CSE 431/531: Algorithm Analysis and Design (Spring 2018)

Introduction and Syllabus

Lecturer: Shi Li

Department of Computer Science and Engineering
University at Buffalo
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Course Webpage (contains schedule, policies, homeworks and slides):
http://www.cse.buffalo.edu/~shil/courses/CSE531/

Please sign up the course on Piazza from course webpage polls, asking/answering questions.
- **Time and location:**
 - MoWeFr, 9:00-9:50am
 - Talbert 107

- **Lecturer:**
 - Shi Li, shil@buffalo.edu
 - Office hours: TBD

- **TAs**
 - TBD
You should know:
You should know:

- Mathematical Tools
- Mathematical inductions
- Probabilities and random variables
You should know:

- **Mathematical Tools**
 - Mathematical inductions
 - Probabilities and random variables

- **Data Structures**
 - Stacks, queues, linked lists
You should know:

- **Mathematical Tools**
 - Mathematical inductions
 - Probabilities and random variables

- **Data Structures**
 - Stacks, queues, linked lists

- **Some Programming Experience**
 - E.g., C, C++, Java or Python
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree

- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree
- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement
- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming

NP-completeness
You Will Learn

- Classic algorithms for classic problems
 - Sorting
 - Shortest paths
 - Minimum spanning tree

- How to analyze algorithms
 - Correctness
 - Running time (efficiency)
 - Space requirement

- Meta techniques to design algorithms
 - Greedy algorithms
 - Divide and conquer
 - Dynamic programming
 - Linear Programming

- NP-completeness
Tentative Schedule

- Introduction, 3 lectures
- Basic Graph Algorithms, 3 lectures
- Greedy Algorithms, 6 lectures (include recitation)
- Divide and Conquer, 6 lectures (include recitation)
- In-Class Exam #1, Mar 12, 2018
- Dynamic Programming, 6 lectures (include recitation)
- Linear Programming, 6 lectures (include recitation)
- In-Class Exam #2, Apr 18, 2018
- NP-Completeness 6 lectures (include recitation)
- Final Review, 1 lecture

Exercise problems will be posted before each recitation class.
Textbook (Highly Recommended):

- **Algorithm Design**, 1st Edition, by Jon Kleinberg and Eva Tardos

Other Reference Books

Highly recommended: read the correspondent sections from the textbook (or reference book) before classes

Slides will be posted online before class
Grading

- 40% for homeworks
 - 6 homeworks, 5 of which contain programming problems
40% for homeworks
- 6 homeworks, 5 of which contain programming problems

60% for two in-class exams + final exam

\[
\max\{E_1 \times 5\% + F \times 25\%, E_1 \times 15\% + F \times 15\%\} \\
+ \max\{E_2 \times 5\% + F \times 25\%, E_2 \times 15\% + F \times 15\%\}
\]
\[
E_1, E_2, F \in [0, 100]
\]
For Homeworks, You Are Allowed to

- Use course materials (textbook, reference books, lecture notes, etc)
- Post questions on Piazza
- Ask me or TAs for hints
- Collaborate with classmates
 - Think about each problem for enough time before discussing
 - Must write down solutions on your own, in your own words
 - Write down names of students you collaborated with
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm courses
- Copy solutions from other students
For Homeworks, You Are Not Allowed to

- Use external resources
 - Can’t Google or ask questions online for solutions
 - Can’t read posted solutions from other algorithm courses
- Copy solutions from other students

If cheating is found, you will get an “F” for the course. The case will be reported to the department.
For Programming Problems

- Need to implement the algorithms by your self
- Can not copy codes from others or the Internet
For Programming Problems

- Need to implement the algorithms by your self
- Can not copy codes from others or the Internet

If cheating is found, you will get an “F” for the course. The case will be reported to the department.
Late policy

- You have one late credit
- Turn in a homework late for three days using the late credit
- No other late submissions will be accepted
Exams

- Closed-book
- Can bring one A4 handwritten sheet
Exams

- Closed-book
- Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F” for the course. The case will be reported to the department.
Exams

- Closed-book
- Can bring one A4 handwritten sheet

If you are caught cheating in exams, you will get an “F” for the course. The case will be reported to the department.

Questions?
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
What is an Algorithm?

Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.
Donald Knuth: An algorithm is a finite, definite effective procedure, with some input and some output.

Computational problem: specifies the input/output relationship.

An algorithm solves a computational problem if it produces the correct output for any given input.
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b
Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- Input: 210, 270
- Output: 30

Algorithm: Euclidean algorithm

$gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)$

$\rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$
Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:
- **Input:** 210, 270
- **Output:** 30

- Algorithm: Euclidean algorithm
Examples

Greatest Common Divisor

Input: two integers \(a, b > 0 \)

Output: the greatest common divisor of \(a \) and \(b \)

Example:

- Input: 210, 270
- Output: 30

- Algorithm: Euclidean algorithm

\[
gcd(270, 210) = gcd(210, 270 \mod 210) = gcd(210, 60)
\]
Examples

Greatest Common Divisor

Input: two integers $a, b > 0$

Output: the greatest common divisor of a and b

Example:

- **Input:** 210, 270
- **Output:** 30

- Algorithm: Euclidean algorithm
 - $\text{gcd}(270, 210) = \text{gcd}(210, 270 \mod 210) = \text{gcd}(210, 60)$
 - $(270, 210) \rightarrow (210, 60) \rightarrow (60, 30) \rightarrow (30, 0)$
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)
Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Examples

Sorting

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

- Algorithms: insertion sort, merge sort, quicksort, ...
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

![Graph Diagram]

Algorithm: Dijkstra's algorithm
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G
Examples

Shortest Path

Input: directed graph $G = (V, E)$, $s, t \in V$

Output: a shortest path from s to t in G

Algorithm: Dijkstra’s algorithm
Algorithm = Computer Program?

- Algorithm: “abstract”, can be specified using computer program, English, pseudo-codes or flow charts.
- Computer program: “concrete”, implementation of algorithm, associated with a particular programming language.
Pseudo-Code

Euclidean\((a, b)\)

1. while \(b > 0\)
2. \((a, b) \leftarrow (b, a \mod b)\)
3. return \(a\)

C++ program:

```cpp
int Euclidean(int a, int b) {
    int c;
    while (b > 0) {
        c = b;
        b = a % b;
        a = c;
    }
    return a;
}
```
Main focus: correctness, running time (efficiency)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm:

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

- Why is it important to study the running time (efficiency) of an algorithm?
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
 extensibility
 modularity
 object-oriented model
 user-friendliness (e.g., GUI)
 ...

Why is it important to study the running time (efficiency) of an algorithm?
1 feasible vs. infeasible
Main focus: correctness, running time (efficiency)
Sometimes: memory usage
Not covered in the course: engineering side
- extensibility
- modularity
- object-oriented model
- user-friendliness (e.g., GUI)
- ...

Why is it important to study the running time (efficiency) of an algorithm?
1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
Theoretical Analysis of Algorithms

- Main focus: correctness, running time (efficiency)
- Sometimes: memory usage
- Not covered in the course: engineering side
 - extensibility
 - modularity
 - object-oriented model
 - user-friendliness (e.g., GUI)
 - ...

Why is it important to study the running time (efficiency) of an algorithm?

1. feasible vs. infeasible
2. efficient algorithms: less engineering tricks needed, can use languages aiming for easy programming (e.g., python)
3. fundamental
4. it is fun!
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Sorting Problem

Input: sequence of \(n \) numbers \((a_1, a_2, \cdots, a_n)\)

Output: a permutation \((a'_1, a'_2, \cdots, a'_n)\) of the input sequence such that \(a'_1 \leq a'_2 \leq \cdots \leq a'_n\)

Example:
- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59
Insertion-Sort

At the end of j-th iteration, make the first j numbers sorted.

iteration 1: 53, 12, 35, 21, 59, 15
iteration 2: 12, 53, 35, 21, 59, 15
iteration 3: 12, 35, 53, 21, 59, 15
iteration 4: 12, 21, 35, 53, 59, 15
iteration 5: 12, 21, 35, 53, 59, 15
iteration 6: 12, 15, 21, 35, 53, 59
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort\((A, n)\)

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
5. \(A[i + 1] \leftarrow A[i]\)
6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)
Example:

- **Input**: 53, 12, 35, 21, 59, 15
- **Output**: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for \(j \leftarrow 2 \) to \(n \)
2. \(key \leftarrow A[j] \)
3. \(i \leftarrow j - 1 \)
4. while \(i > 0 \) and \(A[i] > key \)
5. \(A[i + 1] \leftarrow A[i] \)
6. \(i \leftarrow i - 1 \)
7. \(A[i + 1] \leftarrow key \)

- \(j = 6 \)
- \(key = 15 \)

12 21 35 53 59 15

↑

↑

\(i \)
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort *(A, n)*

1. for *j* ← 2 to *n*
2. *key* ← *A*[j]
3. *i* ← *j* − 1
4. while *i* > 0 and *A*[i] > *key*
5. *A*[i + 1] ← *A*[i]
6. *i* ← *i* − 1
7. *A*[i + 1] ← *key*

- *j* = 6
- *key* = 15

12 21 35 53 59 59
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(\(A, n\))

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
 - \(A[i + 1] \leftarrow A[i]\)
 - \(i \leftarrow i - 1\)
5. \(A[i + 1] \leftarrow key\)
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(*A, n*)

1. for *j ← 2 to n*
2. *key ← A[j]*
3. *i ← j − 1*
4. while *i > 0 and A[i] > key*
6. *i ← i − 1*
7. *A[i + 1] ← key*

- *j = 6*
- *key = 15*

<table>
<thead>
<tr>
<th>12</th>
<th>21</th>
<th>35</th>
<th>53</th>
<th>53</th>
<th>59</th>
</tr>
</thead>
<tbody>
<tr>
<td>↑ i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort \((A, n)\)

1. for \(j \leftarrow 2\) to \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. while \(i > 0\) and \(A[i] > key\)
 - \(A[i + 1] \leftarrow A[i]\)
5. \(i \leftarrow i - 1\)
6. \(A[i + 1] \leftarrow key\)

- \(j = 6\)
- \(key = 15\)

12 21 35 53 53 59
Example:

- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(\(A, n\))

1. **for** \(j \leftarrow 2\) **to** \(n\)
2. \(key \leftarrow A[j]\)
3. \(i \leftarrow j - 1\)
4. **while** \(i > 0\) **and** \(A[i] > key\)
 5. \(A[i + 1] \leftarrow A[i]\)
 6. \(i \leftarrow i - 1\)
7. \(A[i + 1] \leftarrow key\)

- \(j = 6\)
- \(key = 15\)

\[\begin{array}{cccccccc}
12 & 21 & 35 & \text{35} & 53 & 59 \\
\uparrow & i & & & & \end{array}\]
Example:
- Input: 53, 12, 35, 21, 59, 15
- Output: 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for $j \leftarrow 2$ to n
2. \[key \leftarrow A[j] \]
3. \[i \leftarrow j - 1 \]
4. while $i > 0$ and $A[i] > key$
5. \[A[i + 1] \leftarrow A[i] \]
6. \[i \leftarrow i - 1 \]
7. \[A[i + 1] \leftarrow key \]

- $j = 6$
- $key = 15$

\[
\begin{array}{ccccccccc}
12 & 21 & 35 & 35 & 53 & 59 \\
\uparrow & & & & & i
\end{array}
\]
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

```
insertion-sort(A, n)
1  for j ← 2 to n
2    key ← A[j]
3    i ← j − 1
4    while i > 0 and A[i] > key
5      A[i + 1] ← A[i]
6      i ← i − 1
7    A[i + 1] ← key

j = 6
key = 15
```

12 21 21 35 53 59
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for $j \leftarrow 2$ to n
2.
 \[key \leftarrow A[j]\]
3.
 \[i \leftarrow j - 1\]
4. while $i > 0$ and $A[i] > key$

 \[A[i + 1] \leftarrow A[i]\]
5.
 \[i \leftarrow i - 1\]
6.
 \[A[i + 1] \leftarrow key\]

- $j = 6$
- $key = 15$

12 21 21 35 53 59

↑

i
Example:

- **Input:** 53, 12, 35, 21, 59, 15
- **Output:** 12, 15, 21, 35, 53, 59

insertion-sort(A, n)

1. for $j ← 2$ to n
2. \hspace{1em} key ← $A[j]$
3. \hspace{1em} $i ← j - 1$
4. \hspace{1em} while $i > 0$ and $A[i] > key$
5. \hspace{2em} $A[i + 1] ← A[i]$
6. \hspace{2em} $i ← i - 1$
7. \hspace{2em} $A[i + 1] ← key$

- $j = 6$
- $key = 15$

12 \hspace{1em} 15 \hspace{1em} 21 \hspace{1em} 35 \hspace{1em} 53 \hspace{1em} 59

$↑$

i
Outline

1. Syllabus

2. Introduction
 - What is an Algorithm?
 - Example: Insertion Sort
 - Analysis of Insertion Sort

3. Asymptotic Notations

4. Common Running times
Analysis of Insertion Sort

- Correctness
- Running time
Invariant: after iteration j of outer loop, $A[1..j]$ is the sorted array for the original $A[1..j]$.

- after $j = 1$: 53, 12, 35, 21, 59, 15
- after $j = 2$: 12, 53, 35, 21, 59, 15
- after $j = 3$: 12, 35, 53, 21, 59, 15
- after $j = 4$: 12, 21, 35, 53, 59, 15
- after $j = 5$: 12, 21, 35, 53, 59, 15
- after $j = 6$: 12, 15, 21, 35, 53, 59
Q: Size of input?
Q: Size of input?
A: Running time as function of size
Q: Size of input?
A: Running time as function of size
possible definition of size : # integers, total length of integers, # vertices in graph, # edges in graph
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
- possible definition of size: \# integers, total length of integers, \# vertices in graph, \# edges in graph
- Q: Which input?
Q: Size of input?
A: Running time as function of size
possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

Q: Which input?
A: Worst-case analysis:
• Worst running time over all input instances of a given size
Q: Size of input?
A: Running time as function of size

possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph

Q: Which input?
A: Worst-case analysis:
 Worst running time over all input instances of a given size

Q: How fast is the computer?
Analyze Running Time of Insertion Sort

- Q: Size of input?
- A: Running time as function of size
 - possible definition of size: # integers, total length of integers, # vertices in graph, # edges in graph
- Q: Which input?
- A: Worst-case analysis:
 - Worst running time over all input instances of a given size
- Q: How fast is the computer?
- Q: Programming language?
Q: Size of input?
A: Running time as function of size
possible definition of size: \# integers, total length of integers, \# vertices in graph, \# edges in graph

Q: Which input?
A: Worst-case analysis:
 Worst running time over all input instances of a given size

Q: How fast is the computer?

Q: Programming language?

A: Important idea: asymptotic analysis
 Focus on growth of running-time as a function, not any particular value.
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

\[3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3 \]
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

$3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$

$3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

- $3n^3 + 2n^2 - 18n + 1028 \Rightarrow 3n^3 \Rightarrow n^3$
- $3n^3 + 2n^2 - 18n + 1028 = O(n^3)$
- $2^{n/3+100} + 100n^{100} \Rightarrow 2^{n/3+100} \Rightarrow 2^{n/3}$
- $2^{n/3+100} + 100n^{100} = O(2^{n/3})$
Asymptotic Analysis: O-notation

- Ignoring lower order terms
- Ignoring leading constant

O-notation allows us to
- ignore architecture of computer
- ignore programming language
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1. for $j \leftarrow 2$ to n
2. \hspace{1em} $key \leftarrow A[j]$
3. \hspace{1em} $i \leftarrow j - 1$
4. \hspace{2em} while $i > 0$ and $A[i] > key$
5. \hspace{3em} $A[i + 1] \leftarrow A[i]$
6. \hspace{3em} $i \leftarrow i - 1$
7. \hspace{2em} $A[i + 1] \leftarrow key$

Worst-case running time for iteration j in the outer loop?

Answer: $O(j)$

Total running time = $\sum_{j=2}^{n} O(j) = O(n^2)$ (informal)
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1. for j ← 2 to n
2. key ← A[j]
3. i ← j − 1
4. while i > 0 and A[i] > key
6. i ← i − 1
7. A[i + 1] ← key

- Worst-case running time for iteration j in the outer loop?
Asymptotic Analysis of Insertion Sort

insertion-sort(*A, n*)

1. for *j* ← 2 to *n*
2.
 key ← *A[j]*
3.
 i ← *j* − 1
4. while *i* > 0 and *A[i] > key*
5.
 A[i + 1] ← A[i]
6.
 i ← *i* − 1
7.
 A[i + 1] ← key

- Worst-case running time for iteration *j* in the outer loop?
 Answer: *O*(*j*)
Asymptotic Analysis of Insertion Sort

insertion-sort(A, n)

1. for $j \leftarrow 2$ to n
2. \hspace{1em} key $\leftarrow A[j]$
3. \hspace{1em} $i \leftarrow j - 1$
4. \hspace{1em} while $i > 0$ and $A[i] > key$
5. \hspace{2em} $A[i + 1] \leftarrow A[i]$
6. \hspace{2em} $i \leftarrow i - 1$
7. \hspace{1em} $A[i + 1] \leftarrow key$

- Worst-case running time for iteration j in the outer loop? Answer: $O(j)$
- Total running time $= \sum_{j=2}^{n} O(j) = O(n^2)$ (informal)

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers?
Computation Model

- Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Precision of real numbers?
 - In most scenarios in the course, assuming real numbers are represented exactly
Computation Model

- Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.
- Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough
- Precision of real numbers?
 In most scenarios in the course, assuming real numbers are represented exactly

- Can we do better than insertion sort asymptotically?

Basic operations take $O(1)$ time: addition, subtraction, multiplication, etc.

Each integer (word) has $c \log n$ bits, $c \geq 1$ large enough

Precision of real numbers?
In most scenarios in the course, assuming real numbers are represented exactly

Can we do better than insertion sort asymptotically?
Yes: merge sort, quicksort, heap sort, ...
Remember to sign up for Piazza.

Questions?
Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$
Def. $f: \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

We only consider asymptotically positive functions.
Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \)
Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:
- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \quad \text{Yes} \)
- \(2^n - n^{20} \)
Asymptotically Positive Functions

Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:

- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).

- \(n^2 - n - 30 \) \hspace{1cm} Yes

- \(2^n - n^{20} \) \hspace{1cm} Yes
Def. \(f : \mathbb{N} \rightarrow \mathbb{R} \) is an asymptotically positive function if:
- \(\exists n_0 > 0 \) such that \(\forall n > n_0 \) we have \(f(n) > 0 \)

- In other words, \(f(n) \) is positive for large enough \(n \).
- \(n^2 - n - 30 \quad \text{Yes} \)
- \(2^n - n^{20} \quad \text{Yes} \)
- \(100n - n^2/10 + 50 \) ?
Asymptotically Positive Functions

Def. $f : \mathbb{N} \rightarrow \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

- In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30$ Yes

- $2^n - n^{20}$ Yes

- $100n - n^2/10 + 50?$ No
Asymptotically Positive Functions

Def. $f : \mathbb{N} \to \mathbb{R}$ is an asymptotically positive function if:

- $\exists n_0 > 0$ such that $\forall n > n_0$ we have $f(n) > 0$

In other words, $f(n)$ is positive for large enough n.

- $n^2 - n - 30 \quad$ Yes
- $2^n - n^{20} \quad$ Yes
- $100n - n^2/10 + 50? \quad$ No

We only consider asymptotically positive functions.
O-Notation: Asymptotic Upper Bound

\textbf{O-Notation} For a function \(g(n) \),

\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.

Informally, think of it as \(f \leq g \).
O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).
- Informally, think of it as “\(f \leq g \)”.
\textit{O-Notation} For a function \(g(n) \),
\[O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}. \]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).
- Informally, think of it as “\(f \leq g \)”.
- \(3n^2 + 2n \in O(n^3) \)
O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).
- Informally, think of it as “\(f \leq g \)”.

- \(3n^2 + 2n \in O(n^3) \)
- \(3n^2 + 2n \in O(n^2) \)
O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in O(g(n))$ if $f(n) \leq cg(n)$ for some c and large enough n.
- Informally, think of it as “$f \leq g$”.

- $3n^2 + 2n \in O(n^3)$
- $3n^2 + 2n \in O(n^2)$
- $n^{100} \in O(2^n)$
O-Notation For a function \(g(n) \),

\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

- In other words, \(f(n) \in O(g(n)) \) if \(f(n) \leq cg(n) \) for some \(c \) and large enough \(n \).
- Informally, think of it as “\(f \leq g \)”.

- \(3n^2 + 2n \in O(n^3) \)
- \(3n^2 + 2n \in O(n^2) \)
- \(n^{100} \in O(2^n) \)
- \(n^3 \notin O(n^2) \)
We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^3)$
We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)

- \(3n^2 + 2n = O(n^3) \)
- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) \)
Conventions

- We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”
- $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
 - There exists a function $f(n) \in O(n^3)$, such that
 $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.
Conventions

- We use \(f(n) = O(g(n)) \) to denote \(f(n) \in O(g(n)) \)
- \(3n^2 + 2n = O(n^3) \)
- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) \)
 - There exists a function \(f(n) \in O(n^3) \), such that \(4n^3 + 3n^2 + 2n = 4n^3 + f(n) \).
- \(n^2 + O(n) = O(n^2) \)
We use “\(f(n) = O(g(n)) \)” to denote “\(f(n) \in O(g(n)) \)”

- \(3n^2 + 2n = O(n^3) \)
- \(4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) \)
 - There exists a function \(f(n) \in O(n^3) \), such that \(4n^3 + 3n^2 + 2n = 4n^3 + f(n) \).

- \(n^2 + O(n) = O(n^2) \)
 - For every function \(f(n) \in O(n) \), there exists a function \(g(n) \in O(n^2) \), such that \(n^2 + f(n) = g(n) \).
We use “$f(n) = O(g(n))$” to denote “$f(n) \in O(g(n))$”

$3n^2 + 2n = O(n^3)$

$4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$

There exists a function $f(n) \in O(n^3)$, such that $4n^3 + 3n^2 + 2n = 4n^3 + f(n)$.

$n^2 + O(n) = O(n^2)$

For every function $f(n) \in O(n)$, there exists a function $g(n) \in O(n^2)$, such that $n^2 + f(n) = g(n)$.

Rule: left side $\rightarrow \forall$, right side $\rightarrow \exists$
Conventions

- $3n^2 + 2n = O(n^3)$
- $4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)$
- $n^2 + O(n) = O(n^2)$

“=” is asymmetric! Following statements are wrong:
- $O(n^3) = 3n^2 + 2n$
- $4n^3 + O(n^3) = 4n^3 + 3n^2 + 2n$
- $O(n^2) = n^2 + O(n)$
3n^2 + 2n = O(n^3)
4n^3 + 3n^2 + 2n = 4n^3 + O(n^3)
n^2 + O(n) = O(n^2)

“=” is asymmetric! Following statements are wrong:
- \(O(n^3) = 3n^2 + 2n \)
- \(4n^3 + O(n^3) = 4n^3 + 3n^2 + 2n \)
- \(O(n^2) = n^2 + O(n) \)

Chaining is allowed:
\[
4n^3 + 3n^2 + 2n = 4n^3 + O(n^3) = O(n^3) = O(n^4)
\]
\(\Omega \)-Notation: Asymptotic Lower Bound

O-Notation For a function \(g(n) \),
\[
O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.
\]

Ω-Notation For a function \(g(n) \),
\[
Ω(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.
\]
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0\}.$$

Ω-Notation For a function $g(n)$,

$$Ω(g(n)) = \{\text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0\}.$$

- In other words, $f(n) \in Ω(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.
Ω-Notation: Asymptotic Lower Bound

O-Notation For a function $g(n)$,

$$O(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \}.$$

Ω-Notation For a function $g(n)$,

$$\Omega(g(n)) = \{ \text{function } f : \exists c > 0, n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \}.$$

- In other words, $f(n) \in \Omega(g(n))$ if $f(n) \geq cg(n)$ for some c and large enough n.
- Informally, think of it as “$f \geq g$”.

Again, we use “=” instead of \in.

- $4n^2 = \Omega(n)$
- $3n^2 - n + 10 = \Omega(n^2)$
- $\Omega(n^2) + n = \Omega(n^2) = \Omega(n)$
Again, we use "=" instead of \in.

- $4n^2 = \Omega(n)$
- $3n^2 - n + 10 = \Omega(n^2)$
- $\Omega(n^2) + n = \Omega(n^2) = \Omega(n)$

Theorem $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function $g(n)$,

$$
\Theta(g(n)) = \left\{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \right\}.
$$

Informally, think of it as "$f(n) = g(n)$".
Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{\text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0\}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have
 \[f(n) \approx g(n) \].
Θ-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } \}
$$

$$c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.
- Informally, think of it as “$f = g$”.
Θ-Notation: Asymptotic Tight Bound

Θ-Notation For a function \(g(n) \),
\[
\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
\]

- \(f(n) = \Theta(g(n)) \), then for large enough \(n \), we have “\(f(n) \approx g(n) \)”.
- Informally, think of it as “\(f = g \)”.
- \(3n^2 + 2n = \Theta(n^2) \)
Theta-Notation: Asymptotic Tight Bound

Theta-Notation For a function $g(n)$,

$$\Theta(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that } c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.$$

- $f(n) = \Theta(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.
- Informally, think of it as “$f = g$”.

- $3n^2 + 2n = \Theta(n^2)$
- $2^{n/3} + 100 = \Theta(2^{n/3})$
Θ-Notation For a function $g(n)$,

$$
Θ(g(n)) = \{ \text{function } f : \exists c_2 \geq c_1 > 0, n_0 > 0 \text{ such that }
 c_1 g(n) \leq f(n) \leq c_2 g(n), \forall n \geq n_0 \}.
$$

- $f(n) = Θ(g(n))$, then for large enough n, we have “$f(n) \approx g(n)$”.
- Informally, think of it as “$f = g$”.
- $3n^2 + 2n = Θ(n^2)$
- $2^{n/3} + 100 = Θ(2^{n/3})$

Theorem $f(n) = Θ(g(n))$ if and only if $f(n) = O(g(n))$ and $f(n) = Ω(g(n))$.
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\lg^{10} n$</td>
<td>$n^{0.1}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log^{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise

For each pair of functions f, g in the following table, indicate whether f is O, Ω or Θ of g.

<table>
<thead>
<tr>
<th>f</th>
<th>g</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_{10} n$</td>
<td>$n^{0.1}$</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>2^n</td>
<td>$2^{n/2}$</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>\sqrt{n}</td>
<td>$n^{\sin n}$</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>$n^2 - 100n$</td>
<td>$5n^2 + 30n$</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>O</td>
<td>Ω</td>
<td>Θ</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td></td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>O</td>
<td>Ω</td>
<td>Θ</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td></td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g \text{ and } f \geq g$
- $f \leq g \text{ or } f \geq g$
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations
- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies
- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$
Asymptotic Notations

<table>
<thead>
<tr>
<th></th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
</tr>
</tbody>
</table>

Trivial Facts on Comparison Relations

- $f \leq g \iff g \geq f$
- $f = g \iff f \leq g$ and $f \geq g$
- $f \leq g$ or $f \geq g$

Correct Analogies

- $f(n) = O(g(n)) \iff g(n) = \Omega(f(n))$
- $f(n) = \Theta(g(n)) \iff f(n) = O(g(n))$ and $f(n) = \Omega(g(n))$

Incorrect Analogy

- $f(n) = O(g(n))$ or $g(n) = O(f(n))$
Incorrect Analogy

- \(f(n) = O(g(n)) \) or \(g(n) = O(f(n)) \)
Incorrect Analogy

- \(f(n) = O(g(n)) \) or \(g(n) = O(f(n)) \)

\[
\begin{align*}
f(n) &= n^2 \\
g(n) &= \begin{cases}
1 & \text{if } n \text{ is odd} \\
2^n & \text{if } n \text{ is even}
\end{cases}
\end{align*}
\]
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- Thus $3n^2 - 10n - 5 = O(n^2)$
Recall: informal way to define \(O \)-notation

- ignoring lower order terms: \(3n^2 - 10n - 5 \rightarrow 3n^2 \)
- ignoring leading constant: \(3n^2 \rightarrow n^2 \)
- Thus \(3n^2 - 10n - 5 = O(n^2) \)
- Indeed, \(3n^2 - 10n - 5 = \Omega(n^2) \), \(3n^2 - 10n - 5 = \Theta(n^2) \)
Recall: informal way to define O-notation

- ignoring lower order terms: $3n^2 - 10n - 5 \rightarrow 3n^2$
- ignoring leading constant: $3n^2 \rightarrow n^2$
- Thus $3n^2 - 10n - 5 = O(n^2)$
- Indeed, $3n^2 - 10n - 5 = \Omega(n^2), 3n^2 - 10n - 5 = \Theta(n^2)$

Formally: if $n > 10$, then $n^2 < 3n^2 - 10n - 5 < 3n^2$. So, $3n^2 - 10n - 5 \in \Theta(n^2)$.
\(o \) and \(\omega \)-Notations

\(o \)-Notation For a function \(g(n) \),
\[
o(g(n)) = \left\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \leq cg(n), \forall n \geq n_0 \right\}.
\]

\(\omega \)-Notation For a function \(g(n) \),
\[
\omega(g(n)) = \left\{ \text{function } f : \forall c > 0, \exists n_0 > 0 \text{ such that } f(n) \geq cg(n), \forall n \geq n_0 \right\}.
\]

Example:
- \(3n^2 + 5n + 10 = o(n^2 \log n) \).
- \(3n^2 + 5n + 10 = \omega(n^2 / \log n) \).
<table>
<thead>
<tr>
<th>Asymptotic Notations</th>
<th>O</th>
<th>Ω</th>
<th>Θ</th>
<th>o</th>
<th>ω</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
<tr>
<td>Asymptotic Notations</td>
<td>O</td>
<td>Ω</td>
<td>Θ</td>
<td>o</td>
<td>ω</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----</td>
<td>---------</td>
<td>---------</td>
<td>----</td>
<td>-------</td>
</tr>
<tr>
<td>Comparison Relations</td>
<td>\leq</td>
<td>\geq</td>
<td>$=$</td>
<td>$<$</td>
<td>$>$</td>
</tr>
</tbody>
</table>

Questions?
1 Syllabus

2 Introduction
 • What is an Algorithm?
 • Example: Insertion Sort
 • Analysis of Insertion Sort

3 Asymptotic Notations

4 Common Running times
Computing the sum of n numbers

\[\text{sum}(A, n) \]

1. $S \leftarrow 0$
2. for $i \leftarrow 1$ to n
3. $S \leftarrow S + A[i]$
4. return S
- Merge two sorted arrays

<table>
<thead>
<tr>
<th>3</th>
<th>8</th>
<th>12</th>
<th>20</th>
<th>32</th>
<th>48</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>7</td>
<td>9</td>
<td>25</td>
<td>29</td>
<td></td>
</tr>
</tbody>
</table>
Merge two sorted arrays

3 8 12 20 32 48
5 7 9 25 29
Merge two sorted arrays

\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3
\end{array}
Merge two sorted arrays

\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}

\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}

3
Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
\end{array}
\]

\[
\begin{array}{cccccc}
5 & 7 & 9 & 25 & 29 \\
\end{array}
\]

\[
\begin{array}{cc}
3 & 5 \\
\end{array}
\]
Merge two sorted arrays
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 \\
\end{array}
\]
Merge two sorted arrays

- Array 1: 3 8 12 20 32 48
- Array 2: 5 7 9 25 29
- Merged Array: 3 5 7
- Merge two sorted arrays

\[
\begin{array}{cccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 \\
\end{array}
\]
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3 8 12 20 32 48
5 7 9 25 29
3 5 7 8
```
$O(n)$ (Linear) Running Time

- Merge two sorted arrays

```
3  8  12  20  32  48
5  7  9  25  29
3  5  7  8  9  12  20  25  29
```
Merge two sorted arrays

\[
\begin{array}{ccccccc}
3 & 8 & 12 & 20 & 32 & 48 \\
5 & 7 & 9 & 25 & 29 \\
3 & 5 & 7 & 8 & 9 & 12 & 20 & 25 & 29 & 32 & 48
\end{array}
\]
merge(B, C, n_1, n_2) \ \ \ \ \ \ \ \ $\backslash \backslash \ B$ and C are sorted, with length n_1 and n_2

1. $A \leftarrow []; \ i \leftarrow 1; \ j \leftarrow 1$
2. while $i \leq n_1$ and $j \leq n_2$
3. \ \ \ if ($B[i] \leq C[j]$) then
4. \ \ \ \ \ append $B[i]$ to $A; \ i \leftarrow i + 1$
5. \ \ \ else
6. \ \ \ \ \ append $C[j]$ to $A; \ j \leftarrow j + 1$
7. \ \ if $i \leq n_1$ then append $B[i..n_1]$ to A
8. \ \ if $j \leq n_2$ then append $C[j..n_2]$ to A
9. return A

$O(n)$ (Linear) Running Time

Running time = $O(n)$ where $n = n_1 + n_2$.
$O(n)$ (Linear) Running Time

\texttt{merge}(B, C, n_1, n_2) \hspace{1cm} \text{\textbackslash\textbackslash B and C are sorted, with length } n_1 \text{ and } n_2

1. $A \leftarrow []; i \leftarrow 1; j \leftarrow 1$
2. \textbf{while} $i \leq n_1 \text{ and } j \leq n_2$
3. \hspace{1cm} \textbf{if} $(B[i] \leq C[j])$ \textbf{then}
4. \hspace{2cm} \textbf{append} $B[i]$ to A; $i \leftarrow i + 1$
5. \hspace{1cm} \textbf{else}
6. \hspace{2cm} \textbf{append} $C[j]$ to A; $j \leftarrow j + 1$
7. \hspace{1cm} \textbf{if} $i \leq n_1$ \textbf{then} \textbf{append} $B[i..n_1]$ to A
8. \hspace{1cm} \textbf{if} $j \leq n_2$ \textbf{then} \textbf{append} $C[j..n_2]$ to A
9. \hspace{1cm} \textbf{return} A

Running time $= O(n)$ where $n = n_1 + n_2$.

55/71
merge-sort(A, n)

1. if $n = 1$ then
2. return A
3. else
4. $B \leftarrow$ merge-sort($A[1..\lfloor n/2 \rfloor], \lfloor n/2 \rfloor$)
5. $C \leftarrow$ merge-sort($A[\lceil n/2 \rceil + 1..n], n - \lfloor n/2 \rfloor$)
6. return merge($B, C, \lfloor n/2 \rfloor, n - \lfloor n/2 \rfloor$)
Merge-Sort

Running Time

$O(n \lg n)$

Each level takes running time $O(n)$.

There are $O(\lg n)$ levels.

Running time = $O(n \lg n)$.

Diagram:

- **A[1..8]**
 - **A[1..4]**
 - **A[1..2]**
 - **A[1]**
 - **A[2]**
 - **A[3..4]**
 - **A[5..8]**
 - **A[5..6]**
 - **A[5]**
 - **A[6]**
 - **A[7..8]**
 - **A[7]**
 - **A[8]**
$O(n \lg n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$
$O(n \lg n)$ Running Time

- Merge-Sort

Each level takes running time $O(n)$

There are $O(\lg n)$ levels
Merge-Sort

- Each level takes running time $O(n)$
- There are $O(lg \, n)$ levels
- Running time $= O(n \, lg \, n)$
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)$

Output: the pair of points that are closest
Closest Pair

Input: n points in plane: $(x_1, y_1), (x_2, y_2), \cdots, (x_n, y_n)$

Output: the pair of points that are closest

```plaintext
closest-pair(x, y, n)

1. bestd ← ∞
2. for $i$ ← 1 to $n - 1$
3.     for $j$ ← $i + 1$ to $n$
4.         $d ← \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}$
5.         if $d < bestd$ then
6.             besti ← $i$, bestj ← $j$, bestd ← $d$
7. return (besti, bestj)
```

Closest pair can be solved in $O(n^2)$ time!
Closest Pair

Input: \(n \) points in plane: \((x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n)\)

Output: the pair of points that are closest

\[
\text{closest-pair}(x, y, n)
\]

1. \(\text{bestd} \leftarrow \infty\)
2. for \(i \leftarrow 1\) to \(n - 1\)
3. \(\text{for } j \leftarrow i + 1\) to \(n\)
4. \(d \leftarrow \sqrt{(x[i] - x[j])^2 + (y[i] - y[j])^2}\)
5. if \(d < \text{bestd}\) then
6. \(\text{besti} \leftarrow i, \text{bestj} \leftarrow j, \text{bestd} \leftarrow d\)
7. return \((\text{besti}, \text{bestj})\)

Closest pair can be solved in \(O(n \lg n)\) time!
Multiply two matrices of size $n \times n$

\begin{verbatim}
matrix-multiplication(A, B, n)
1. $C \leftarrow$ matrix of size $n \times n$, with all entries being 0
2. for $i \leftarrow 1$ to n
3. for $j \leftarrow 1$ to n
4. for $k \leftarrow 1$ to n
5. $C[i, k] \leftarrow C[i, k] + A[i, j] \times B[j, k]$
6. return C
\end{verbatim}
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

$O(n^k)$ Running Time for Integer $k \geq 4$
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

$O(n^k)$ Running Time for Integer $k \geq 4$
Def. An independent set of a graph $G = (V, E)$ is a subset $S \subseteq V$ of vertices such that for every $u, v \in S$, we have $(u, v) \notin E$.

$O(n^k)$ Running Time for Integer $k \geq 4$
An independent set of a graph \(G = (V, E) \) is a subset \(S \subseteq V \) of vertices such that for every \(u, v \in S \), we have \((u, v) \notin E \).
Independent Set of Size k

Input: graph $G = (V, E)$

Output: whether there is an independent set of size k

```plaintext
independent-set($G = (V, E)$)

1. for every set $S \subseteq V$ of size $k$
2. $b \leftarrow \text{true}$
3. for every $u, v \in S$
4. if $(u, v) \in E$ then $b \leftarrow \text{false}$
5. if $b$ return true
6. return false
```

Running time $= O\left(\frac{n^k}{k!} \times k^2\right) = O(n^k)$ (assume k is a constant)
Maximum Independent Set Problem

Input: graph $G = (V, E)$

Output: the maximum independent set of G

```plaintext
max-independent-set(G = (V, E))

1. $R \leftarrow \emptyset$
2. for every set $S \subseteq V$
3.   $b \leftarrow \text{true}$
4.   for every $u, v \in S$
5.     if $(u, v) \in E$ then $b \leftarrow \text{false}$
6.     if $b$ and $|S| > |R|$ then $R \leftarrow S$
7. return $R$
```

Running time $= O(2^n n^2)$.

Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $O(n!)$

Hamiltonian Cycle Problem

Input: a graph with n vertices

Output: a cycle that visits each node exactly once, or say no such cycle exists
Beyond Polynomial Time: $n!$

Hamiltonian($G = (V, E)$)

1. for every permutation (p_1, p_2, \cdots, p_n) of V
2. $b \leftarrow \text{true}$
3. for $i \leftarrow 1$ to $n - 1$
 4. if $(p_i, p_{i+1}) \notin E$ then $b \leftarrow \text{false}$
5. if $(p_n, p_1) \notin E$ then $b \leftarrow \text{false}$
6. if b then return (p_1, p_2, \cdots, p_n)
7. return “No Hamiltonian Cycle”

Running time $= O(n! \times n)$
$O(\lg n)$ (Logarithmic) Running Time

Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g., search 35 in the following array:
$O(\lg n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.

E.g., search 35 in the following array:
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.
E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>75</td>
</tr>
</tbody>
</table>
Binary search
- Input: sorted array \(A \) of size \(n \), an integer \(t \);
- Output: whether \(t \) appears in \(A \).

E.g., search 35 in the following array:

\[
\begin{array}{cccccccccccccc}
3 & 8 & 10 & 25 & 29 & 37 & 38 & 42 & 46 & 52 & 59 & 61 & 63 & 75 & 79 \\
\end{array}
\]
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
$O(\lg n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
3  8 10 25 29 37 38 42 46 52 59 61 63 75 79
```

25 < 35
$O(\log n)$ (Logarithmic) Running Time

- Binary search
 - Input: sorted array A of size n, an integer t;
 - Output: whether t appears in A.
- E.g, search 35 in the following array:

```
3  8 10 25 29 37 38 42 46 52 59 61 63 75 79
```
Binary search
- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

E.g, search 35 in the following array:
Binary search
- **Input**: sorted array A of size n, an integer t;
- **Output**: whether t appears in A.
- E.g., search 35 in the following array:

```
3  8  10  25  29  37  38  42  46  52  59  61  63  75  79
```

37 > 35
Binary search

Input: sorted array A of size n, an integer t;
Output: whether t appears in A.

E.g, search 35 in the following array:

<p>| | | | | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>10</td>
<td>25</td>
<td>29</td>
<td>37</td>
<td>38</td>
<td>42</td>
<td>46</td>
<td>52</td>
<td>59</td>
<td>61</td>
<td>63</td>
<td>75</td>
</tr>
</tbody>
</table>
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

\[
\text{binary-search}(A, n, t)
\]

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3. \hspace{1em} $k \leftarrow \lfloor (i + j)/2 \rfloor$
4. \hspace{1em} if $A[k] = t$ return true
5. \hspace{1em} if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false

$O(\lg n)$ (Logarithmic) Running Time
Binary search

- Input: sorted array A of size n, an integer t;
- Output: whether t appears in A.

binary-search(A, n, t)

1. $i \leftarrow 1$, $j \leftarrow n$
2. while $i \leq j$ do
3. $k \leftarrow \lfloor (i + j)/2 \rfloor$
4. if $A[k] = t$ return true
5. if $A[k] < t$ then $j \leftarrow k - 1$ else $i \leftarrow k + 1$
6. return false

Running time $= O(\lg n)$
Compare the Orders

- Sort the functions from smallest to largest asymptotically

\[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \[n^{\sqrt{n}}, \quad \log n, \quad n, \quad n^2, \quad n \log n, \quad n!, \quad 2^n, \quad e^n, \quad \log(n!), \quad n^n \]
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)
- \(\log n < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
 \[n^{\sqrt{n}}, \ \lg n, \ n, \ n^2, \ n \lg n, \ n!, \ 2^n, \ e^n, \ \lg(n!), \ n^n \]
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)!
- \(\lg n < n^{\sqrt{n}} \)
- \(\lg n < n < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
 \[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \).
- \(lg\ n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \(n^{\sqrt{n}}, \lg n, n, n^2, n \lg n, n!, 2^n, e^n, \lg(n!), n^n \)
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)
- \(\lg n < n^{\sqrt{n}} \)
- \(\lg n < n < n^{\sqrt{n}} \)
- \(\lg n < n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n \lg n < n^2 < n^{\sqrt{n}} \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \(n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)

- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)!

- \(\lg n < n^{\sqrt{n}} \)
- \(\lg n < n < n^{\sqrt{n}} \)
- \(\lg n < n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \(n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n \lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \)
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)
- \(lg\ n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^{\sqrt{n}} \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} \)
- \(lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} \)
- \(lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < n! \)
- \(lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically
 \[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n \ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \! \)
- \(\lg\ n < n^{\sqrt{n}} \)
- \(\lg\ n < n < n^{\sqrt{n}} \)
- \(\lg\ n < n < n^2 < n^{\sqrt{n}} \)
- \(\lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} \)
- \(\lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < n! \)
- \(\lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \(\lg\ n < n < n \ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
 \[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]
- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)
- \(\lg n < n^{\sqrt{n}} \)
- \(\lg n < n < n^{\sqrt{n}} \)
- \(\lg n < n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} < n! \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \(\lg n < n < n\ lg\ n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
- \(\lg n < n < n\ lg\ n = \lg(n!) < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
Compare the Orders

- Sort the functions from smallest to largest asymptotically:
 \[n^{\sqrt{n}}, \ lg\ n, \ n, \ n^2, \ n\ lg\ n, \ n!, \ 2^n, \ e^n, \ lg(n!), \ n^n \]

- \(f < g \) stands for \(f = o(g) \), \(f = g \) stands for \(f = \Theta(g) \)!

- \(lg\ n < n^{\sqrt{n}} < n! \)
- \(lg\ n < n < n^{\sqrt{n}} < n! \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} < n! \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} < 2^n < n! \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! \)
- \(lg\ n < n < n^2 < n^{\sqrt{n}} < 2^n < e^n < n! < n^n \)
When we talk about upper bounds:

- Logarithmic time: $O(\log n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$
Terminologies

When we talk about upper bounds:

- Logarithmic time: $O(\lg n)$
- Linear time: $O(n)$
- Quadratic time $O(n^2)$
- Cubic time $O(n^3)$
- Polynomial time: $O(n^k)$ for some constant k
- Exponential time: $O(c^n)$ for some $c > 1$
- Sub-linear time: $o(n)$
- Sub-quadratic time: $o(n^2)$

When we talk about lower bounds:

- Super-linear time: $\omega(n)$
- Super-quadratic time: $\omega(n^2)$
- Super-polynomial time: $\bigcap_{k>0} \omega(n^k)$
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.
Goal of Algorithm Design

- Design algorithms to minimize the order of the running time.

- Using asymptotic analysis allows us to ignore the leading constants and lower order terms.

- Makes our life much easier! (E.g., the leading constant depends on the implementation, compiler and computer architecture of computer.)
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

Sometimes yes. However, when n is big enough, $1000n < 0.1n^2$. For "natural" algorithms, constants are not so big! So, for reasonable n, algorithm with lower order running time beats algorithm with higher order running time.
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
Q: Does ignoring the leading constant cause any issues?

- e.g, how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:
- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
Q: Does ignoring the leading constant cause any issues?

- e.g., how can we compare an algorithm with running time $0.1n^2$ with an algorithm with running time $1000n$?

A:

- Sometimes yes
- However, when n is big enough, $1000n < 0.1n^2$
- For “natural” algorithms, constants are not so big!
- So, for reasonable n, algorithm with lower order running time beats algorithm with higher order running time.