CSE 431/531: Algorithm Analysis and Design (Spring 2018)
Divide-and-Conquer

Lecturer: Shi Li
Department of Computer Science and Engineering
University at Buffalo
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Greedy Algorithm
- mainly for combinatorial optimization problems
- trivial algorithm runs in exponential time
- greedy algorithm gives an efficient algorithm
- main focus of analysis: correctness of algorithm

Divide-and-Conquer
- not necessarily for combinatorial optimization problems
- trivial algorithm already runs in polynomial time
- divide-and-conquer gives a more efficient algorithm
- main focus of analysis: running time
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
\textbf{merge-sort}(A, n)

1. if \(n = 1 \) then
2. \hspace{1em} return \(A \)
3. else
4. \hspace{1em} \(B \leftarrow \text{merge-sort}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil) \)
5. \hspace{1em} \(C \leftarrow \text{merge-sort}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil) \)
6. return \text{merge}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Running Time for Merge-Sort

- Each level takes running time $O(n)$
- There are $O(\lg n)$ levels
- Running time $= O(n \lg n)$
- Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- $T(n) =$ running time for sorting n numbers, then

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

- Solving this recurrence, we have $T(n) = O(n \lg n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

- 4 inversions (for convenience, using numbers, not indices): $(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

\text{count-inversions}(A, n)

1. \quad c \leftarrow 0
2. \quad \text{for every } i \leftarrow 1 \text{ to } n - 1
3. \quad \quad \text{for every } j \leftarrow i + 1 \text{ to } n
4. \quad \quad \quad \text{if } A[i] > A[j] \text{ then } c \leftarrow c + 1
5. \quad \text{return } c
Divide-and-Conquer

\[A: \quad B \quad C \]

- \[p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \]
- \[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]
 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Q: How fast can we compute \(m \), via trivial algorithm?

A: \(O(n^2) \)

- Can not improve the \(O(n^2) \) time for counting inversions.
Divide-and-Conquer

- \(p = \lfloor n/2 \rfloor, B = A[1..p], C = A[p+1..n] \)
- \(\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \)

 \[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2 +3 +3 +5 +5$

Total = 18
Count Inversions between \(B \) and \(C \)

- Procedure that merges \(B \) and \(C \) and counts inversions between \(B \) and \(C \) at the same time

merge-and-count\((B, C, n_1, n_2)\)

1. \(\text{count} \leftarrow 0; \)
2. \(A \leftarrow []; i \leftarrow 1; j \leftarrow 1 \)
3. while \(i \leq n_1 \) or \(j \leq n_2 \)
4. if \(j > n_2 \) or \((i \leq n_1 \text{ and } B[i] \leq C[j])\) then
5. append \(B[i] \) to \(A; \) \(i \leftarrow i + 1 \)
6. \(\text{count} \leftarrow \text{count} + (j - 1) \)
7. else
8. append \(C[j] \) to \(A; \) \(j \leftarrow j + 1 \)
9. return \((A, \text{count})\)
A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n) \\
\text{1 if } n = 1 \text{ then} \\
\text{2 return } (A, 0) \\
\text{3 else} \\
\text{4 (B, } m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor) \\
\text{5 (C, } m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil) \\
\text{6 (A, } m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil) \\
\text{7 return } (A, m_1 + m_2 + m_3)
\]

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1. if $n = 1$ then
 2. return $(A, 0)$

3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>QuickSort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conquer</td>
<td>Trivial</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Combine</td>
<td>Recurse</td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td>Merge 2 sorted arrays</td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

<p>| | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
</tr>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
</tr>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
</tr>
</tbody>
</table>
Quicksort

\textbf{quicksort}(A, n)

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \text{// Divide}
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \text{// Divide}
5. \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \hspace{1cm} \text{// Conquer}
6. \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \hspace{1cm} \text{// Conquer}
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
- Running time = \(O(n \lg n) \)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)

2. Choose a **pivot randomly** and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(\(A, n\))

1. if \(n \leq 1\) then return \(A\)

2. \(x \leftarrow\) a random element of \(A\) (\(x\) is called a pivot)

3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\)

4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\)

5. \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) \(\parallel\) Conquer

6. \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) \(\parallel\) Conquer

7. \(t \leftarrow\) number of times \(x\) appear \(A\)

8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use *pseudo-random-generator*, a deterministic algorithm returning numbers that “look like” random
- In theory: assume they can.
Quicksort Using A Random Pivot

quicksort\((A, n) \)

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \(\text{\textbackslash\textbackslash \text{Divide}} \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \(\text{\textbackslash\textbackslash \text{Divide}} \)
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size}) \) \(\text{\textbackslash\textbackslash \text{Conquer}} \)
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size}) \) \(\text{\textbackslash\textbackslash \text{Conquer}} \)
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)

Lemma \quad \text{The expected running time of the algorithm is } \text{\text{\textit{O}}}(n \lg n).
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
partition(A, ℓ, r)

1. $p \leftarrow$ random integer between ℓ and r, swap $A[p]$ and $A[\ell]$
2. $i \leftarrow \ell$, $j \leftarrow r$
3. while $i < j$ do
4. while $i < j$ and $A[i] \leq A[j]$ do $j \leftarrow j - 1$
5. swap $A[i]$ and $A[j]$
6. while $i < j$ and $A[i] \leq A[j]$ do $i \leftarrow i + 1$
7. swap $A[i]$ and $A[j]$
8. $\ell' \leftarrow i$, $r' \leftarrow i$
9. for $j \leftarrow i - 1$ down to ℓ
10. if $A[j] = A[i]$ then $\ell' \leftarrow \ell' - 1$ and swap $A[\ell']$ and $A[j]$
11. for $j \leftarrow i + 1$ to r
13. return (ℓ', r')
In-Place Implementation of Quick-Sort

```plaintext
quicksort(A, ℓ, r)

1. if ℓ ≥ r return
2. (ℓ', r') ← partition(A, ℓ, r)
3. quicksort(A, ℓ, ℓ' − 1)
4. quicksort(A, r' + 1, r)
```

- To sort an array A of size n, call quicksort($A, 1, n$).

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma. The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

![Decision tree diagram]

1 2 3 4
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form "does i appear before j in π?"

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \lg n)$
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

\[
\text{quicksort}(A, n)
\]

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
5. \(B_L \leftarrow \) quicksort\((A_L, A_L.\text{size})\)
6. \(B_R \leftarrow \) quicksort\((A_R, A_R.\text{size})\)
7. \(t \leftarrow \) number of times \(x \) appear in \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Selection Algorithm with Median Finder

selection(A, n, i)

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \(\text{\textbackslash\text\textbackslash Divide} \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \(\text{\textbackslash\text\textbackslash Divide} \)
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1em} return \(\text{selection}(A_L, A_L.\text{size}, i) \) \(\text{\textbackslash\text\textbackslash Conquer} \)
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1em} return \(\text{selection}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \(\text{\textbackslash\text\textbackslash Conquer} \)
9. else return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[
\text{selection}(A, n, i) \ni \\
1. \text{if } n = 1 \text{ then return } A \\
2. x \leftarrow \text{random element of } A \quad \text{(called pivot)} \\
3. A_L \leftarrow \text{elements in } A \text{ that are less than } x \\
4. A_R \leftarrow \text{elements in } A \text{ that are greater than } x \\
5. \text{if } i \leq A_L.\text{size} \text{ then} \\
6. \quad \text{return selection}(A_L, A_L.\text{size}, i) \quad \text{divide} \\
7. \text{elseif } i > n - A_R.\text{size} \text{ then} \\
8. \quad \text{return selection}(A_R, A_R.\text{size}, i -(n - A_R.\text{size})) \quad \text{divide} \\
9. \text{else return } x \\
\]

- expected running time = \(O(n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Polynomial Multiplication

Input: two polynomials of degree \(n - 1 \)

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)
\]

\[
= 6x^6 - 9x^5 + 18x^4 - 15x^3
\]

\[
+ 4x^5 - 6x^4 + 12x^3 - 10x^2
\]

\[
- 10x^4 + 15x^3 - 30x^2 + 25x
\]

\[
+ 8x^3 - 12x^2 + 24x - 20
\]

\[
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** \((4, -5, 2, 3), (-5, 6, -3, 2)\)

- **Output:** \((-20, 49, -52, 20, 2, -5, 6)\)
Naïve Algorithm

polynomial-multiplication(A, B, n)

1. let $C[k] = 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2. for $i \leftarrow 0$ to $n - 1$
3. for $j \leftarrow 0$ to $n - 1$
5. return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[\text{multiply}(p, q) = \text{multiply}(p_H, q_H) \times x^n \]
\[+ (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \]
\[+ \text{multiply}(p_L, q_L) \]

- Recurrence: \[T(n) = 4T(n/2) + O(n) \]
- \[T(n) = O(n^2) \]
Reduce Number from 4 to 3

\[
pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right)
\]

\[
= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\]

\[
p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption

n is a power of 2. Arrays are 0-indexed.

multiply(A, B, n)

1. if $n = 1$ then return $(A[0]B[0])$
2. $A_L \leftarrow A[0..n/2 - 1]$, $A_H \leftarrow A[n/2..n - 1]$
3. $B_L \leftarrow B[0..n/2 - 1]$, $B_H \leftarrow B[n/2..n - 1]$
4. $C_L \leftarrow \text{multiply}(A_L, B_L, n/2)$
5. $C_H \leftarrow \text{multiply}(A_H, B_H, n/2)$
6. $C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2)$
7. $C \leftarrow$ array of $(2n - 1)$ 0’s
8. for $i \leftarrow 0$ to $n - 2$ do
 9. $C[i] \leftarrow C[i] + C_L[i]$
 10. $C[i + n] \leftarrow C[i + n] + C_H[i]$
 11. $C[i + n/2] \leftarrow C[i + n/2] + C_M[i] - C_L[i] - C_H[i]$
12. return C
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 • Quicksort
 • Lower Bound for Comparison-Based Sorting Algorithms
 • Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \log n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- Time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[
A = \begin{bmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{bmatrix}
\]

\[
B = \begin{bmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{bmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix}_\text{multiplication}(A, B) \text{ recursively calls}
 \text{matrix}_\text{multiplication}(A_{11}, B_{11}),
 \text{matrix}_\text{multiplication}(A_{12}, B_{21}),
 \ldots

- \text{Recurrence for running time: } T(n) = 8T(n/2) + O(n^2)
- \text{ } T(n) = O(n^3)
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

- There are \(O(\lg n) \) levels
- Running time = \(O(n \lg n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

- Total running time at level i? $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i \cdot n$

- Index of last level? $\lg_2 n$

- Total running time?

$$\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2}\right)^i \cdot n = O \left(n \left(\frac{3}{2}\right)^{\lg_2 n}\right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).$$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

Index of last level? \(\lg_2 n \)

Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Theorem \(T(n) = a T(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4 T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3 T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2 T(n/2) + O(n^2) \). Case 3. \(T(n) = O(n^2) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

- \(c < \log_b a \): bottom-level dominates:
 \[\left(\frac{a}{b^c}\right)^{\log_b n} n^c = n^{\log_b a} \]
- \(c = \log_b a \): all levels have same time:
 \[n^c \log_b n = O(n^c \log n) \]
- \(c > \log_b a \): top-level dominates:
 \[O(n^c) \]
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- $F_0 = 0, F_1 = 1$
- $F_n = F_{n-1} + F_{n-2}, \forall n \geq 2$
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, …

n-th Fibonacci Number

Input: integer $n > 0$

Output: F_n
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
 4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[\cdots\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix}
=
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
- $T(n) = O(\lg n)$
Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time