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Abstract

The use of logic for knowledge representation and reasoning systems is controversial. There are,
indeed, several ways that standard First Order Predicate Logic is inappropriate for modelling
natural language understanding and commonsense reasoning. However, a more appropriate logic
can be designed. This chapter presents several aspects of such a logic.

1 Introduction

My colleagues, students, and I have been engaged in a long-term project to build a natural language using
intelligent agent. While our approach to natural language understanding (NLU) and commonsense reasoning
(CSR) has been logic-based, we have thought that the logics developed for metamathematics, e.g. (Kleene,
1950), are not the best ones for our purpose. Instead, we have designed new logics, better suited for NLU
and CSR. The current version of these logics constitutes the formal language and inference mechanism of the
knowledge representation/reasoning (KRR) system, SNePS 2.4 (Shapiro and The SNePS Implementation
Group, 1998). SNePS is a constantly evolving system (see (Shapiro and Rapaport, 1992)) that implements
our evolving theory of how to build a computational, natural language using, rational agent that does
commonsense reasoning.

In this chapter, I will survey several ways in which the SNePS logic has been designed to be more
appropriate for NLU and CSR than the standard First Order Predicate Logic (FOPL!). In each section, I
will present a commensense reasoning problem in English. Then I will discuss the difficulties involved in
representing and solving the problem in FOPL, and will show how it is represented and solved in SNePS.
For some subtle problems, I will first show the SNePS solution before revealing the difficulties it presents
to FOPL solutions. SNePS examples will be in SNePSLOG, [Shapiro et al., 1981, Shapiro and The SNePS
Implementation Group, 1998, Chapter 7] an FOPL-like user interface to SNePS.

This chapter is about SNePS logic per se, rather than the way we have used it for representing particular
entities and relations important to NLU and CSR. For some of these discussions, see: (Peters and Shapiro,
1987; Peters et al., 1988; Peters and Rapaport, 1990) for basic- and superordinate-level categories; (Chun,
1987; Shapiro and Rapaport, 1991) for possessives; (Almeida, 1995) for tense and aspect; (Rapaport et al.,
1997) for proper names and beliefs about knowledge and belief.

n this chapter “FOPL” will always refer to the standard, classical, first order predicate logic, using its standard syntax.



2 What is Represented in the KR Formalism

As said above, we view our long-term project as developing a natural language using intelligent agent, who we
tend to refer to as Cassie (Shapiro, 1989; Shapiro and Rapaport, 1991). At any point in Cassie’s operation,
the material represented in SNePS constitutes the contents of Cassie’s mind (see. (Shapiro, 1993)). We are
not interested in representing the “meaning” of words, phrases, clauses, or sentences, rather we are interested
in the changes to Cassie’s mind that result from her understanding natural language utterances in the context
of a conversation or of reading a book or article. In the discussion that follows, I will be interested in the
logic of the representation of beliefs that result from understanding utterances in certain ways. It might
be that some of the sentences I cite might be understood differently in contexts other than the ones I am
considering. That is beside the point. What is to the point, is my claim that there are contexts in which
a natural language understander would understand the utterance in the way I suggest, and that in that
case SNePS logic is more appropriate for representing that understanding than standard FOPL. Certainly a
transducer is needed that can take an English utterance as input and use the entire relevant state of Cassie’s
mind to modify her mind to register an understanding of that utterance. That transducer, however, is not
the subject of this chapter. (Though see (Shapiro, 1982; Shapiro, 1989; Shapiro and Rapaport, 1987; Neal
and Shapiro, 1987; Neal and Shapiro, 1991; Neal and Shapiro, 1994; Shapiro and Rapaport, 1995).)

There are four types of expressions in SNeP§S logic, denoting propositions, rules, acts, and individuals.
Propositions are the sorts of entities that agents can believe or disbelieve. We say that a proposition
expression representing a proposition that Cassie believes is “asserted”. Rule expressions are proposition
expressions whose syntax is recognized by the SNePS inference routines. If the proposition P is asserted and
the rule P => Q is asserted, then the SNePS inference routines may cause Q to be asserted. Acts are the sort
of entities an agent may perform. Act expressions use a syntax recognized by SNeRE, the SNePS Rational
Engine (Shapiro and The SNePS Implementation Group, 1998, Chapter 4), but are beyond the scope of
this chapter (but see (Kumar, 1996; Kumar and Shapiro, 1994; Shapiro, 1998)). Individuals are everything
else. However, all expressions are terms (Shapiro, 1993; Chalupsky and Shapiro, 1994), and may be used as
arguments of functions.

3 Set-Oriented Logical Connectives

Consider the following problems:
1. Everything is an animal, a vegetable, or a mineral.
(a) Squash is a vegetable.
Is squash an animal? a mineral?
(b) Marble is neither an animal nor a vegetable.
Is marble a mineral?

2. For every object, the following statements are equivalent:

e It is human
e It is a featherless biped

e It is a rational animal.

(a) Socrates is human.
Is Socrates a featherless biped? A rational animal?

(b) Snoopy is not a featherless biped.
Is Snoopy a rational animal? A human?



Consider formalizing problem (1). The FOPL wif

3. Ve[Animal(z) V Vegetable(z) V Mineral(z))

is wrong because V is the inclusive or, and we want to be able to conclude that squash is neither an animal
nor a mineral.? Neither is
Vz[Animal(z) ® Vegetable(z) & Mineral(z)]

correct, where @ is the exclusive or, because that is satisfied by something that is an animal, a vegetable,
and a mineral.

In English, utterances of the form “Either P, or...or P,” are often understood as saying that exactly one
of Pi,..., P, is true, but such an understanding is not easily formulated in FOPL. We have implemented a
logical connective for this and similar problems in SNePS [Shapiro, 1979, pp. 189ff., Shapiro and Rapaport,
1992, p. 250, Shapiro and The SNePS Implementation Group, 1998, Section 3.1]. The SNePSLOG wif

andor(i,j){P1, ..., Pn}

is true if and only if at least i and at most j of the wifs in the set {P;, ..., P,} are true. Using andor,
problems (1) and (1a) can be solved in SNePSLOG as shown here:

: all(x) (andor(1,1) {animal(x), vegetable(x), mineral(x)}).
all(X) (andor(1,1) {ANIMAL(X),VEGETABLE(X),MINERAL(X)})

: vegetable(squash) !
VEGETABLE (SQUASH)
“ANIMAL (SQUASH)
“MINERAL (SQUASH)

(The “:” is the SNePSLOG prompt. Input is shown after the prompt in lower, and, occasionally, mixed
case. Output is shown in all upper case (except for logical constants such as “all” and “andor”). Input
terminating in a period (“.”) is stored and echoed, but in the rest of this chapter, the echo will not be shown
to conserve space and enhance readability. The terminal “!” means store and perform forward inference.
The output lines following inference commands report all wifs inferred and stored as a result of the inference.
SNePSLOG interactions have been edited only to conserve space and to fit the format of this chapter. The
character strings shown, however, are actual input and output.)
andor (0,0) serves as a generalized nor, so that problem (1b) can be solved as follows:

: andor(0,0){animal (marble), vegetable(marble)}!
~ANIMAL (MARBLE)
~“VEGETABLE (MARBLE)
MINERAL (MARBLE)

andor can also be used to represent the inclusive or. For example,
all(x) (andor(1,3){animal(x), vegetable(x), mineral(x)})

is the SNePSLOG version of the FOPL wif (3).
Novice logicians would probably try to formalize problem (2) as

Vz[Human(z) < Featherless-Biped(z) < Rational-Animal(z)]

However, this is not correct because, for example, it is satisfied by something that is human, but neither a
rational animal nor a featherless biped. The correct way to formalize (2) in FOPL is

2Some might argue that the “or” of problem (1) “means” inclusive or, and that we already have background knowledge that
the categories of animals, vegetables, and minerals are mutually disjoint. In that case, it is that background knowledge I want
to represent, and that is not captured correctly by the proffered FOPL wif.



Vz[(Human(z) = Featherless-Biped(z))
A(Featherless-Biped(z) = Rational-Animal(z))
A(Rational-Animal(z) = Human(z))]

However, this does not capture the style of the original, which more simply asserted a relation among three
propositions.
Problem (2) can be done in SNePSLOG using nested andors as

all(x) (andor(1,1){andor(3,3){Human(x),
Featherless-Biped(x),
Rational-Animal(x)},

andor (0,0) {Human (x) ,
Featherless-Biped(x),
Rational-Animal(x)}})

In other words, the three propositions are either all true or all false. However, this also fails to capture the
simple relation among the three propositions. Therefore another connective has been included in SNePSLOG.
The wif

thresh(i,j){P1, ..., P,}

is true if and only if either fewer than i of the wifs in the set {P;, ..., P,} are true or more than j are
true. Using thresh, problem (2) can be solved in SNePSLOG as shown here:

: all(x) (thresh(1,2){human(x), featherless-biped(x), rational-animal(x)}).
: human(Socrates)!

HUMAN (SOCRATES)

FEATHERLESS-BIPED (SOCRATES)

RATIONAL-ANIMAL (SOCRATES)

: “featherless-biped(Snoopy) !
“RATIONAL-ANIMAL (SNOOPY)
“FEATHERLESS-BIPED (SNOOPY)
~“HUMAN (SNOOPY)

When, in previous talks, I have suggested that “or” in English usually means exclusive or rather than

inclusive or?, one common rejoinder is that in sentences like “If Hilda is in Boston or Kathy is in Las Vegas,
then Eve is in Providence” (Rips, 1983, p. 63) we would certainly not want the inference to be blocked
if Hilda were in Boston and Kathy were also in Las Vegas. This is cited as evidence that the “or” in this
sentence is the inclusive or. The logical form of the sentence is taken to be (P V R) = @), and the steps of
reasoning from P to ) are taken to be

1. (PVR)=Q Hyp.

2. P Hyp.

3. PVR V Introduction
4. Q = FElimination

with the V an inclusive or, and the rule of V Introduction being truth-functional.

Rips (Rips, 1983), however, studied the reasoning of subjects not trained in formal logic to assess how
available certain logical rules of inference were to them. He found that the rule of V Introduction was
virtually not available at all, but that instead the rule of “Disjunctive Modus Ponens”

PPVR=Q
Q

3Notice that I am no longer making that claim—I am making no claims about the meaning of words. Rather, my claim in
the previous section is about the pragmatic understanding of certain utterances.




was among the most available rules. Thus, (P V R) is not a subformula of PV R = @ whose truth value is
assessed. It is asif _ VvV __ = _ were a single propositional connective with its own rule of inference.

We have included a generalization of this connective in SNePS, and called it “or-entailment”. The
SNePSLOG wif

{Pl, LI} Pn} v=> {Ql’ st Qm}

is true if and only if Vi, j[P; => Q;]. The SNePSLOG elimination rule for this connective is the appropriate
generalization of Disjunctive Modus Ponens:

: {in(Hilda, Boston), in(Kathy, Las_Vegas)} v=> {in(Eve, Providence)}.
: in(Hilda, Boston)!

Since {IN(HILDA,BOSTON),IN(KATHY,LAS_VEGAS)} v=> {IN(EVE,PROVIDENCE)}
and IN(HILDA,BOSTON)
I infer IN(EVE,PROVIDENCE)

IN(HILDA,BOSTON)
IN(EVE,PROVIDENCE)

In the above run, I turned the inference trace on, so the reader can see the firing of the generalized Disjunctive
Modus Ponens rule.

4 The Unique Variable Binding Rule

When setting up some example in a talk, a philosophy professor said*
“If someone votes for X and someone votes for Y, one of them will be disappointed”
(or something very close to that). Let us formalize our understanding of this sentence in SNePSLOG:

(4) all(u,v,x,y) ({votesfor(u,x), votesfor(v,y)}
&=> {andor(1,1){disappointed(u), disappointed(v)}})

(Here I again interpreted “or” to mean exclusive or, and I used the SNePSLOG wif
{Al, .. An} &=> {01, .. ,Cm}

which means that the conjunction of {A,...A,} implies the conjunction of {C,...,Cnr}.) To complete
this example, we should note that anyone who votes for the winner is not disappointed:

all(u,x) ({votesfor(u,x), wins(x)} &=> {"disappointed{u}})
Now let’s try these rules in a specific example:

: all(u,v,x,y) ({votesfor(u,x), votesfor(v,y)}
&=> {andor(1,1){disappointed(u), disappointed(v)}}).

: all(u,x) ({votesfor(u,x), wins(x)} &=> {"disappointed{ul}}).
: votesfor(Hillary, Bill).
: votesfor(Elizabeth,Bob).
: wins(Bill).
: disappointed(7x)7?

DISAPPOINTED (ELIZABETH)

~“DISAPPOINTED (HILLARY)

4Deborah Johnson, Department Colloquium, Department of Computer Science, State University of New York at Buffalo,
March 17, 1994.



(Free variables in queries are indicated by a prefixed “?”, which is also used as termination punctuation to
start backward inference. The response to a query consists of all positive and negative instances of the query
that can be derived.) The conclusion is that Elizabeth is disappointed, but Hillary isn’t.

The surprising aspect of this example is that in FOPL, an instance of statement (4) is

{votesfor(Hillary,Bill), votesfor(Hillary,Bill)}
&=> {andor(1,1){disappointed(Hillary), disappointed(Hillary)}}

From which, given the specific example, disappointed (Hillary) follows.

The problem is that in FOPL, one is allowed to replace two universally quantified variables by the same
term, but in normal understanding of NL utterances such as the above quote, it is assumed that different noun
phrases in one sentence refer to different entities (unless one of the noun phrases is marked as an anaphoric
reference to another). An FOPL representation of such an NL utterance usually requires a judicious inclusion
of # predicates. However, this inclusion is unintuitive, makes the formalized statement more cumbersome,
and the transduction process error-prone. For example, in presenting an example of a KLONE definition of
an arch, Brachman says that “any example of this type of object has two UPRIGHTS,” (Brachman, 1979,
p- 37) and goes on to explain the structural description, S2, by saying,

“S2 specifies that no two UPRIGHTS touch each other” (Brachman, 1979, p. 37)
but in the actual figure being described, the FOPL sentence attached to S2 is

VX € UPRIGHT(3Y € UPRIGHT. ~ TOUCH(X,Y))

and this can be satisfied by two touching uprights neither of which touches itself.

Our approach to this issue has been to modify the rule of Universal Instantiation so that two variables
in one wff cannot be replaced by the same term. This restriction is called the “Unique Variable Binding
Rule,” or UVBR (Shapiro, 1986). It was UVBR that allowed statement (4) to be the formalization of our
understanding of the “disappointed” quote.

5 Set Arguments

Consider the statement, “Mary, Sue, and Sally are sisters.” The usual way to formalize this in FOPL would
be
sisters(Mary, Sue) A sisters(Sue, Sally)

along with statements that sisters is symmetric
Y(z, y)[sisters(z, y) < sisters(y, )]
and almost transitive
V(z,2)[z # 2 = (A(y)[sisters(z, y) A sisters(y, z)] = sisters(z, z))]

Because of the cumbersomeness of this formalization compared with the English statement, we have intro-
duced set arguments into SNePS (Shapiro, 1986). If P is an m-ary predicate, and 7 is a set whose members
are of the appropriate type for the i** argument of P, then the following two inference rules are included in
SNePS logic.

!
P(81,...38i—1,T, Sit1y---58m), T CT P(81y...38i—1,T,Sit1y--+,Sm),t €T

/
P(Sl,...,Si_l,T ,si+1,...,sm) P(Sl,...,Si_17t781‘+1,...78m)

(These are versions of what we have called “reduction inference” [Shapiro 1991, Shapiro and The SNeP$S
Implementation Group, 1998, Chapter 2.5.1].) Thus sisters({Mary,Sue,Sally}) implies sisters({Mary,Sue}),
sisters({Mary,Sally}), and sisters({Sue,Sally}) (as well as the admittedly peculiar sisters(Mary),
sisters(Sue), and sisters(Sally)?).

The usefulness of set arguments (combined with UVBR) may be seen in an inference from “Mary, Sue,
and Sally are sisters” and “Sisters like each other”:

5A method of restricting such implications is included in SNePS 3, currently being implemented.



: sisters({Mary, Sue, Sally}).
: all(x,y) (sisters({x,y}) => {likes(x,y), likes(y,x)}).
: likes(7x,7y)7

LIKES(SUE,MARY)

LIKES(MARY,SUE)

LIKES(SALLY,SUE)

LIKES(SUE,SALLY)

LIKES (MARY,SALLY)

LIKES (SALLY,MARY)

Notice that not only are all six combinations found, but the three instances of 1ikes(x,x) are avoided due
to UVBR.

6 “Higher-Order” Logic

If a relation, R, is transitive, then whenever any z is in the R relation to some y, and y is also in the R
relation to some z, then z is in the R relation to z. That statement is not expressible in FOPL, because it
requires quantifying over predicates. Nevertheless, it is useful, so we have allowed users of SNePS to express
themselves in higher-order logic (Shapiro et al., 1981):

: all(R) (Transitive(R) => all(x,y,z) {R(x,y), R(y,z)} &=> {R(x,2)})).
: Transitive(bigger).
: bigger(elephant,lion).
: bigger(lion,mouse).
: bigger(elephant ,mouse)?
BIGGER (ELEPHANT ,MOUSE)

It is really only the user language that is higher-order. The representation formalism is only first order.
User-language predications such as bigger (elephant,lion) are stored using a variety of the “Holds” pred-
icate, such as, Holds(bigger, elephant, lion). Thus, the rule about transitive relations is really stored looking
more like

V(R)[ Transitive(R)
= V(z,y, z)[Holds(R, z,y) A Holds(R,y, z)] = Holds(R, z, 2)]

than like a higher-order rule. Nevertheless, the ability to express rules in a higher-order language is very
useful.
Another aspect of higher-order logic is the ability to quantify over formulas. Consider the argument

Anything Bob believes is true.

Bob believes anything Bill believes.

Bill believes whatever Kevin’s favorite proposition is.
Kevin’s favorite proposition is that John is taller than Mary.
Therefore John is taller than Mary.

SNePS wifs such as Taller (John, Mary) are not actually sentences, but functional terms that denote propo-
sitions (Shapiro, 1993; Chalupsky and Shapiro, 1994). Therefore, using them as arguments and quantifying
over them does not take us out of first order logic. Here is this example in SNePSLOG:

: all(p) (Believes(Bob, p) => p).
: all(p) (Believes(Bill, p) => Believes(Bob, p)).
: all(p) (Favorite-proposition(Kevin, p) => Believes(Bill, p)).
: Favorite-proposition(Kevin, Taller(John, Mary)).
: Taller(John, Mary)?
TALLER (JOHN,MARY)

Notice that “higher-order” is in quotes in the heading of this section because, while the SNePSLOG wfifs
in this section look like higher-order formulas, the underlying SNePS logic is really first order.



7 Intensional Representation

Natural language sentences contain what are known as opaque contezts, in which one denoting phrase cannot
necessarily be substituted for another even though they denote the same object. An example due to Russell
is, “George IV wished to know whether Scott was the author of Waverly” (Russell, 1906, p. 108) because
Waverly was published anonymously. One obviously cannot replace “the author of Waverly” by “Scott” in
that sentence even though Scott was, in fact the author of Wawverly. Verbs such as “know” and “believe” put
their complements in opaque contexts. The standard terminology is that the denoting phrases “Scott” and
“the author of Waverly” denote different intensions, but the same extension. In SNePS, all terms represent
intensions only (Maida and Shapiro, 1982; Shapiro and Rapaport, 1987), and the entire SNePS network is
considered to be an opaque context. Thus, there is no built-in equality predicate in SNePS because no two
terms are taken as denoting the same entity (the Unigqueness Principle).
An example from the AT literature is due to McCarthy (McCarthy, 1979):

the meaning of the phrase “Mike’s telephone number” in the sentence “Pat knows Mike’s tele-
phone number” is the concept of Mike’s telephone number, whereas its meaning in the sentence
“Pat dialled Mike’s telephone number” is the number itself. Thus if we also have “Mary’s tele-
phone number = Mike’s telephone number,” then “Pat dialled Mary’s telephone number” follows,
but “Pat knows Mary’s telephone number” does not. (McCarthy, 1979, p. 129-130, italics in the
original).

Notice that “knows” creates an opaque context, whereas “dials” does not, so McCarthy is making the same
point as above—“Mary’s telephone number” cannot replace “Mike’s telephone number” in the sentence “Pat
knows Mike’s telephone number”, even though they have the same extension, but it can in the sentence “Pat
dialled Mary’s telephone number.”

Although there is no built-in equality predicate in SNePS, we can introduce one to mean that two entities
have the same extension®, and explicitly specify which contexts are not opaque. A SNePSLOG example of
applying this technique to McCarthy’s telephone problem is:

: all(R) (Transparent(R) => all(a,x,y) ({R(a,x), =({x,yP} &=> {R(a,y)})).
: Transparent(Dial).
: =({Telephone(Mike), Telephone(Mary)}).
: Know(Pat, Telephone(Mike)).
: Dial(Pat, Telephone(Mike)).
: ?what(Pat, ?which)?
DIAL(PAT,TELEPHONE (MARY))
KNOW (PAT, TELEPHONE (MIKE) )
DIAL(PAT,TELEPHONE (MIKE))

(Note the use of set arguments in the = predicate, and the use of a second order query.)

8 The Numerical Quantifiers

Consider the following problems:

1. No one has more than one mother.
Jane is John’s mother.
Is Mary John’s mother?

2. The committee members are Chris, Leslie, Pat, and Stevie.
At least two members of the committee are women.
Leslie and Stevie are men.
Is Pat a man or a woman?

6This predicate has been called EQUIV in previous papers.



To facilitate such “reasoning by the process of elimination,” SNePS logic includes the numerical quantifiers

(Shapiro, 1979a).
nexists(i, §,K) (x) ({P1(x), ., Pa(x)} : {Q()})

means that there are k individuals that satisfy P1(x) A --- AP,(x), and, of them, at least i and at most j
also satisfy Q(x). There are two elimination rules of inference for the numerical quantifiers:

1. If j individuals are known that satisfy P1(x) A --- APy(x) A Q(x) then it may be inferred that every
other individual that satisfies P;(x) A - -+ A P,(x) also satisfies “Q(x).

2. If k-i individuals are known that satisfy P1(x) A --- A Pa(x) A “Q(x) then it may be inferred that
every other individual that satisfies P1(x) A --- A Py(x) also satisfies Q(x).

If one expects to use only one of these rules of inference, one may use either abbreviated form nexists(_, j,_)
or nexists(i,_, k).
The following interaction shows the above two problems solved in SNePSLOG.

: all(x) (Person(x) => nexists(_,1,_) (y) ({Person(y)}: {Mother(y,x)})).
: Person({John, Jane, Maryl}).
: Mother(Jane, John).
: Mother (Mary, John)?
“MOTHER (MARY , JOHN)

: Member ({Chris, Leslie, Pat, Stevie}).
: nexists(2,_,4) (x) ({Member(x)}: {Woman(x)}).
: all(x) (Member (x) => andor(1,1){Man(x), Woman(x)}).
: Man({Leslie, Stevie}).
: ?What(Pat)?
WOMAN (PAT)
MEMBER (PAT)
~“MAN (PAT)

Since the numerical quantifier elimination rules count individuals, we had to decide how to count. The
current version of SNePS counts each distinct term as different. We are considering the possibility that in
future versions of SNePS, co-extensional terms will be counted only once.

9 Contexts

When doing NLU and CSR, some kind of context mechanism is needed to keep different domains separate.
For example, when reading a fictional narrative, it is important to be able to use background knowledge
from the real world to understand the narrative, while accepting fictional information even if it contradicts
real-world beliefs (see (Rapaport and Shapiro, 1995)).

SNePS contains a context mechanism as part of its assumption-based belief revision system (see Section 10
below). SNePS contexts are defined both extensionally and intensionally. Extensionally, a context is a set of
assumptions or hypotheses—propositions asserted to Cassie by the user. A new hypothesis cannot be added
to an existing context, extensionally defined, just as a new element cannot be added to a set, extensionally
defined. Intensionally, a context is a named structure that contains a set of assumptions (referred to as
“assertions” in the sample run below). A new assumption can be added to a context, intensionally defined.

Some SNePSLOG commands take an intensional context as an optional argument. Otherwise, all
SNePSLOG commands are taken as referring to the default context, which by default is the one named
DEFAULT-DEFAULTCT. The following run demonstrates reasoning in two overlapping contexts, the real-world
and the world of mythology.



;53 Create the real-world context with an empty set of assertioms.
set-context real-world ()
;5 ; Make real-world the default context.
set-default-context real-world
;55 Animals are partitioned into birds and beasts.
all(x) ({Bird(x), Beast(x)} v=> {Animal(x)1}).
: all(x) (Animal(x) => andor(1,1){Bird(x), Beast(x)}).
;;; Horses are beasts.
all(x) (Horse(x) => Beast(x)).
;;; Pegasus is a horse.
Horse (Pegasus) .
;33 A rider travels by ground or air depending on whether what (s)he is riding has wings.
all(x,y) (Rides(x,y) => andor(1l,1){Travelsby(x, air), Travelsby(x, ground)}).
: all(x,y) (Rides(x,y) => thresh(1,1){Winged(y), Travelsby(x, air)}).
;55 Bellerophon rides Pegasus.
Rides(Bellerophon, Pegasus).
;33 Show the context. (The set of restrictions is used by belief revision.)
describe-context
((ASSERTIONS (WFF1 WFF2 WFF3 WFF4 WFF5 WFF6 WFF7)) (RESTRICTION NIL)
(NAMED (REAL-WORLD)))

;53 Create the mythology context, initialized to agree with the real-world.
set-context mythology (WFF1 WFF2 WFF3 WFF4 WFF5 WFF6 WFF7)

555 Still in the real world, birds and only birds have wings.
all(x) (Winged(x) <=> Bird(x)).

;;; How does Bellerophon travel?
Travelsby(Bellerophon, ?what)?

TRAVELSBY (BELLEROPHON , GROUND)

“TRAVELSBY (BELLEROPHON, AIR)

;5; Change the default context to be mythology.
set-default-context mythology

;3; Here, Pegasus has wings.
Winged (Pegasus) .

;5 How does Bellerophon travel here?
Travelsby(Bellerophon, ?what)?

“TRAVELSBY (BELLEROPHON, GROUND)

TRAVELSBY (BELLEROPHON, AIR)

;55 List all beliefs in the mythology context.
list-asserted-wffs mythology

all(X) ({BIRD(X) ,BEAST(X)} v=> {ANIMAL(X)})

andor (1,1){TRAVELSBY (BELLEROPHON,GROUND) , TRAVELSBY (BELLEROPHON,AIR) }

WINGED (PEGASUS)

WINGED (PEGASUS) <=> TRAVELSBY(BELLEROPHON,AIR)

ANIMAL (PEGASUS)

BEAST (PEGASUS)

andor (1,1){BIRD(PEGASUS) ,BEAST (PEGASUS) }

~“BIRD (PEGASUS)

all(X) (ANIMAL(X) => (andor(1,1){BIRD(X),BEAST(X)}))

~“TRAVELSBY (BELLEROPHON , GROUND)

all(X) (HORSE(X) => BEAST(X))

HORSE (PEGASUS)
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all(X,Y) (RIDES(X,Y) => (andor(1,1){TRAVELSBY(X,AIR),TRAVELSBY(X,GROUND)1}))
all(X,Y) (RIDES(X,Y) => (WINGED(Y) <=> TRAVELSBY(X,AIR)))

RIDES (BELLEROPHON,PEGASUS)

TRAVELSBY (BELLEROPHON, AIR)

;;; List all beliefs in the real-world context.
list-asserted-wffs real-world
all(X) ({BIRD(X),BEAST(X)} v=> {ANIMAL(X)})
TRAVELSBY (BELLEROPHON , GROUND)
andor (1,1){TRAVELSBY (BELLEROPHON,GROUND) , TRAVELSBY (BELLEROPHON,AIR) }
WINGED (PEGASUS) <=> TRAVELSBY(BELLEROPHON,AIR)
ANIMAL (PEGASUS)
BEAST (PEGASUS)
andor (1,1){BIRD(PEGASUS) ,BEAST (PEGASUS) }
~BIRD(PEGASUS)
~“WINGED (PEGASUS)
all(X) (ANIMAL(X) => (andor(1,1){BIRD(X),BEAST(X)}))
~“TRAVELSBY (BELLEROPHON, AIR)
all(X) (HORSE(X) => BEAST(X))
HORSE (PEGASUS)
all(X,Y) (RIDES(X,Y) => (andor(1,1){TRAVELSBY(X,AIR),TRAVELSBY(X,GROUND)}))
all(X,Y) (RIDES(X,Y) => (WINGED(Y) <=> TRAVELSBY(X,AIR)))
RIDES (BELLEROPHON,PEGASUS)
all(X) (WINGED(X) <=> BIRD(X))

Notice that Cassie believes that Bellerophon travels through the air in the world of mythology, but on the
ground in the real world.

10 Belief Revision

AT systems that get their input from normal people (as opposed to programmers or knowledge engineers)
will certainly occasionally get contradictory information. To deal with this, the system needs two facilities:

1. The ability to recognize and trap explicit contradictions so that something can be done about them.
2. The ability to retract stored information inferred from information that is later retracted.

SNePS 2.4 includes SNeBR (Martins and Shapiro, 1988), a Belief Revision system that has these two abilities.
When some proposition is entered or inferred that directly contradicts one that is already stored, SNeBR
opens a dialogue with the user:

: all(x) (Bird(x) => Flies(x)).
: all(x) (Penguin(x) => Bird(x)).
: all(x) (Penguin(x) => “Flies(x)).
: Bird(Opus)!
BIRD(OPUS)
FLIES(OPUS)

: Penguin(Opus)!
A contradiction was detected within context DEFAULT-DEFAULTCT.
The contradiction involves the newly derived proposition:
“FLIES (OPUS)
and the previously existing proposition:
FLIES(OPUS)
You have the following optioms:
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1. [Clontinue anyway, knowing that a contradiction is derivable;
2. [R]le-start the exact same run in a different context which is not inconsistent;
3. [D]rop the run altogether.
(please type c, r or d)
=><= ...

If the user chooses option (2), the system will help her to identify and remove the proposition(s) that caused
the contradiction.

The system keeps track of the hypotheses that underly inferred propositions. (An hypothesis is a propo-
sition that was told to the system, as opposed to one that the system inferred.) So if an hypothesis is
retracted, the system retracts every inferred proposition that was derived from it:

: all(x) (Bird(x) => Flies(x)).
: all(x) (Flies(x) => Feathered(x)).
: all(x) (Canary(x) => Bird(x)).
: Canary(Tweety)!
CANARY (TWEETY)
BIRD(TWEETY)
FLIES(TWEETY)
FEATHERED (TWEETY)

: Canary(Clyde)!
FLIES(CLYDE)
FEATHERED (CLYDE)
CANARY (CLYDE)
BIRD(CLYDE)

: list-asserted-wffs
all(X) (BIRD(X) => FLIES(X))
FLIES(CLYDE)
FEATHERED (CLYDE)
all(X) (FLIES(X) => FEATHERED(X))
all(X) (CANARY(X) => BIRD(X))
CANARY (TWEETY)
BIRD(TWEETY)
FLIES(TWEETY)
FEATHERED (TWEETY)
CANARY (CLYDE)
BIRD(CLYDE)

: “"Feathered(Clyde)!
A contradiction was detected within context DEFAULT-DEFAULTCT.
The contradiction involves the proposition you want to assert:
“FEATHERED (CLYDE)
and the previously existing proposition:
FEATHERED (CLYDE)
You have the following optiomns:
1. [c] to continue anyway, knowing that a contradiction is derivable;
2. [r] to revise the inconsistent part of the context
3. [d] to discard this contradictory new assertion from the context
(please type c, r or d)
=><=r
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In order to make the context consistent you must delete at least
one hypothesis from each of the following sets of hypotheses:
(WFF1 WFF12 WFF2 WFF3 WFF8)
In order to make the context consistent you must delete
at least one hypothesis from the set listed below.
An inconsistent set of hypotheses:
1: all(X) (BIRD(X) => FLIES(X))
(5 supported propositions: (WFF1 WFF10 WFF11 WFF6 WFF7) )
2 “FEATHERED (CLYDE)
(1 supported proposition: (WFF12) )

3 : all(X) (FLIES(X) => FEATHERED (X))
(3 supported propositions: (WFF11 WFF2 WFF7) )
4 : all(X) (CANARY(X) => BIRD(X))

(7 supported propositions: (WFF10 WFF11 WFF3 WFF5 WFF6 WFF7 WFF9) )
5 : CANARY (CLYDE)
(4 supported propositions: (WFF10 WFF11 WFF8 WFF9) )
Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,
[a]l to see ALL the hypotheses in the full context,
[r] to see what you have already removed,
[q] to quit revising this set, or
[i] for instructions
(please type a number OR d, a, r, q or i)
=><=d
Enter the list number of a hypothesis to discard,

[c] to cancel this discard, or [q] to quit revising this set.
=><= 5

The consistent set of hypotheses:
1: all(X) (BIRD(X) => FLIES(X))
(5 supported propositions: (WFF1 WFF10 WFF11 WFF6 WFF7) )
2 : ~“FEATHERED (CLYDE)
(1 supported proposition: (WFF12) )

3 : all(X) (FLIES(X) => FEATHERED(X))
(3 supported propositions: (WFF11 WFF2 WFF7) )
4 : all(X) (CANARY(X) => BIRD(X))

(7 supported propositions: (WFF10 WFF11 WFF3 WFF5 WFF6 WFF7 WFF9) )
Enter the list number of a hypothesis to examine or
[d] to discard some hypothesis from this list,
[a]l to see ALL the hypotheses in the full context,
[r] to see what you have already removed,
[q] to quit revising this set, or
[i] for instructions
(please type a number OR d, a, r, q or i)
=><=q

The following (not known to be inconsistent) set of
hypotheses was also part of the context where the
contradiction was derived:

(WFF4)
Do you want to inspect or discard some of them?
=><= no
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Do you want to add a new hypothesis?
=><= no
“FEATHERED (CLYDE)

: list-asserted-wffs
all(X) (BIRD(X) => FLIES(X))
~“FEATHERED (CLYDE)
~“CANARY (CLYDE)
all(X) (FLIES(X) => FEATHERED(X))
all(X) (CANARY(X) => BIRD(X))
CANARY (TWEETY)
BIRD(TWEETY)
FLIES(TWEETY)
FEATHERED (TWEETY)

Notice that after retracting Canary(Clyde), the propositions that were inferred from it, FLIES(CLYDE),
BIRD(CLYDE), and FEATHERED (CLYDE) and were also removed.

SNeBR tells the user how many propositions are supported by each hypothesis in case she wants to remove
the hypothesis that makes a minimal change to the knowledge base (Alchourrén et al., 1985). However, since
we assume that there is more to be learned, this may not be the definitive criterion, and, in fact, in this
example, the removed hypothesis was not the one that made the minimal change.

11 Relevance Logic

In FOPL, a contradiction implies anything whatsoever, but most people would say that just because you
believe that Opus does and doesn’t fly, that’s no reason to believe something totally unrelated to Opus and
flying, such as that the Earth is flat. SNePS logic is a version of Relevance Logic (Anderson and Belnap,
1975; Anderson et al., 1992; Shapiro, 1992), a “paraconsistent” logic in which the so-called “paradoxes of
implication” such as (A A —=A) = B, are not valid.

: all(x) (Flies(x) => Feathered(x)).
: all(x) ("Flies(x) => Swims(x)).
: Flies(Opus).
: “Flies(Opus).
A contradiction was detected within context DEFAULT-DEFAULTCT.
The contradiction involves the proposition you want to assert:
“FLIES (OPUS)
and the previously existing proposition:
FLIES(OPUS)
You have the following optiomns:
1. [c] to continue anyway, knowing that a contradiction is derivable;
2. [r] to revise the inconsistent part of the context
3. [d] to discard this contradictory new assertion from the context
(please type c, r or d)
=><= ¢
“FLIES(OPUS)

: Feathered(Opus)?
A contradiction was detected within context DEFAULT-DEFAULTCT.
The contradiction involves the newly derived proposition:
FLIES(OPUS)
and the previously existing proposition:
“FLIES (0PUS)
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You have the following optiomns:
1. [Clontinue anyway, knowing that a contradiction is derivable;
2. [R]e-start the exact same run in a different context which is not inconsistent;
3. [D]rop the run altogether.
(please type c, r or d)
=><= ¢
FEATHERED (OPUS)

: Swims(Opus)?
A contradiction was detected within context DEFAULT-DEFAULTCT.
The contradiction involves the newly derived proposition:
“FLIES (OPUS)
and the previously existing proposition:
FLIES(OPUS)
You have the following optioms:
1. [Clontinue anyway, knowing that a contradiction is derivable;
2. [R]le-start the exact same run in a different context which is not inconsistent;
3. [Dlrop the run altogether.
(please type c, r or d)
=><= ¢C
SWIMS (OPUS)

: Flat(Earth)?

: list-asserted-wffs
all(X) (FLIES(X) => FEATHERED(X))
all(X) (("FLIES(X)) => SWIMS(X))
FLIES(OPUS)
~“FLIES (OPUS)
FEATHERED (0OPUS)
SWIMS (OPUS)

(Remember that when a question A? is asked, if A can be derived from the stored information, it is printed,
and if “A can be derived, it is printed. If neither can be derived, nothing is printed, which is the case here,
indicated by nothing being shown between the query, Flat (Earth)?, and the next prompt.)

So the contradiction allows the system to infer related contradictory information, specifically SWIMS (0PUS)
and FEATHERED (0OPUS), but not irrelevant information such as Flat (Earth).

Another paradox of implication is that anything whatsoever implies a truth, A = (B = A). First notice
that SNePS can derive implications:

: all(x) (Canary(x) => Bird(x)).

: all(x) (Bird(x) => Flies(x)).

: Canary(Tweety) => Flies(Tweety)?
CANARY (TWEETY) => FLIES(TWEETY)

Now, let’s try A = (B = A):

: Penguin(Opus) .
: Canary(Tweety) => Penguin(Opus)?

The implication is not derived.
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12 Circular and Recursive Rules

Above I said that normal people occasionally give contradictory information. They also tend to give circular
definitions, which get formalized as recursive rules. The SNePS inference mechanism was designed to work
without getting into infinite loops in the face of recursive rules without regard to: the order of entry of
rules or ground propositions; the order of predicates within rules; whether recursive rules are left- or right-
recursive, or both; what predicates are used in ground propositions. (Shapiro and McKay, 1980; McKay and
Shapiro, 1981) An example of using a circular definition is

: all(x,y) (thresh(1,1){North-of(x,y), South-of(y,x)}).
: North-of (Seattle, Portland).
: South-of (San_Francisco, Portland).
: North-of (San_Francisco, Los_Angeles).
: South-of (San_Diego, Los_Angeles).
: North-of(7x, 7y)7?
NORTH-OF (SEATTLE ,PORTLAND)
NORTH-OF (SAN_FRANCISCO,LOS_ANGELES)
NORTH-OF (LOS_ANGELES,SAN_DIEGQ)
NORTH-O0F (PORTLAND, SAN_FRANCISCQO)

A more traditional example of a recursive rule is

: all(x,y) (parent(x,y) => ancestor(x,y)).
: all(x,y,z) ({ancestor(x,y), ancestor(y,z)} &=> {ancestor(x,z)}).
: parent(John, Mary) .
: ancestor(Mary, George) .
: ancestor(George, Sally).
: parent(Sally, Jimmy).
: ancestor(John, ?y)?
ANCESTOR (JOHN, JIMMY)
ANCESTOR (JOHN,MARY)
ANCESTOR (JOHN, GEORGE)
ANCESTOR (JOHN, SALLY)

: ancestor(?x, Jimmy)?
ANCESTOR (SALLY,JIMMY)
ANCESTOR (JOHN, JIMMY)
ANCESTOR (GEORGE, JIMMY)
ANCESTOR (MARY, JIMMY)

Of course, SNePS will infinitely loop if it is asked to forward chain through a rule of the form V(z)[P(z) =
P(f(x))] or back-chain through one of the form V(z)[P(f(z)) = P(z)].

13 Summary

SNePS has been and is being designed to be a KRR system for a computerized natural language using,
commonsense reasoning rational agent. SNePS is founded on logic, but on a logic that has been (and is
being) designed specifically to support natural language processing and commonsense reasoning. Several
aspects of this logic have been summarized in this chapter. We may categorize them as follows.

e Those that differ from FOPL in syntax (with appropriate semantics and inference rules):

— Set Arguments
— Set-Oriented Logical Connectives

— Numerical Quantifiers
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— “Higher-Order” Logic
e Those that differ from FOPL in some inference rule(s) (with appropriate semantics):

— The Unique Variable Binding Rule

— Relevance Logic
e Those that differ from FOPL only in semantics:
— Intensional Representation
e Those that rely on an appropriate inference mechanism:

— Contexts
— Belief Revision

— Use of circular and recursive rules

More recent developments, that have not yet been incorporated with the other features of SNePS 2.4, are
“structured variables” (Ali, 1993; Ali and Shapiro, 1993; Ali, 1994) and using simulative reasoning to reason
about the beliefs of other agents (Chalupsky and Shapiro, 1994; Chalupsky, 1996; Chalupsky and Shapiro,
1996).
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