CSE 431/531: Algorithm Analysis and Design (Spring 2018)
Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1. if \(n = 1\) then
2. return \(A\)
3. else
4. \(B \leftarrow \text{merge-sort}\left(A[1..\lfloor n/2\rfloor], \lfloor n/2\rfloor\right)\)
5. \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2\rceil + 1..n], \lceil n/2\rceil\right)\)
6. return merge\((B, C, \lfloor n/2\rfloor, \lceil n/2\rceil)\)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$
There are $O(\log n)$ levels
Running time $= O(n \log n)$
Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T([n/2]) + T([n/2]) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

- 4 inversions (for convenience, using numbers, not indices): $(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1. $c \leftarrow 0$
2. for every $i \leftarrow 1$ to $n - 1$
3. for every $j \leftarrow i + 1$ to n
4. if $A[i] > A[j]$ then $c \leftarrow c + 1$
5. return c
Divide-and-Conquer

\[A: \quad B \quad C \]

- \(p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \)
- \(#\text{invs}(A) = #\text{invs}(B) + #\text{invs}(C) + m\)
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

\[p = \left\lfloor \frac{n}{2} \right\rfloor, \quad B = A[1..p], \quad C = A[p + 1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 18$

+0 +2 +3 +3 +5 +5

3 5 7 8 9 12 20 25 29 32 48
Count Inversions between \(B \) and \(C \)

- Procedure that merges \(B \) and \(C \) and counts inversions between \(B \) and \(C \) at the same time

```
merge-and-count(\( B, C, n_1, n_2 \))

1    count ← 0;
2    A ← []; i ← 1; j ← 1
3    while \( i \leq n_1 \) or \( j \leq n_2 \)
4        if \( j > n_2 \) or (\( i \leq n_1 \) and \( B[i] \leq C[j] \)) then
5            append \( B[i] \) to \( A \); \( i \leftarrow i + 1 \)
6            count ← count + (\( j - 1 \))
7        else
8            append \( C[j] \) to \( A \); \( j \leftarrow j + 1 \)
9    return (\( A, count \))
```
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[\text{sort-and-count}(A, n)\]

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

Divide: trivial

Conquer: 4, 5

Combine: 6, 7
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor \right)$
5. $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil \right)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Conquer</th>
<th>Combine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Merge Sort</td>
<td>QuickSort</td>
<td></td>
</tr>
<tr>
<td>Trivial</td>
<td>Separate small and big numbers</td>
<td></td>
</tr>
<tr>
<td>Recurse</td>
<td>Recurse</td>
<td></td>
</tr>
<tr>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
<td></td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
29  38  45  25  15  37  17  64  82  75  94  92  69  76  85
25  15  17  29  38  45  37  64  82  75  94  92  69  76  85
```
Quicksort

quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x
4. $A_R \leftarrow$ elements in A that are greater than x
5. $B_L \leftarrow$ quicksort(A_L, A_L.size)
6. $B_R \leftarrow$ quicksort(A_R, A_R.size)
7. $t \leftarrow$ number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time $= O(n \lg n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical).
2. Choose a **pivot randomly** and pretend it is the median (it is practical).
quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\)
 \(\text{\\ Div}{}\)
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\)
 \(\text{\\ Div}{}\)
5. \(B_L \leftarrow\) quicksort\((A_L, A_L\text{.size})\)
 \(\text{\\ Con}\)
6. \(B_R \leftarrow\) quicksort\((A_R, A_R\text{.size})\)
 \(\text{\\ Con}\)
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: make the assumption
Quicksort Using A Random Pivot

quicksort(A, n)

1. if n ≤ 1 then return A
2. x ← a random element of A (x is called a pivot)
3. A_L ← elements in A that are less than x \ Divide
4. A_R ← elements in A that are greater than x \ Divide
5. B_L ← quicksort(A_L, A_L.size) \ Conquer
6. B_R ← quicksort(A_R, A_R.size) \ Conquer
7. t ← number of times x appear A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is \(O(n \lg n)\).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

\[
\text{partition}(A, \ell, r)
\]

1. \(p \leftarrow \text{random integer between } \ell \text{ and } r \)
2. \(\text{swap } A[p] \text{ and } A[\ell] \)
3. \(i \leftarrow \ell, j \leftarrow r \)
4. while \(i < j \) do
5. \hspace{1em} while \(i < j \text{ and } A[i] \leq A[j] \) do \(j \leftarrow j - 1 \)
6. \hspace{1em} \text{swap } A[i] \text{ and } A[j] \)
7. \hspace{1em} while \(i < j \text{ and } A[i] \leq A[j] \) do \(i \leftarrow i + 1 \)
8. \hspace{1em} \text{swap } A[i] \text{ and } A[j] \)
9. return \(i \)
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

quicksort(\(A, \ell, r\))

1. if \(\ell \geq r\) return
2. \(p \leftarrow \text{partition}(A, \ell, r)\)
3. \(q \leftarrow p - 1;\) while \(A[q] = A[p]\) and \(q \geq \ell\) do: \(q \leftarrow q - 1\)
4. quicksort\((A, \ell, q)\)
5. \(q \leftarrow p + 1;\) while \(A[q] = A[p]\) and \(q \leq r\) do: \(q \leftarrow q + 1\)
6. quicksort\((A, q, r)\)

To sort an array \(A\) of size \(n\), call quicksort\((A, 1, n)\).

Note: We pass the array \(A\) by reference, instead of by copying.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms
- To sort, we are only allowed to compare two elements
- We cannot use "internal structures" of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Decision tree diagram]

- $x \leq 2$?
 - $x = 1$?
 - 1
 - $x = 3$?
 - 3
- 2
- 3
- 4
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \log n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Selection Problem

Input: a set \(A \) of \(n \) numbers, and \(1 \leq i \leq n \)

Output: the \(i \)-th smallest number in \(A \)

- Sorting solves the problem in time \(O(n \lg n) \).
- Our goal: \(O(n) \) running time
Recall: Quicksort with Median Finder

<table>
<thead>
<tr>
<th>Step</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>if $n \leq 1$ then return A</td>
</tr>
<tr>
<td>2</td>
<td>$x \leftarrow$ lower median of A</td>
</tr>
</tbody>
</table>
| 3 | $A_L \leftarrow$ elements in A that are less than x
\hspace{1cm} Divide |
| 4 | $A_R \leftarrow$ elements in A that are greater than x
\hspace{1cm} Divide |
| 5 | $B_L \leftarrow$ quicksort(A_L, A_L.size)
\hspace{1cm} Conquer |
| 6 | $B_R \leftarrow$ quicksort(A_R, A_R.size)
\hspace{1cm} Conquer |
| 7 | $t \leftarrow$ number of times x appear in A |
| 8 | return the array obtained by concatenating B_L, the array containing t copies of x, and B_R |
Selection Algorithm with Median Finder

selection(*A, n, i*)

1. if *n* = 1 then return *A*
2. \(x \leftarrow\) lower median of *A*
3. \(A_L \leftarrow\) elements in *A* that are less than *x*
 \(\text{// Divide}\)
4. \(A_R \leftarrow\) elements in *A* that are greater than *x*
 \(\text{// Divide}\)
5. if *i* ≤ \(A_L\).size then
6. \(\text{return selection}(A_L, A_L\text{.size, }i)\)
 \(\text{// Conquer}\)
7. elseif *i* > *n* − \(A_R\).size then
8. \(\text{return select}(A_R, A_R\text{.size, }i - (n - A_R\text{.size}))\)
 \(\text{// Conquer}\)
9. else return *x*

- Recurrence for selection: \(T(n) = T(n/2) + O(n)\)
- Solving recurrence: \(T(n) = O(n)\)
Randomized Selection Algorithm

\[\text{selection}(A, n, i)\]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \quad \text{// Divide}
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \quad \text{// Divide}
5. if \(i \leq A_L.\text{size} \) then
6. \quad return \text{selection}(A_L, A_L.\text{size}, i) \quad \text{// Conquer}
7. elseif \(i > n - A_R.\text{size} \) then
8. \quad return \text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \quad \text{// Conquer}
9. else return \(x \)

- expected running time = \(O(n) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

\[(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)\]

\[= 6x^6 - 9x^5 + 18x^4 - 15x^3\]

\[+ 4x^5 - 6x^4 + 12x^3 - 10x^2\]

\[- 10x^4 + 15x^3 - 30x^2 + 25x\]

\[+ 8x^3 - 12x^2 + 24x - 20\]

\[= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20\]

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
Naïve Algorithm

polynomial-multiplication\((A, B, n)\)

1. let \(C[k] = 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2. for \(i \leftarrow 0\) to \(n - 1\)
3. \hspace{1em} for \(j \leftarrow 0\) to \(n - 1\)
4. \hspace{2em} \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5. return \(C\)

Running time: \(O(n^2)\)
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[p q = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \]
\[+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \]
\[+ multiply(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\lg_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

```
multiply(A, B, n)

1. if \( n = 1 \) then return \((A[0]B[0])\)
2. \( A_L \leftarrow A[0 .. n/2 - 1], A_H \leftarrow A[n/2 .. n - 1] \)
3. \( B_L \leftarrow B[0 .. n/2 - 1], B_H \leftarrow B[n/2 .. n - 1] \)
4. \( C_L \leftarrow multiply(A_L, B_L, n/2) \)
5. \( C_H \leftarrow multiply(A_H, B_H, n/2) \)
6. \( C_M \leftarrow multiply(A_L + A_H, B_L + B_H, n/2) \)
7. \( C \leftarrow \) array of \((2n - 1)\) 0’s
8. for \( i \leftarrow 0 \) to \( n - 2 \) do
9. \( C[i] \leftarrow C[i] + C_L[i] \)
10. \( C[i + n] \leftarrow C[i + n] + C_H[i] \)
11. \( C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \( C \)
```
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- **Trivial algorithm:** \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \log n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time = $O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \quad B = \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix} \]

\[C = \begin{pmatrix} A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\ A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22} \end{pmatrix} \]

- matrix_multiplication\((A, B)\) recursively calls
 - matrix_multiplication\((A_{11}, B_{11})\),
 - matrix_multiplication\((A_{12}, B_{21})\),
 - ...

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2) \)
- \(T(n) = O(n^3) \)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

- There are \(O(\log n) \) levels

- Running time = \(O(n \log n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \((\frac{n}{2^i})^2 \times 3^i = (\frac{3}{4})^i n^2 \)

- Index of last level? \(\log_2 n \)

- Total running time?

\[
\sum_{i=0}^{\log_2 n} \left(\frac{3}{4}\right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(c < \log_b a \): bottom-level dominates: \(\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^\log_b a \)
- \(c = \log_b a \): all levels have same time: \(n^c \log_b n = O(n^c \log n) \)
- \(c > \log_b a \): top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing \(n \)-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
 4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} =
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if \(n = 0 \) then return \(\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \)
2. \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)
3. \(R \leftarrow R \times R \)
4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)
5. return \(R \)

Fib(n)

1. if \(n = 0 \) then return 0
2. \(M \leftarrow \text{power}(n - 1) \)
3. return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
- \(T(n) = O(\log n) \)
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.
- Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers.
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · ·:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time