19.1 Ellipsoid Method

Consider the following example.

Example 1:
LP relaxation for travelling salesman problem
Given: a metric d over V,
Goal: find a shortest tour to visit all vertices in V

Let’s say $x_{\{u,v\}} \in \{0,1\}$ denotes whether $\{u,v\}$ is used in the tour.
So, the integer programming for the problem will be the following:

$$\begin{align*}
\text{min} & \quad \sum_{\{u,v\}} x_{\{u,v\}} \cdot d(u,v) \\
\text{subject to} & \quad \sum_{u \neq v} x_{\{u,v\}} = 2 \quad (\forall v \in V) \\
& \quad \sum_{\{u,v\}:|\{u,v\} \cap S|=1} x_{\{u,v\}} \geq 2 \quad (\forall S \subseteq V, S \neq \emptyset) \\
& \quad x_{\{u,v\}} \in \{0,1\} \quad (\forall u, v \in V)
\end{align*}$$

For LP relaxation, we will only change the last condition into $x_{\{u,v\}} \geq 0 \quad (\forall u, v \in V)$.

Separation Oracle O:
Given x, O will
- accept x if x satisfies all the constraints,
- reject x if x does not satisfy all the constraints and return a constraint that x violates.

Efficient seperation oracle for LP relaxation of TSP:
Using max-flow-min-cut theorem (MFMC), fix $s \in V$, enumerate $t \in V \setminus \{s\}$, check if we can send 2 units flow from s to t, in the network with capacities $\{x_{u,v}\}_{u,v}$.
If for some t, we cannot send 2 units flow from s to t, then by MFMC theorem, we can find a cut $(s,v \setminus S), s \in S, t \notin S$ such that

$$\sum_{\{u,v\}:|\{u,v\} \cap S|=1} x_{\{u,v\}} < 2$$
otherwise, all constraints are satisfied.

\[
y^t_{(v,u)} + y^t_{(u,v)} \leq x_{(u,v)} \quad (\forall u, v)
\]

\[
\sum_{u \neq v} y^t_{(v,u)} \quad (\forall v \notin \{s, t\}) - \text{Flow Conservation-}
\]

\[
\sum_{u \neq s} y^t_{(s,u)} = 2 \quad (\forall s)
\]

\[
y^t_{(u,s)} = 0 \quad (\forall u)
\]

Example 2:

Multicut Problem

Given: \(G = (V, E) \), cost \(\{c_e\}_{e \in E} \),

\((s_1, t_1), (s_2, t_2), \ldots, (s_k, t_k)\) pairs of vertices in \(V \).

Goal: find a set \(E' \) of edges such that \(s_i \) and \(t_i \) are disconnected in \((V, E \setminus E') \); \((\forall i \in [k]) \),

minimize \(\sum_{e \in E'} c_e \).

Now, let \(x_e \) denote whether \(e \in E' \) or not, in other words whether we are removing edge \(e \) to obtain the multicut. Thus, the LP will be the following:

\[
\begin{align*}
\min \sum_{e \in E} c_e \\
\sum_{e \in P} x_e & \geq 1 \quad (\forall \text{ path } P \text{ connecting } s_i \text{ to } t_i, \text{ for some } i) \\
x_e & \geq 0 \quad (\forall e \in E)
\end{align*}
\]

Efficient separation oracle for LP relaxation of multicut:

For every \(i \), find the shortest path from \(s_i \) to \(t_i \), using \(\{x_e\} \) as costs.

If distance from \(s_i \) to \(t_i \) is less than 1, then return \(P=\text{shortest path} \), otherwise accept \(x \).

Now, this is where we are

Given: separation oracle \(O \), \(c \in \mathbb{R}^n \),

Goal: \(\min C^T x \) such that \(x \) is accepted by \(O \).

* Ellipsoid is obtained from a ball by scaling and rotation.
Algorithm 1 Ellipsoid Method

\[P \leftarrow \text{ellipsoid containing all feasible solutions} \]

\[\text{while } P \text{ is "not small enough" do} \]
\[\hat{x} \leftarrow \text{center of } P \]
\[\text{query O whether } \hat{x} \text{ is feasible} \]
\[\text{if Yes then} \]
\[P' \leftarrow \{x \in P : CTx \leq CT\hat{x}\} \]
\[x^* \leftarrow \hat{x} \]
\[\text{else} \]
\[\text{let } ax \geq b \text{ be the constraint that } \hat{x} \text{ violated returned by O} \]
\[P' \leftarrow \{x \in P : ax \geq b\} \]
\[P \leftarrow \text{small ellipsoid containing } P' \]

Lemma 19.1 We can guarantee that volume of \(P \) is at most \((1 - \frac{1}{2^n}) \) times volume of \(P \) in the previous iteration.

Number of iterations = \(O(n.lg \frac{\text{initial volume of } P}{\text{minimal possible value}}) \)