a variable according to a search
Functilon

A LISP value of argument

DEFINE Defines edge labels

DEFINE-AUX Defines auxiliary edge labels

BUILD Buillds a node

TBUILD Builds a temporary node

FIND Locates a node(s)

FINDORBUILD Locates a node(s), but if none exists, builds one

NFIND Locates nodes according to a molecular node
DESCRIBE Prints a dump-type description of nodes
ERASE Removes nodes

REMVAR dnassigns SNePS variables

DELREL Undefines edge labels

QUTSYS Dumps the network ontc a file

INSYS Loads the network from a file

Infix Operators

Variable assignment

'

Relative complement

-

Edge label domain restriction

Reserved SNcPS Variables

NODES The set of SNePS nocdes
VARBL The set of variable nodes
RELST Thie set of descending edre labels

AUXRELST The set of auxiliary edge labels

Auxlliary Zdge Labels Pre-defined by SNeP3

CONV The converse of an edge label

: VAL The value of a SNePS variable

: VAR Indicator of variable nodes

:SVAR Points from a pattern node to its variable

nodes

