CSE 431/531: Algorithm Analysis and Design (Spring 2018)

Graph Basics

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Graphs
2. Connectivity and Graph Traversal
 - Testing Bipartiteness
3. Topological Ordering
Examples of Graphs

Figure: Road Networks

Figure: Social Networks

Figure: Internet

Figure: Transition Graphs
(Undirected) Graph $G = (V, E)$

- V: a set of vertices (nodes);
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
(Undirected) Graph $G = (V, E)$

- V: a set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - (undirected) graphs: relationship is symmetric, E contains subsets of size 2
 - $E = \{\{1, 2\}, \{1, 3\}, \{2, 3\}, \{2, 4\}, \{2, 5\}, \{3, 5\}, \{3, 7\}, \{3, 8\}, \{4, 5\}, \{5, 6\}, \{7, 8\}\}$
Directed Graph $G = (V, E)$

- V: a set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - directed graphs: relationship is asymmetric, E contains ordered pairs
Directed Graph $G = (V, E)$

- V: a set of vertices (nodes);
 - $V = \{1, 2, 3, 4, 5, 6, 7, 8\}$
- E: pairwise relationships among V;
 - directed graphs: relationship is asymmetric, E contains ordered pairs
 - $E = \{(1, 2), (1, 3), (3, 2), (4, 2), (2, 5), (5, 3), (3, 7), (3, 8), (4, 5), (5, 6), (6, 5), (8, 7)\}$
Abuse of Notations

- For (undirected) graphs, we often use \((i, j)\) to denote the set \(\{i, j\}\).
- We call \((i, j)\) an unordered pair; in this case \((i, j) = (j, i)\).

\[E = \{(1, 2), (1, 3), (2, 3), (2, 4), (2, 5), (3, 5), (3, 7), (3, 8), (4, 5), (5, 6), (7, 8)\} \]
- Social Network: Undirected
- Transition Graph: Directed
- Road Network: Directed or Undirected
- Internet: Directed or Undirected
Adjacency matrix

- $n \times n$ matrix, $A[u, v] = 1$ if $(u, v) \in E$ and $A[u, v] = 0$ otherwise
- A is symmetric if graph is undirected
Adjacency matrix

- \(n \times n \) matrix, \(A[u, v] = 1 \) if \((u, v) \in E\) and \(A[u, v] = 0 \) otherwise
- \(A \) is symmetric if graph is undirected

Linked lists

For every vertex \(v \), there is a linked list containing all neighbours of \(v \).
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td></td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- n: number of vertices
- m: number of edges, assuming $n - 1 \leq m \leq n(n - 1)/2$
- d_v: number of neighbors of v

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>$O(n^2)$</td>
<td>$O(m)$</td>
</tr>
<tr>
<td>time to check $(u, v) \in E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>time to list all neighbours of v</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparing Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u,v) \in E)</td>
<td>(O(1))</td>
<td></td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u,v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(d_u \): number of neighbors of \(u \)
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u, v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td>(O(n))</td>
<td></td>
</tr>
</tbody>
</table>
Comparison of Two Representations

- Assuming we are dealing with undirected graphs
- \(n \): number of vertices
- \(m \): number of edges, assuming \(n - 1 \leq m \leq n(n - 1)/2 \)
- \(d_v \): number of neighbors of \(v \)

<table>
<thead>
<tr>
<th></th>
<th>Matrix</th>
<th>Linked Lists</th>
</tr>
</thead>
<tbody>
<tr>
<td>memory usage</td>
<td>(O(n^2))</td>
<td>(O(m))</td>
</tr>
<tr>
<td>time to check ((u,v) \in E)</td>
<td>(O(1))</td>
<td>(O(d_u))</td>
</tr>
<tr>
<td>time to list all neighbours of (v)</td>
<td>(O(n))</td>
<td>(O(d_v))</td>
</tr>
</tbody>
</table>
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Connectivity Problem

Input: graph \(G = (V, E) \), (using linked lists)

- two vertices \(s, t \in V \)

Output: whether there is a path connecting \(s \) to \(t \) in \(G \)
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)
two vertices $s, t \in V$

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
Connectivity Problem

Input: graph $G = (V, E)$, (using linked lists)

Output: whether there is a path connecting s to t in G

- Algorithm: starting from s, search for all vertices that are reachable from s and check if the set contains t
 - Breadth-First Search (BFS)
 - Depth-First Search (DFS)
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \ldots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Breadth-First Search (BFS)

- Build layers $L_0, L_1, L_2, L_3, \cdots$
- $L_0 = \{s\}$
- L_{j+1} contains all nodes that are not in $L_0 \cup L_1 \cup \cdots \cup L_j$ and have an edge to a vertex in L_j
Implementing BFS using a Queue

BFS(s)

1. head ← 1, tail ← 1, queue[1] ← s
2. mark s as “visited” and all other vertices as “unvisited”
3. while head ≥ tail
4. v ← queue[tail], tail ← tail + 1
5. for all neighbours u of v
6. if u is “unvisited” then
7. 7. head ← head + 1, queue[head] = u
8. mark u as “visited”

• Running time: O(n + m).
Example of BFS via Queue

1. Start at node 2.
2. Enqueue node 2.
3. Dequeue node 2 and process it.
4. Enqueue nodes 3 and 5.
5. Dequeue node 3 and process it.
6. Enqueue nodes 1 and 7.
7. Dequeue node 1 and process it.
8. Enqueue nodes 4 and 6.
9. Dequeue node 4 and process it.
10. Enqueue nodes 8 and 7.
11. Dequeue node 7 and process it.
12. Enqueue node 5.
13. Dequeue node 5 and process it.
15. Dequeue node 6 and process it.

Queue: 2, 3, 5, 8, 6, 1, 4, 7
Example of BFS via Queue

1 2 3 4 5 7 8

head

tail
Example of BFS via Queue
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex (“dead-end”), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \(s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back

![Graph Diagram]
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from \(s \)
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Depth-First Search (DFS)

- Starting from s
- Travel through the first edge leading out of the current vertex
- When reach an already-visited vertex ("dead-end"), go back
- Travel through the next edge
- If tried all edges leading out of the current vertex, go back
Implementing DFS using a Stack

DFS(s)

1. \(\text{head} \leftarrow 1, \text{stack}[1] \leftarrow s \)
2. mark all vertices as “unexplored”
3. while head \(\geq 1 \)
4. \(v \leftarrow \text{stack}[\text{head}], \text{head} \leftarrow \text{head} - 1 \)
5. if \(v \) is unexplored then
6. mark \(v \) as “explored”
7. for all neighbours \(u \) of \(v \)
8. if \(u \) is not explored then
9. \(\text{head} \leftarrow \text{head} + 1, \text{stack}[\text{head}] = u \)

- Running time: \(O(n + m) \).
Example of DFS using Stack

explored vertices:

1 2 3 4 5 7 8 6

head

1
Example of DFS using Stack

explored vertices:
Example of DFS using Stack

explored vertices: 1
Example of DFS using Stack

explored vertices: 1
Example of DFS using Stack

explored vertices: 1
Example of DFS using Stack

explored vertices: 1 2
Example of DFS using Stack

explored vertices: 1 2
Example of DFS using Stack

explored vertices: 1 2
Example of DFS using Stack

explored vertices: 1 2 3
Example of DFS using Stack

explored vertices: 1 2 3
Example of DFS using Stack

explored vertices: 1 2 3
Example of DFS using Stack

explored vertices: 1 2 3 5

head

| 3 | 5 | 4 | 8 | 7 |
Example of DFS using Stack

explored vertices: 1 2 3 5
Example of DFS using Stack

explored vertices: 1 2 3 5
Example of DFS using Stack

explored vertices: 1 2 3 5 4
Example of DFS using Stack

explored vertices: 1 2 3 5 4
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7

head

\begin{align*}
&3 \quad 5 \quad 4 \quad 8 \\
\end{align*}
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Example of DFS using Stack

explored vertices: 1 2 3 5 4 6 7 8
Implementing DFS using Recursion

DFS(s)

1. mark all vertices as “unexplored”
2. recursive-DFS(s)

recursive-DFS(v)

1. if v is explored then return
2. mark v as “explored”
3. for all neighbours u of v
4. recursive-DFS(u)
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Def. A graph $G = (V, E)$ is a bipartite graph if there is a partition of V into two sets L and R such that for every edge $(u, v) \in E$, we have either $u \in L, v \in R$ or $v \in L, u \in R$.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$

Assuming $s \in L$ w.l.o.g.

Neighbors of s must be in R

Neighbors of neighbors of s must be in L

···

Report “not a bipartite graph” if contradiction was found

If G contains multiple connected components, repeat above algorithm for each component
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R

If G contains multiple connected components, repeat above algorithm for each component.
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
Testing Bipartiteness

- Taking an arbitrary vertex \(s \in V \)
- Assuming \(s \in L \) w.l.o.g
- Neighbors of \(s \) must be in \(R \)
- Neighbors of neighbors of \(s \) must be in \(L \)
- \(\ldots \)
- Report “not a bipartite graph” if contradiction was found
Testing Bipartiteness

- Taking an arbitrary vertex $s \in V$
- Assuming $s \in L$ w.l.o.g
- Neighbors of s must be in R
- Neighbors of neighbors of s must be in L
- ...
- Report “not a bipartite graph” if contradiction was found
- If G contains multiple connected components, repeat above algorithm for each component
Test Bipartiteness

bad edges!
Testing Bipartiteness using BFS

\[\text{BFS}(s) \]

1. \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s \)
2. mark \(s \) as “visited” and all other vertices as “unvisited”
3. while \(\text{head} \geq \text{tail} \)
4. \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1 \)
5. for all neighbours \(u \) of \(v \)
6. if \(u \) is “unvisited” then
7. \(\text{head} \leftarrow \text{head} + 1, \text{queue}[\text{head}] = u \)
8. mark \(u \) as “visited”
test-bipartiteness\((s)\)

1. \(\text{head} \leftarrow 1, \text{tail} \leftarrow 1, \text{queue}[1] \leftarrow s\)
2. mark \(s\) as “visited” and all other vertices as “unvisited”
3. \(\text{color}[s] \leftarrow 0\)
4. while head \(\geq\) tail
5. \(v \leftarrow \text{queue}[\text{tail}], \text{tail} \leftarrow \text{tail} + 1\)
6. for all neighbours \(u\) of \(v\)
7. if \(u\) is “unvisited” then
8. \(\text{head} \leftarrow \text{head} + 1, \text{queue}[ext{head}] = u\)
9. mark \(u\) as “visited”
10. \(\text{color}[u] \leftarrow 1 - \text{color}[v]\)
11. elseif \(\text{color}[u] = \text{color}[v]\) then
12. print(“\(G\) is not bipartite”) and exit
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. for each vertex $v \in V$
3. if v is “unvisited” then
4. test-bipartiteness(v)
5. print(“G is bipartite”)
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. for each vertex $v \in V$
3. \hspace{1em} if v is “unvisited” then
4. \hspace{2em} test-bipartiteness(v)
5. \hspace{2em} print(“G is bipartite”)

Obs. Running time of algorithm $= O(n + m)$
Testing Bipartiteness using BFS

1. mark all vertices as “unvisited”
2. for each vertex $v \in V$
3. if v is “unvisited” then
4. test-bipartiteness(v)
5. print(“G is bipartite”)

Obs. Running time of algorithm $= O(n + m)$

Homework problem: using DFS to implement test-bipartiteness.
Outline

1. Graphs

2. Connectivity and Graph Traversal
 - Testing Bipartiteness

3. Topological Ordering
Topological Ordering Problem

Input: a directed acyclic graph (DAG) $G = (V, E)$

Output: 1-to-1 function $\pi : V \rightarrow \{1, 2, 3 \cdots, n\}$, so that

- if $(u, v) \in E$ then $\pi(u) < \pi(v)$
Topological Ordering Problem

Input: a directed acyclic graph (DAG) \(G = (V, E) \)

Output: 1-to-1 function \(\pi : V \rightarrow \{1, 2, 3 \cdots, n\} \), so that

- if \((u, v) \in E\) then \(\pi(u) < \pi(v)\)
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?
A: Use linked-lists of outgoing edges, maintain the in-degree of vertices, maintain a queue (or stack) of vertices v with $d_v = 0$.
Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?
Topological Ordering

- Algorithm: each time take a vertex without incoming edges, then remove the vertex and all its outgoing edges.

Q: How to make the algorithm as efficient as possible?

A:
- Use linked-lists of outgoing edges
- Maintain the in-degree d_v of vertices
- Maintain a queue (or stack) of vertices v with $d_v = 0$
topological-sort(G)

1. let $d_v \leftarrow 0$ for every $v \in V$
2. for every $v \in V$
 3. for every u such that $(v, u) \in E$
 4. $d_u \leftarrow d_u + 1$
5. $S \leftarrow \{v : d_v = 0\}, i \leftarrow 0$
6. while $S \neq \emptyset$
 7. $v \leftarrow$ arbitrary vertex in $S, S \leftarrow S \setminus \{v\}$
 8. $i \leftarrow i + 1, \pi(v) \leftarrow i$
 9. for every u such that $(v, u) \in E$
 10. $d_u \leftarrow d_u - 1$
11. if $d_u = 0$ then add u to S
12. if $i < n$ then output “not a DAG”

- S can be represented using a queue or a stack
- Running time = $O(n + m)$