Outline

1. Divide-and-Conquer
 - Counting Inversions
 - Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem

2. Polynomial Multiplication

3. Other Classic Algorithms using Divide-and-Conquer

4. Solving Recurrences

5. Computing n-th Fibonacci Number
Greedy algorithm: design efficient algorithms
- Greedy algorithm: design efficient algorithms
- Divide-and-conquer: design more efficient algorithms
Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
merge-sort\((A, n)\)

1. if \(n = 1\) then
2. \hspace{1em} return \(A\)
3. else
4. \hspace{1em} \(B \leftarrow \text{merge-sort}\left(A[1..\lceil n/2 \rceil], \lceil n/2 \rceil\right)\)
5. \hspace{1em} \(C \leftarrow \text{merge-sort}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)\)
6. \hspace{1em} return merge\((B, C, \lceil n/2 \rceil, \lceil n/2 \rceil)\)
merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. else
4. $B \leftarrow$ merge-sort($A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor$)
5. $C \leftarrow$ merge-sort($A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil$)
6. return merge($B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil$)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6
Each level takes running time $O(n)$

There are $O(\lg n)$ levels

Running time $= O(n \lg n)$

Better than insertion sort
Running Time for Merge-Sort Using Recurrence

- \(T(n) \) = running time for sorting \(n \) numbers, then

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}
\]

- With some tolerance of informality:

\[
T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}
\]
Running Time for Merge-Sort Using Recurrence

- $T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ T([n/2]) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2 \end{cases}$$

- With some tolerance of informality:

$$T(n) = \begin{cases} O(1) & \text{if } n = 1 \\ 2T(n/2) + O(n) & \text{if } n \geq 2 \end{cases}$$

- Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)
$T(n) = \text{running time for sorting } n \text{ numbers, then}$

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + O(n) & \text{if } n \geq 2
\end{cases}$$

With some tolerance of informality:

$$T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
2T(n/2) + O(n) & \text{if } n \geq 2
\end{cases}$$

Even simpler: $T(n) = 2T(n/2) + O(n)$. (Implicit assumption: $T(n) = O(1)$ if n is at most some constant.)

Solving this recurrence, we have $T(n) = O(n \log n)$ (we shall show how later)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8</td>
<td>15</td>
<td>9</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>12</td>
<td>15</td>
</tr>
</tbody>
</table>
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers
Output: number of inversions in A

Example:

```
10  8  15  9  12
  8  9 10  12 15
```

4 inversions (for convenience, using numbers, not indices):

10, 8,
10, 9,
15, 9,
15, 12
Def. Given an array A of n integers, an inversion in A is a pair (i, j) of indices such that $i < j$ and $A[i] > A[j]$.

Counting Inversions

Input: an sequence A of n numbers

Output: number of inversions in A

Example:

4 inversions (for convenience, using numbers, not indices):

$(10, 8), (10, 9), (15, 9), (15, 12)$
Naive Algorithm for Counting Inversions

count-inversions(A, n)

1. \(c \leftarrow 0 \)
2. for every \(i \leftarrow 1 \) to \(n - 1 \)
3. for every \(j \leftarrow i + 1 \) to \(n \)
4. if \(A[i] > A[j] \) then \(c \leftarrow c + 1 \)
5. return \(c \)
Divide-and-Conquer

- $p = \lfloor n/2 \rfloor$, $B = A[1..p]$, $C = A[p + 1..n]$
- $\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m$
 $m = |\{(i,j) : B[i] > C[j]\}|$

Q: How fast can we compute m, via trivial algorithm?

A: $O(n^2)$

- Can not improve the $O(n^2)$ time for counting inversions.
Divide-and-Conquer

\[p = \left\lfloor \frac{n}{2} \right\rfloor, \quad B = A[1..p], \quad C = A[p+1..n] \]

\[\#\text{invs}(A) = \#\text{invs}(B) + \#\text{invs}(C) + m \]

\[m = \left| \{(i, j) : B[i] > C[j]\} \right| \]

Lemma If both \(B \) and \(C \) are sorted, then we can compute \(m \) in \(O(n) \) time!
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{align*}
B: & \quad 3 \quad 8 \quad 12 \quad 20 \quad 32 \quad 48 \quad \text{total} = 0 \\
C: & \quad 5 \quad 7 \quad 9 \quad 25 \quad 29
\end{align*}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

<table>
<thead>
<tr>
<th>B: 3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C: 5</th>
<th>7</th>
<th>9</th>
<th>25</th>
<th>29</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

total = 0
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 0$

$+0$

3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

+0

\[
\begin{array}{c}
\text{total} = 0
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 0$

B: $\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: $\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$+0$

$\begin{array}{cc}
3 & 5 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]
\text{total} = 0

C: \[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]
$+0$

B: \[
\begin{array}{cccc}
3 & 5 & 7 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{bmatrix} 3 & 8 & 12 & 20 & 32 & 48 \end{bmatrix}$

$C: \begin{bmatrix} 5 & 7 & 9 & 25 & 29 \end{bmatrix}$

$+0$

$\text{total} = 0$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 2$

+0 +2

3 5 7 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$+0 +2$

$3 5 7 8$

$\text{total} = 2$
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+0 & +2 \\
\end{array}
\]

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array}
\]

\[
\text{total} = 2
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

$B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

$C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 2$

$+0$ $+2$

$\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: $\begin{bmatrix} 3 & 8 & 12 & 20 & 32 & 48 \end{bmatrix}$

C: $\begin{bmatrix} 5 & 7 & 9 & 25 & 29 \end{bmatrix}$

$\begin{bmatrix} 3 & 5 & 7 & 8 & 9 & 12 \end{bmatrix}$

total $= 5$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc} 3 & 8 & 12 & 20 & 32 & 48 \end{array} \]

\[\text{total} = 5 \]

C: \[\begin{array}{cccccc} 5 & 7 & 9 & 25 & 29 \end{array} \]

\[+0 \quad +2 \quad +3 \]

\[\begin{array}{cccccc} 3 & 5 & 7 & 8 & 9 & 12 \end{array} \]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

| B: 3 8 12 20 32 48 | C: 5 7 9 25 29 |

+0 +2 +3 +3

3 5 7 8 9 12 20

Total = 8
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{ccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cccccc}
+0 & +2 & +3 & +3 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 \\
\end{array}
\]

total $= 8$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

$\text{total} = 8$

B: 3 8 12 20 32 48

C: 5 7 9 25 29

+0 +2 +3 +3

3 5 7 8 9 12 20 25
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \[\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}\] \[\text{total} = 8\]

C: \[\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}\]

\[\begin{array}{cccccc}
+0 & +2 & +3 & +3 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 \\
\end{array}\]
Counting Inversions between \(B \) and \(C \)

Count pairs \(i, j \) such that \(B[i] > C[j] \):

\[
\begin{array}{c}
\text{B:} & 3 & 8 & 12 & 20 & 32 & 48 \\
\text{C:} & 5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

Total = 8

\[
\begin{array}{c}
+0 & +2 & +3 & +3 \\
\end{array}
\]

\[
\begin{array}{cccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}
\]
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\text{total} = 8
\]

\[
\begin{array}{cccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 \\
\end{array}
\]

+0 +2 +3 +3
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

Total = 13
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48
total = 13

C: 5 7 9 25 29

+0 +2 +3 +3 +5

3 5 7 8 9 12 20 25 29 32
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: \begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}$

C: \begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}$

$\text{total} = 18$

\begin{array}{ccccccc}
+0 & +2 & +3 & +3 & +5 & +5 \\
\end{array}$

\begin{array}{cccccccccccc}
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48 \\
\end{array}$
Counting Inversions between B and C

Count pairs i, j such that $B[i] > C[j]$:

B: 3 8 12 20 32 48

C: 5 7 9 25 29

\[\text{total} = 18 \]
Count Inversions between B and C

- Procedure that merges B and C and counts inversions between B and C at the same time

```plaintext
merge-and-count(\(B, C, n_1, n_2\))

1. count \(\leftarrow 0\);
2. \(A \leftarrow []\); \(i \leftarrow 1\); \(j \leftarrow 1\)
3. while \(i \leq n_1\) or \(j \leq n_2\)
4.   if \(j > n_2\) or \((i \leq n_1\) and \(B[i] \leq C[j]\)) then
5.     append \(B[i]\) to \(A\); \(i \leftarrow i + 1\)
6.     \(count \leftarrow count + (j - 1)\)
7.   else
8.     append \(C[j]\) to \(A\); \(j \leftarrow j + 1\)
9. return \((A, count)\)
```
Sort and Count Inversions in A

- A procedure that returns the sorted array of A and counts the number of inversions in A:

\[
\text{sort-and-count}(A, n)
\]

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor)$
5. $(C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$
A procedure that returns the sorted array of \(A \) and counts the number of inversions in \(A \):

\[
\text{sort-and-count}(A, n)
\]

1. if \(n = 1 \) then

2. return \((A, 0)\)

3. else

4. \((B, m_1) \leftarrow \text{sort-and-count}(A[1..\lceil n/2 \rceil], \lfloor n/2 \rfloor)\)

5. \((C, m_2) \leftarrow \text{sort-and-count}(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil)\)

6. \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)

7. return \((A, m_1 + m_2 + m_3)\)

- Divide: trivial
- Conquer: 4, 5
- Combine: 6, 7
sort-and-count(A, n)

1. if $n = 1$ then
2. return $(A, 0)$
3. else
4. $(B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)$
5. $(C, m_2) \leftarrow \text{sort-and-count}\left(A[\lceil n/2 \rceil + 1..n], \lceil n/2 \rceil\right)$
6. $(A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)$
7. return $(A, m_1 + m_2 + m_3)$

- Recurrence for the running time: $T(n) = 2T(n/2) + O(n)$
sort-and-count\((A, n)\)

1. if \(n = 1\) then

 return \((A, 0)\)

2. else

 \((B, m_1) \leftarrow \text{sort-and-count}\left(A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor\right)\)

3. \((C, m_2) \leftarrow \text{sort-and-count}\left(A[\lfloor n/2 \rfloor + 1..n], \lceil n/2 \rceil\right)\)

4. \((A, m_3) \leftarrow \text{merge-and-count}(B, C, \lfloor n/2 \rfloor, \lceil n/2 \rceil)\)

5. return \((A, m_1 + m_2 + m_3)\)

- Recurrence for the running time: \(T(n) = 2T(n/2) + O(n)\)
- Running time = \(O(n \lg n)\)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
<table>
<thead>
<tr>
<th>Divide</th>
<th>Merge Sort</th>
<th>Quicksort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Trivial</td>
<td>Merge 2 sorted arrays</td>
<td>Separate small and big numbers</td>
</tr>
<tr>
<td>Recurse</td>
<td></td>
<td>Recurse</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trivial</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.

| 29 | 82 | 75 | 64 | 38 | 45 | 94 | 69 | 25 | 76 | 15 | 92 | 37 | 17 | 85 |
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

<table>
<thead>
<tr>
<th>29</th>
<th>82</th>
<th>75</th>
<th>64</th>
<th>38</th>
<th>45</th>
<th>94</th>
<th>69</th>
<th>25</th>
<th>76</th>
<th>15</th>
<th>92</th>
<th>37</th>
<th>17</th>
<th>85</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
<td>85</td>
</tr>
</tbody>
</table>
Assumption We can choose median of an array of size n in $O(n)$ time.
Assumption We can choose median of an array of size n in $O(n)$ time.

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>82</td>
<td>75</td>
<td>64</td>
<td>38</td>
<td>45</td>
<td>94</td>
<td>69</td>
<td>25</td>
<td>76</td>
<td>15</td>
<td>92</td>
<td>37</td>
<td>17</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>38</td>
<td>45</td>
<td>25</td>
<td>15</td>
<td>37</td>
<td>17</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
</tr>
</tbody>
</table>

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>15</td>
<td>17</td>
<td>29</td>
<td>38</td>
<td>45</td>
<td>37</td>
<td>64</td>
<td>82</td>
<td>75</td>
<td>94</td>
<td>92</td>
<td>69</td>
<td>76</td>
</tr>
</tbody>
</table>
quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ lower median of A
3. $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} \text{\textbackslash\textbackslash Divide}
4. $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} \text{\textbackslash\textbackslash Divide}
5. $B_L \leftarrow$ quicksort($A_L, A_L.\text{size}$) \hspace{1cm} \text{\textbackslash\textbackslash Conquer}
6. $B_R \leftarrow$ quicksort($A_R, A_R.\text{size}$) \hspace{1cm} \text{\textbackslash\textbackslash Conquer}
7. $t \leftarrow$ number of times x appear in A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R
Quicksort

\begin{algorithm}
 \textbf{quicksort}(A, n) \\
 1. if \(n \leq 1 \) then return \(A \) \\
 2. \(x \leftarrow \) lower median of \(A \) \\
 3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} \| \hspace{1cm} \text{Divide} \\
 4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} \| \hspace{1cm} \text{Divide} \\
 5. \(B_L \leftarrow \text{quicksort}(A_L, A_L.\text{size}) \) \\
 6. \(B_R \leftarrow \text{quicksort}(A_R, A_R.\text{size}) \) \\
 7. \(t \leftarrow \) number of times \(x \) appear \(A \) \\
 8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
\end{algorithm}

- Recurrence \(T(n) \leq 2T(n/2) + O(n) \)
Quicksort

quicksort(A, n)

1. if $n \leq 1$ then return A

2. $x \leftarrow$ lower median of A

3. $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} D\hspace{1cm} D

4. $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} D\hspace{1cm} D

5. $B_L \leftarrow$ quicksort(A_L, A_L.size) \hspace{1cm} C\hspace{1cm} C

6. $B_R \leftarrow$ quicksort(A_R, A_R.size) \hspace{1cm} C\hspace{1cm} C

7. $t \leftarrow$ number of times x appear A

8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- Recurrence $T(n) \leq 2T(n/2) + O(n)$
- Running time $= O(n \log n)$
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:

1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
Assumption We can choose median of an array of size n in $O(n)$ time.

Q: How to remove this assumption?

A:
1. There is an algorithm to find median in $O(n)$ time, using divide-and-conquer (we shall not talk about it; it is complicated and not practical)
2. Choose a pivot randomly and pretend it is the median (it is practical)
Quicksort Using A Random Pivot

quicksort(A, n)

1. if \(n \leq 1 \) then return \(A \)
2. \(x \leftarrow \) a random element of \(A \) (\(x \) is called a pivot)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \hspace{1cm} || \hspace{1cm} Divide
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \hspace{1cm} || \hspace{1cm} Divide
5. \(B_L \leftarrow \) quicksort(\(A_L, A_L.size \)) \hspace{1cm} || \hspace{1cm} Conquer
6. \(B_R \leftarrow \) quicksort(\(A_R, A_R.size \)) \hspace{1cm} || \hspace{1cm} Conquer
7. \(t \leftarrow \) number of times \(x \) appear \(A \)
8. return the array obtained by concatenating \(B_L \), the array containing \(t \) copies of \(x \), and \(B_R \)
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?
Assumption There is a procedure to produce a random real number in $[0, 1]$.

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!
Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
Randomized Algorithm Model

Assumption There is a procedure to produce a random real number in \([0, 1]\).

Q: Can computers really produce random numbers?

A: No! The execution of a computer programs is deterministic!

- In practice: use pseudo-random-generator, a deterministic algorithm returning numbers that “look like” random
- In theory: make the assumption
Quicksort Using A Random Pivot

Quicksort(A, n)

1. if $n \leq 1$ then return A
2. $x \leftarrow$ a random element of A (x is called a pivot)
3. $A_L \leftarrow$ elements in A that are less than x \hspace{1cm} \text{\textbackslash \\ Divide}
4. $A_R \leftarrow$ elements in A that are greater than x \hspace{1cm} \text{\textbackslash \\ Divide}
5. $B_L \leftarrow$ quicksort(A_L, A_L.size) \hspace{1cm} \text{\textbackslash \\ Conquer}
6. $B_R \leftarrow$ quicksort(A_R, A_R.size) \hspace{1cm} \text{\textbackslash \\ Conquer}
7. $t \leftarrow$ number of times x appear in A
8. return the array obtained by concatenating B_L, the array containing t copies of x, and B_R

- When we talk about randomized algorithm in the future, we show that the expected running time of the algorithm is $O(n \lg n)$.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
29  82  75  64  38  45  94  69  25  76  15  92  37  17  85
```
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

26/73
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” **extra** space.

\[
i \quad 17 \quad 64 \quad i \quad 82 \quad j \quad 85
\]

To partition the array into two parts, we only need \(O(1)\) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  75  29  38  45  94  69  25  76  15  92  64  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17  37  75  29  38  45  94  69  25  76  15  92  64  82  85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

![Array for in-place sorting](image)

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

```
17 37 15 29 38 45 94 69 25 76 64 92 75 82 85
```

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

![Array partition with indices i and j]
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

\[
\begin{array}{cccccccccccc}
17 & 37 & 15 & 29 & 38 & 45 & 64 & 69 & 25 & 76 & 94 & 92 & 75 & 82 & 85 \\
\end{array}
\]

To partition the array into two parts, we only need \(O(1) \) extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- In-Place Sorting Algorithm: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

- **In-Place Sorting Algorithm**: an algorithm that only uses “small” extra space.

To partition the array into two parts, we only need $O(1)$ extra space.
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

partition(A, ℓ, r)

1. $p \leftarrow$ random integer between ℓ and r
2. swap $A[p]$ and $A[\ell]$
3. $i \leftarrow \ell$, $j \leftarrow r$
4. while $i < j$ do
 5. while $i < j$ and $A[i] \leq A[j]$ do $j \leftarrow j - 1$
 6. swap $A[i]$ and $A[j]$
 7. while $i < j$ and $A[i] \leq A[j]$ do $i \leftarrow i + 1$
 8. swap $A[i]$ and $A[j]$
5. return i
Quicksort Can Be Implemented as an “In-Place” Sorting Algorithm

To sort an array A of size n, call quicksort$(A, 1, n)$.

Note: We pass the array A by reference, instead of by copying.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

```plaintext
3 8 12 20 32 48
5 7 9 25 29
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
To merge two arrays, we need a third array with size equaling the total size of two arrays.

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \\
3 & & & & & \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays

3 8 12 20 32 48
5 7 9 25 29
3
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5
```
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5
\end{array}
\]
To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 & \\
3 & 5 & 7 & \\
\end{array}
\]
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8
```
Merge-Sort is Not In-Place

To merge two arrays, we need a third array with size equaling the total size of two arrays.
Merge-Sort is Not In-Place

- To merge two arrays, we need a third array with size equaling the total size of two arrays.

\[
\begin{array}{cccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}
\]
Outline

1 Divide-and-Conquer
2 Counting Inversions
3 Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4 Polynomial Multiplication
5 Other Classic Algorithms using Divide-and-Conquer
6 Solving Recurrences
7 Computing \(n\)-th Fibonacci Number
Q: Can we do better than $O(n \log n)$ for sorting?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

Comparison-Based Sorting Algorithms

- To sort, we are only allowed to compare two elements
- We can not use “internal structures” of the elements
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \log n)$.

Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$. You can ask Bob "yes/no" questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

$x = 1?$
$x \leq 2?$
$x = 3?$
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \ldots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.
Lemma The (worst-case) running time of any comparison-based sorting algorithm is $\Omega(n \lg n)$.

- Bob has one number x in his hand, $x \in \{1, 2, 3, \cdots, N\}$.
- You can ask Bob “yes/no” questions about x.

Q: How many questions do you need to ask Bob in order to know x?

A: $\lceil \log_2 N \rceil$.

```
x = 1?
1
2

x = 2?
x = 3?
3
4
```
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \cdots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?
Comparison-Based Sorting Algorithms

Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over \{1, 2, 3, \ldots, n\} in his hand.
- You can ask Bob “yes/no” questions about π.

Q: How many questions do you need to ask in order to get the permutation π?

A: $\log_2 n! = \Theta(n \log n)$
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?
Q: Can we do better than $O(n \log n)$ for sorting?

A: No, for comparison-based sorting algorithms.

- Bob has a permutation π over $\{1, 2, 3, \ldots, n\}$ in his hand.
- You can ask Bob questions of the form “does i appear before j in π?”

Q: How many questions do you need to ask in order to get the permutation π?

A: At least $\log_2 n! = \Theta(n \lg n)$.
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
Selection Problem

Input: a set A of n numbers, and $1 \leq i \leq n$

Output: the i-th smallest number in A

- Sorting solves the problem in time $O(n \lg n)$.
- Our goal: $O(n)$ running time
Recall: Quicksort with Median Finder

quicksort\((A, n)\)

1. if \(n \leq 1\) then return \(A\)
2. \(x \leftarrow\) lower median of \(A\)
3. \(A_L \leftarrow\) elements in \(A\) that are less than \(x\) \(\text{// Divide}\)
4. \(A_R \leftarrow\) elements in \(A\) that are greater than \(x\) \(\text{// Divide}\)
5. \(B_L \leftarrow\) quicksort\((A_L, A_L.\text{size})\) \(\text{// Conquer}\)
6. \(B_R \leftarrow\) quicksort\((A_R, A_R.\text{size})\) \(\text{// Conquer}\)
7. \(t \leftarrow\) number of times \(x\) appear \(A\)
8. return the array obtained by concatenating \(B_L\), the array containing \(t\) copies of \(x\), and \(B_R\)
selection(A, n, i)

1. if $n = 1$ then return A

2. $x \leftarrow$ lower median of A

3. $A_L \leftarrow$ elements in A that are less than x

4. $A_R \leftarrow$ elements in A that are greater than x

5. if $i \leq A_L$.size then

6. return selection(A_L, A_L.size, i)

7. elseif $i > n - A_R$.size then

8. return select(A_R, A_R.size, $i - (n - A_R$.size))

9. else return x
Selection Algorithm with Median Finder

selection(*A, n, i*)

1. if *n* = 1 then return *A*
2. \(x \leftarrow \) lower median of *A*
3. \(A_L \leftarrow \) elements in *A* that are less than *x* \(\backslash \backslash \) Divide
4. \(A_R \leftarrow \) elements in *A* that are greater than *x* \(\backslash \backslash \) Divide
5. if *i* \(\leq \) \(A_L \).size then
 6. return selection(*A_L, A_L\.size, i*) \(\backslash \backslash \) Conquer
7. elseif *i* > \(n - A_R \).size then
 8. return select(*A_R, A_R\.size, i - (n - A_R\.size)) \(\backslash \backslash \) Conquer
9. else return *x*

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
Selection Algorithm with Median Finder

selection\((A, n, i) \)

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \) lower median of \(A \)
3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \)
4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \)
5. if \(i \leq A_L.\text{size} \) then
 6. return \(\text{selection}(A_L, A_L.\text{size}, i) \)
5. elseif \(i > n - A_R.\text{size} \) then
 7. return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \)
9. else return \(x \)

- Recurrence for selection: \(T(n) = T(n/2) + O(n) \)
- Solving recurrence: \(T(n) = O(n) \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i)\]

1. if \(n = 1 \) then return \(A \)

2. \(x \leftarrow \) random element of \(A \) (called pivot)

3. \(A_L \leftarrow \) elements in \(A \) that are less than \(x \) \quad \| \quad \text{Divide}

4. \(A_R \leftarrow \) elements in \(A \) that are greater than \(x \) \quad \| \quad \text{Divide}

5. if \(i \leq A_L.\text{size} \) then

6. return \(\text{selection}(A_L, A_L.\text{size}, i) \) \quad \| \quad \text{Conquer}

7. elseif \(i > n - A_R.\text{size} \) then

8. return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \quad \| \quad \text{Conquer}

9. else return \(x \)
Randomized Selection Algorithm

\[\text{selection}(A, n, i) \]

1. if \(n = 1 \) then return \(A \)
2. \(x \leftarrow \text{random element of } A \) (called pivot)
3. \(A_L \leftarrow \text{elements in } A \text{ that are less than } x \) \hspace{1cm} \| Divide
4. \(A_R \leftarrow \text{elements in } A \text{ that are greater than } x \) \hspace{1cm} \| Divide
5. if \(i \leq A_L.\text{size} \) then
6. \hspace{1cm} return \(\text{selection}(A_L, A_L.\text{size}, i) \) \hspace{1cm} \| Conquer
7. elseif \(i > n - A_R.\text{size} \) then
8. \hspace{1cm} return \(\text{select}(A_R, A_R.\text{size}, i - (n - A_R.\text{size})) \) \hspace{1cm} \| Conquer
9. else return \(x \)

\bullet \text{ expected running time } = O(n)\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20 = 6x^6 - 9x^5 + 18x^4 - 15x^3 + 4x^5 - 6x^4 + 12x^3 - 10x^2 - 10x^4 + 15x^3 - 30x^2 + 25x + 8x^3 - 12x^2 + 24x - 20$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

$$(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5)$$
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]
Polynomial Multiplication

Input: two polynomials of degree $n - 1$

Output: product of two polynomials

Example:

\[
(3x^3 + 2x^2 - 5x + 4) \times (2x^3 - 3x^2 + 6x - 5) \\
= 6x^6 - 9x^5 + 18x^4 - 15x^3 \\
+ 4x^5 - 6x^4 + 12x^3 - 10x^2 \\
- 10x^4 + 15x^3 - 30x^2 + 25x \\
+ 8x^3 - 12x^2 + 24x - 20 \\
= 6x^6 - 5x^5 + 2x^4 + 20x^3 - 52x^2 + 49x - 20
\]

- **Input:** $(4, -5, 2, 3), (-5, 6, -3, 2)$
- **Output:** $(-20, 49, -52, 20, 2, -5, 6)$
polynomial-multiplication\((A, B, n)\)

1. let \(C[k] = 0\) for every \(k = 0, 1, 2, \cdots, 2n - 2\)
2. for \(i \leftarrow 0\) to \(n - 1\)
3. for \(j \leftarrow 0\) to \(n - 1\)
4. \(C[i + j] \leftarrow C[i + j] + A[i] \times B[j]\)
5. return \(C\)
Naïve Algorithm

polynomial-multiplication(A, B, n)

1. let $C[k] = 0$ for every $k = 0, 1, 2, \cdots, 2n - 2$
2. for $i \leftarrow 0$ to $n - 1$
3. \hspace{1em} for $j \leftarrow 0$ to $n - 1$
4. \hspace{2em} $C[i + j] \leftarrow C[i + j] + A[i] \times B[j]$
5. return C

Running time: $O(n^2)$
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[p(x) = 3x^3 + 2x^2 - 5x + 4 = (3x + 2)x^2 + (-5x + 4) \]
\[q(x) = 2x^3 - 3x^2 + 6x - 5 = (2x - 3)x^2 + (6x - 5) \]

- \(p(x) \): degree of \(n - 1 \) (assume \(n \) is even)
- \(p(x) = p_H(x)x^{n/2} + p_L(x) \),
- \(p_H(x), p_L(x) \): polynomials of degree \(n/2 - 1 \).

\[
pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L)
= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L
\]
\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]
\[\begin{align*}
 pq &= (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \\
 &= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L
\end{align*} \]

\[\begin{align*}
 \text{multiply}(p, q) &= \text{multiply}(p_H, q_H) \times x^n \\
 &\quad + (\text{multiply}(p_H, q_L) + \text{multiply}(p_L, q_H)) \times x^{n/2} \\
 &\quad + \text{multiply}(p_L, q_L)
\end{align*} \]
Divide-and-Conquer for Polynomial Multiplication

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H)x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n \]
\[+ (multiply(p_H, q_L) + multiply(p_L, q_H)) \times x^{n/2} \]
\[+ multiply(p_L, q_L) \]

- Recurrence: \(T(n) = 4T(n/2) + O(n) \)
\[pq = (p_H x^{n/2} + p_L) (q_H x^{n/2} + q_L) = p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[
multiply(p, q) = multiply(p_H, q_H) \times x^n + \left(multiply(p_H, q_L) + multiply(p_L, q_H) \right) \times x^{n/2} + multiply(p_L, q_L)\]

- **Recurrence:** \(T(n) = 4T(n/2) + O(n) \)
- \(T(n) = O(n^2) \)
Reduce Number from 4 to 3

\[pq = \left(p_H x n/2 + p_L \right) \left(q_H x n/2 + q_L \right) = p_H q_H x n + \left(p_H q_L + p_L q_H \right) x n/2 + p_L q_L = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Reduce Number from 4 to 3

\[pq = \left(p_H x^{n/2} + p_L \right) \left(q_H x^{n/2} + q_L \right) \]
\[= p_H q_H x^n + \left(p_H q_L + p_L q_H \right) x^{n/2} + p_L q_L \]
Reduce Number from 4 to 3

\[pq = (p_H x^{n/2} + p_L)(q_H x^{n/2} + q_L) \]
\[= p_H q_H x^n + (p_H q_L + p_L q_H) x^{n/2} + p_L q_L \]

\[p_H q_L + p_L q_H = (p_H + p_L)(q_H + q_L) - p_H q_H - p_L q_L \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]

\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n + (\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L) \times x^{n/2} + r_L \]

Solving Recurrence:

\[T(n) = 3T(n/2) + O(n) \]

\[T(n) = O(n \log_3 n) = O(n^{1.585}) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n \\
+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \\
+ r_L
\]
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[\text{multiply}(p, q) = r_H \times x^n \]
\[+ \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} \]
\[+ r_L \]

- Solving Recurrence: \(T(n) = 3T(n/2) + O(n) \)
Divide-and-Conquer for Polynomial Multiplication

\[r_H = \text{multiply}(p_H, q_H) \]
\[r_L = \text{multiply}(p_L, q_L) \]

\[
\text{multiply}(p, q) = r_H \times x^n + \left(\text{multiply}(p_H + p_L, q_H + q_L) - r_H - r_L \right) \times x^{n/2} + r_L
\]

- **Solving Recurrence:** \(T(n) = 3T(n/2) + O(n) \)
- \(T(n) = O(n^{\log_2 3}) = O(n^{1.585}) \)
Assumption \(n \) is a power of 2. Arrays are 0-indexed.

\[
\text{multiply}(A, B, n)
\]

1. if \(n = 1 \) then return \((A[0]B[0])\)
2. \(A_L \leftarrow A[0..n/2-1], A_H \leftarrow A[n/2..n-1] \)
3. \(B_L \leftarrow B[0..n/2-1], B_H \leftarrow B[n/2..n-1] \)
4. \(C_L \leftarrow \text{multiply}(A_L, B_L, n/2) \)
5. \(C_H \leftarrow \text{multiply}(A_H, B_H, n/2) \)
6. \(C_M \leftarrow \text{multiply}(A_L + A_H, B_L + B_H, n/2) \)
7. \(C \leftarrow \text{array of } (2n-1) \text{ 0's} \)
8. for \(i \leftarrow 0 \) to \(n - 2 \) do
9. \(C[i] \leftarrow C[i] + C_L[i] \)
10. \(C[i+n] \leftarrow C[i+n] + C_H[i] \)
11. \(C[i+n/2] \leftarrow C[i+n/2] + C_M[i] - C_L[i] - C_H[i] \)
12. return \(C \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
- Closest pair
- Convex hull
- Matrix multiplication
- FFT (Fast Fourier Transform): polynomial multiplication in $O(n \lg n)$ time
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)\)

Output: the pair of points that are closest
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n) \)

Output: the pair of points that are closest

- Trivial algorithm: \(O(n^2) \) running time
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line.
- **Conquer**: Solve two sub-instances recursively.
Divide-and-Conquer Algorithm for Closest Pair

- **Divide**: Divide the points into two halves via a vertical line
- **Conquer**: Solve two sub-instances recursively
- **Combine**: Check if there is a closer pair between left-half and right-half
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair

For each point, only need to consider $O(1)$ boxes nearby
time for combine = $O(n)$ (many technicalities omitted)

Recurrence:

$$T(n) = 2T(n/2) + O(n)$$

Running time:

$O(n \lg n)$
Divide-and-Conquer Algorithm for Closest Pair

Each box contains at most one pair
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Each box contains at most one pair
For each point, only need to consider $O(1)$ boxes nearby
Time for combine $= O(n)$ (many technicalities omitted)
Divide-and-Conquer Algorithm for Closest Pair

- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine = $O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Each box contains at most one pair
- For each point, only need to consider $O(1)$ boxes nearby
- time for combine $= O(n)$ (many technicalities omitted)
- Recurrence: $T(n) = 2T(n/2) + O(n)$
- Running time: $O(n \lg n)$
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \lg n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
$O(n \log n)$-Time Algorithm for Convex Hull
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$
Matrix Multiplication

Input: two $n \times n$ matrices A and B

Output: $C = AB$

Naive Algorithm: \texttt{matrix-multiplication}(A, B, n)

1. for $i \leftarrow 1$ to n
2. \hspace{1em} for $j \leftarrow 1$ to n
3. \hspace{2em} $C[i, j] \leftarrow 0$
4. \hspace{1em} for $k \leftarrow 1$ to n
5. \hspace{2em} $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C
Strassen’s Algorithm for Matrix Multiplication

Matrix Multiplication

Input: two $n \times n$ matrices A and B
Output: $C = AB$

Naive Algorithm: matrix-multiplication(A, B, n)

1. for $i \leftarrow 1$ to n
2. for $j \leftarrow 1$ to n
3. $C[i, j] \leftarrow 0$
4. for $k \leftarrow 1$ to n
5. $C[i, j] \leftarrow C[i, j] + A[i, k] \times B[k, j]$
6. return C

- running time $= O(n^3)$
Try to Use Divide-and-Conquer

\[A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix} \]

\[C = \begin{pmatrix} a_{11}b_{11} + a_{12}b_{21} & a_{11}b_{12} + a_{12}b_{22} \\ a_{21}b_{11} + a_{22}b_{21} & a_{21}b_{12} + a_{22}b_{22} \end{pmatrix} \]

- matrix_multiplication(A, B) recursively calls
 - matrix_multiplication(A_{11}, B_{11}),
 - matrix_multiplication(A_{12}, B_{21}),
 ...
Try to Use Divide-and-Conquer

\[
A = \begin{pmatrix}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{pmatrix}
\]

\[
B = \begin{pmatrix}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{pmatrix}
\]

\[
C = \begin{pmatrix}
A_{11}B_{11} + A_{12}B_{21} & A_{11}B_{12} + A_{12}B_{22} \\
A_{21}B_{11} + A_{22}B_{21} & A_{21}B_{12} + A_{22}B_{22}
\end{pmatrix}
\]

- \text{matrix_multiplication}(A, B) recursively calls \text{matrix_multiplication}(A_{11}, B_{11}), \text{matrix_multiplication}(A_{12}, B_{21}), \ldots

- Recurrence for running time: \(T(n) = 8T(n/2) + O(n^2)\)
- \(T(n) = O(n^3)\)
Strassen’s Algorithm

- \[T(n) = 8T(n/2) + O(n^2) \]
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \[T(n) = 7T(n/2) + O(n^2) \]
Strassen’s Algorithm

- \(T(n) = 8T(n/2) + O(n^2) \)
- Strassen’s Algorithm: improve the number of multiplications from 8 to 7!
- New recurrence: \(T(n) = 7T(n/2) + O(n^2) \)
- Solving Recurrence \(T(n) = O(n^{\log_2 7}) = O(n^{2.808}) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Methods for Solving Recurrences

- The recursion-tree method
- The master theorem
Recursion-Tree Method

\[T(n) = 2T(n/2) + O(n) \]
$T(n) = 2T(n/2) + O(n)$
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\log n) \) levels
Recursion-Tree Method

- \(T(n) = 2T(n/2) + O(n) \)

Each level takes running time \(O(n) \)

There are \(O(\lg n) \) levels

Running time = \(O(n \lg n) \)
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

- Total running time at level i?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)

- Index of last level?
Recursion-Tree Method

- $T(n) = 3T(n/2) + O(n)$

Diagram:

- Total running time at level i: $\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n$
- Index of last level: $\lg_2 n$

Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2}\right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\frac{n}{2^i} \times 3^i = \left(\frac{3}{2} \right)^i n \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{2} \right)^i n = O \left(n \left(\frac{3}{2} \right)^{\lg_2 n} \right) = O(3^{\lg_2 n}) = O(n^{\lg_2 3}).
\]
Recursion-Tree Method

\[T(n) = 3T(n/2) + O(n^2) \]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

\[
\begin{array}{c}
n^2 \\
\end{array}
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)
$T(n) = 3T(n/2) + O(n^2)$
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)?

\[
T(n) = \sum_{i=0}^{\log_2 n} \left(\frac{n}{2} \right)^{2i} \cdot 3^i = \Theta(n^2)
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

![Recursion Tree Diagram]

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \): \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)?: \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)

- Index of last level?: \(\lg_2 n \)
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 =
\]
Recursion-Tree Method

- \(T(n) = 3T(n/2) + O(n^2) \)

- Total running time at level \(i \)? \(\left(\frac{n}{2^i} \right)^2 \times 3^i = \left(\frac{3}{4} \right)^i n^2 \)
- Index of last level? \(\lg_2 n \)
- Total running time?

\[
\sum_{i=0}^{\lg_2 n} \left(\frac{3}{4} \right)^i n^2 = O(n^2).
\]
Master Theorem

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td></td>
<td></td>
<td></td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\log_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td></td>
<td></td>
<td></td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem \[T(n) = aT(n/b) + O(n^c), \text{ where } a \geq 1, b > 1, c \geq 0 \] are constants. Then,

\[T(n) = \begin{cases}
\text{if } c < \lg_b a \\
\text{if } c = \lg_b a \\
\text{if } c > \lg_b a
\end{cases} \]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
?? & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg 2^3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem
\(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n \lg_b a) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^2) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
?? & \text{if } c = \lg_b a \\
?? & \text{if } c > \lg_b a
\end{cases}$$
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>(a)</th>
<th>(b)</th>
<th>(c)</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T(n) = 2T(n/2) + O(n))</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(O(n \lg n))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n))</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>(O(n^{\lg_2 3}))</td>
</tr>
<tr>
<td>(T(n) = 3T(n/2) + O(n^2))</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>(O(n^2))</td>
</tr>
</tbody>
</table>

Theorem \(T(n) = aT(n/b) + O(n^c)\), where \(a \geq 1, b > 1, c \geq 0\) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
? & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]
Master Theorem

<table>
<thead>
<tr>
<th>Recurrences</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>time</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T(n) = 2T(n/2) + O(n)$</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>$O(n \lg n)$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n)$</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>$O(n^{\lg_2 3})$</td>
</tr>
<tr>
<td>$T(n) = 3T(n/2) + O(n^2)$</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>$O(n^2)$</td>
</tr>
</tbody>
</table>

Theorem

$T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}$$
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}
\]

Ex: \(T(n) = 4T(n/2) + O(n^2) \). Which Case?
Theorem: \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2.
Theorem
\[T(n) = aT(n/b) + O(n^c), \]
where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases} \]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \log n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, \ b > 1, \ c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2.
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg b \ a}) & \text{if } c < \lg b \ a \\
O(n^c \ lg n) & \text{if } c = \lg b \ a \\
O(n^c) & \text{if } c > \lg b \ a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \ lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg 2 \ 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- **Ex:** \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- **Ex:** \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- **Ex:** \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- **Ex:** \(T(n) = 2T(n/2) + O(n^2) \). Which Case?
Theorem \(T(n) = aT(n/b) + O(n^c) \), where \(a \geq 1, b > 1, c \geq 0 \) are constants. Then,

\[
T(n) = \begin{cases}
O(n^{\lg_b a}) & \text{if } c < \lg_b a \\
O(n^c \lg n) & \text{if } c = \lg_b a \\
O(n^c) & \text{if } c > \lg_b a
\end{cases}
\]

- Ex: \(T(n) = 4T(n/2) + O(n^2) \). Case 2. \(T(n) = O(n^2 \lg n) \)
- Ex: \(T(n) = 3T(n/2) + O(n) \). Case 1. \(T(n) = O(n^{\lg_2 3}) \)
- Ex: \(T(n) = T(n/2) + O(1) \). Case 2. \(T(n) = O(\lg n) \)
- Ex: \(T(n) = 2T(n/2) + O(n^2) \). Case 3.
Theorem $T(n) = aT(n/b) + O(n^c)$, where $a \geq 1$, $b > 1$, $c \geq 0$ are constants. Then,

$$T(n) = \begin{cases}
O(n^{\log_b a}) & \text{if } c < \log_b a \\
O(n^c \log n) & \text{if } c = \log_b a \\
O(n^c) & \text{if } c > \log_b a
\end{cases}$$

- Ex: $T(n) = 4T(n/2) + O(n^2)$. Case 2. $T(n) = O(n^2 \log n)$
- Ex: $T(n) = 3T(n/2) + O(n)$. Case 1. $T(n) = O(n^{\log_2 3})$
- Ex: $T(n) = T(n/2) + O(1)$. Case 2. $T(n) = O(\log n)$
- Ex: $T(n) = 2T(n/2) + O(n^2)$. Case 3. $T(n) = O(n^2)$
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

\[
\begin{align*}
&1 \text{ node} \\
&\quad \quad n^c \\
&a \text{ nodes} \\
&\quad \quad (n/b)^c \\
&a^2 \text{ nodes} \\
&\quad \quad (n/b^2)^c \\
&a^3 \text{ nodes} \\
&\quad \quad (n/b^3)^c \quad \quad (n/b^3)^c \quad \quad (n/b^3)^c \quad \quad (n/b^3)^c
\end{align*}
\]
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT\left(\frac{n}{b}\right) + O(n^c) \]

1 node

\[n^c \]

\[a \] nodes

\[(n/b)^c \]

\[\frac{a}{b^c}n^c \]

\[a^2 \] nodes

\[(n/b^2)^c \]

\[\frac{(a/b)^2}{b^c}n^c \]

\[a^3 \] nodes

\[\left(\frac{n}{b^3}\right)^c \]

\[\left(\frac{n}{b^3}\right)^c \]
Proof of Master Theorem Using Recursion Tree

$T(n) = aT(n/b) + O(n^c)$

- $c < \lg_b a$: bottom-level dominates: $\left(\frac{a}{b^c}\right)^{\lg_b n} n^c = n^{\lg_b a}$
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- 1 node
- \(a \) nodes
- \(a^2 \) nodes
- \(a^3 \) nodes

\[\begin{align*}
1 \text{ node} & : n^c \\
 a \text{ nodes} & : (n/b)^c \\
 a^2 \text{ nodes} & : (n/b^2)^c \\
 a^3 \text{ nodes} & : (n/b^3)^c
\end{align*} \]

- \(c < \lg_b a \) : bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)
- \(c = \lg_b a \) : all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)
Proof of Master Theorem Using Recursion Tree

\[T(n) = aT(n/b) + O(n^c) \]

- **1 node**

 \[n^c \]

- **a nodes**

 \[(n/b)^c \]

- **a^2 nodes**

 \[(n/b^2)^c \]

- **a^3 nodes**

 \[\ldots \]

 \[\ldots \]

 \[\ldots \]

- **c < \lg_b a**: bottom-level dominates: \(\left(\frac{a}{b^c} \right)^{\lg_b n} n^c = n^{\lg_b a} \)

- **c = \lg_b a**: all levels have same time: \(n^c \lg_b n = O(n^c \lg n) \)

- **c > \lg_b a**: top-level dominates: \(O(n^c) \)
Outline

1. Divide-and-Conquer
2. Counting Inversions
3. Quicksort and Selection
 - Quicksort
 - Lower Bound for Comparison-Based Sorting Algorithms
 - Selection Problem
4. Polynomial Multiplication
5. Other Classic Algorithms using Divide-and-Conquer
6. Solving Recurrences
7. Computing n-th Fibonacci Number
Fibonacci Numbers

- \(F_0 = 0, F_1 = 1 \)
- \(F_n = F_{n-1} + F_{n-2}, \forall n \geq 2 \)
- Fibonacci sequence: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, \ldots

n-th Fibonacci Number

Input: integer \(n > 0 \)

Output: \(F_n \)
Computing F_n : Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential
Computing F_n: Stupid Divide-and-Conquer Algorithm

\[\text{Fib}(n) \]

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib$(n – 1) + \text{Fib}(n – 2)$

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
Computing F_n: Stupid Divide-and-Conquer Algorithm

Fib(n)

1. if $n = 0$ return 0
2. if $n = 1$ return 1
3. return Fib($n - 1$) + Fib($n - 2$)

Q: Is the running time of the algorithm polynomial or exponential in n?

A: Exponential

- Running time is at least $\Omega(F_n)$
- F_n is exponential in n
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
 4. $F[i] \leftarrow F[i - 1] + F[i - 2]$
4. return $F[n]$

- Dynamic Programming
- Running time = ?
Computing F_n: Reasonable Algorithm

Fib(n)

1. $F[0] \leftarrow 0$
2. $F[1] \leftarrow 1$
3. for $i \leftarrow 2$ to n do
4. \hspace{1em} $F[i] \leftarrow F[i - 1] + F[i - 2]$
5. return $F[n]$

- Dynamic Programming
- Running time = $O(n)$
Computing F_n: Even Better Algorithm

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}
\begin{pmatrix}
F_{n-1} \\
F_{n-2}
\end{pmatrix}
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^2
\begin{pmatrix}
F_{n-2} \\
F_{n-3}
\end{pmatrix}
\]

\[
\ldots
\]

\[
\begin{pmatrix}
F_n \\
F_{n-1}
\end{pmatrix} = \begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix}^{n-1}
\begin{pmatrix}
F_1 \\
F_0
\end{pmatrix}
\]
power(n)

1. If $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. If n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. Return R

Fib(n)

1. If $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. Return $M[1][1]$
power(n)

1. if $n = 0$ then return \[
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\]
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time?
power(n)

1. if $n = 0$ then return $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$
2. $R \leftarrow \text{power}([n/2])$
3. $R \leftarrow R \times R$
4. if n is odd then $R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$
5. return R

Fib(n)

1. if $n = 0$ then return 0
2. $M \leftarrow \text{power}(n - 1)$
3. return $M[1][1]$

- Recurrence for running time? $T(n) = T(n/2) + O(1)$
power(n)

1. if \(n = 0 \) then return \(
\begin{pmatrix}
1 & 0 \\
0 & 1
\end{pmatrix}
\)

2. \(R \leftarrow \text{power}(\lfloor n/2 \rfloor) \)

3. \(R \leftarrow R \times R \)

4. if \(n \) is odd then \(R \leftarrow R \times \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \)

5. return \(R \)

Fib(n)

1. if \(n = 0 \) then return \(0 \)

2. \(M \leftarrow \text{power}(n - 1) \)

3. return \(M[1][1] \)

- Recurrence for running time? \(T(n) = T(n/2) + O(1) \)
- \(T(n) = O(\lg n) \)
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

We cannot add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time.

Even printing $F(n)$ requires time much larger than $O(\lg n)$.

Fixing the Problem

To compute $F(n)$, we need $O(\lg n)$ basic arithmetic operations on integers.
Q: How many bits do we need to represent $F(n)$?
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
Running time = $O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$
Running time $= O(\lg n)$: We Cheated!

Q: How many bits do we need to represent $F(n)$?

A: $\Theta(n)$

- We can not add (or multiply) two integers of $\Theta(n)$ bits in $O(1)$ time
- Even printing $F(n)$ requires time much larger than $O(\lg n)$

Fixing the Problem

To compute F_n, we need $O(\lg n)$ basic arithmetic operations on integers
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
Summary: Divide-and-Conquer

- **Divide**: Divide instance into many smaller instances
- **Conquer**: Solve each of smaller instances recursively and separately
- **Combine**: Combine solutions to small instances to obtain a solution for the original big instance
- Write down recurrence for running time
- Solve recurrence using master theorem
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, · · · :
 \[T(n) = 2T\left(\frac{n}{2}\right) + O(n) \Rightarrow T(n) = O(n \lg n) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, ⋅⋅⋅:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \lg n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\lg_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\lg_2 7}) \]

Usually, designing better algorithm for "combine" step is key to improve running time.
Summary: Divide-and-Conquer

- Merge sort, quicksort, count-inversions, closest pair, \cdots:
 \[T(n) = 2T(n/2) + O(n) \Rightarrow T(n) = O(n \log n) \]

- Integer Multiplication:
 \[T(n) = 3T(n/2) + O(n) \Rightarrow T(n) = O(n^{\log_2 3}) \]

- Matrix Multiplication:
 \[T(n) = 7T(n/2) + O(n^2) \Rightarrow T(n) = O(n^{\log_2 7}) \]

- Usually, designing better algorithm for “combine” step is key to improve running time