
A Polylogarithimic Approximation Algorithm
for Edge-Disjoint Paths with Congestion 2

Julia Chuzhoy ∗

Toyota Technological Institute,
Chicago, IL, USA

cjulia@ttic.edu

Shi Li †

Center for Computational Intractability
Department of Computer Science, Princeton University

Princeton, NJ, USA
shili@cs.princeton.edu

Abstract—In the Edge-Disjoint Paths with Congestion problem
(EDPwC), we are given an undirected n-vertex graph G, a
collection M = {(s1, t1), . . . , (sk, tk)} of demand pairs and
an integer c. The goal is to connect the maximum possible
number of the demand pairs by paths, so that the maximum
edge congestion - the number of paths sharing any edge - is
bounded by c. When the maximum allowed congestion is c = 1,
this is the classical Edge-Disjoint Paths problem (EDP).

The best current approximation algorithm for EDP achieves
an O(

√
n)-approximation, by rounding the standard multi-

commodity flow relaxation of the problem. This matches
the Ω(

√
n) lower bound on the integrality gap of this re-

laxation. We show an O(poly log k)-approximation algorithm
for EDPwC with congestion c = 2, by rounding the same
multi-commodity flow relaxation. This gives the best possible
congestion for a sub-polynomial approximation of EDPwC via
this relaxation. Our results are also close to optimal in terms
of the number of pairs routed, since EDPwC is known to be
hard to approximate to within a factor of Ω̃

(
(logn)1/(c+1)

)
for any constant congestion c. Prior to our work, the best
approximation factor for EDPwC with congestion 2 was
Õ(n3/7), and the best algorithm achieving a polylogarithmic
approximation required congestion 14.

Keywords-approximation algorithms; network routing; edge-
disjoint paths

I. INTRODUCTION

One of the central and most extensively studied graph
routing problems is the Edge-Disjoint Paths problem (EDP).
In this problem, we are given an undirected n-vertex graph
G = (V,E), and a collection M = {(s1, t1), . . . , (sk, tk)}
of k source-sink pairs, that we also call demand pairs.
The goal is to find a collection P of edge-disjoint paths,
connecting the maximum possible number of the demand
pairs.

Robertson and Seymour [1] have shown that EDP can be
solved efficiently, when the number k of the demand pairs is
bounded by a constant. However, for general values of k, it

∗ Supported in part by NSF CAREER grant CCF-0844872 and Sloan
Research Fellowship.
† Supported by NSF awards MSPA-MCS 0528414, CCF 0832797, AF

0916218 and CCF-0844872.

is NP-hard to even decide whether all pairs can be simultane-
ously routed via edge-disjoint paths [2]. A standard approach
to designing approximation algorithms for EDP and other
routing problems, is to first compute a multi-commodity
flow relaxation, where instead of connecting the demand
pairs with paths, we are only required to send the maximum
amount of multi-commodity flow between the demand pairs,
with at most one flow unit sent between every pair. Such
a fractional solution can be computed efficiently by using
the standard multi-commodity flow LP-relaxation, and it can
then be rounded to obtain an integral solution. Indeed, the
best current approximation algorithm for the EDP problem,
due to Chekuri, Khanna and Shepherd [3], achieves an
O(
√
n)-approximation using this approach. Unfortunately,

a simple example by Garg, Vazirani and Yannakakis [4],
shows that the integrality gap of the multi-commodity flow
relaxation can be as large as Ω(

√
n), thus implying that

the algorithm of [3] is essentially the best possible for
EDP, when using this approach. This integrality gap appears
to be a major barrier to obtaining better approximation
algorithms for EDP. Indeed, we do not know how to design
better approximation algorithms even for some seemingly
simple special cases of planar graphs, called the brick-wall
graphs. With the current best hardness of approximation
factor standing on Ω(log1/2−ε n) for any constant ε (un-
less NP is contained in ZPTIME(npoly logn) [5], [6]), the
approximability of the EDP problem remains one of the
central open problems in the area of routing.

A natural question is whether we can obtain better ap-
proximation algorithms by slightly relaxing the disjointness
requirement, and allowing the paths to share edges. We say
that a set P of paths is an α-approximate solution with
congestion c, iff the paths in P connect at least OPT/α
of the demand pairs, while every edge of G appears on
at most c paths in P . Here, OPT is the value of the
optimal solution to EDP, where no congestion is allowed.
This relaxation of the EDP problem is called EDP with
congestion (EDPwC). The EDPwC problem is a natural
framework to study the tradeoff between the number of pairs
routed and the congestion, and it is useful in scenarios where

we can afford a small congestion on edges.

The classical randomized rounding technique of Raghavan
and Thompson [7] gives a constant factor approximation
for EDPwC, when the congestion c is Ω(log n/ log log n).
More generally, for any congestion value c, factor O(n1/c)-
approximation algorithms are known for EDPwC [8], [9],
[10]. Recently, Andrews [11] has shown a randomized
O(poly log n)-approximation algorithm with congestion c =
O(poly log log n), and Chuzhoy [12] has shown a random-
ized O(poly log k)-approximation algorithm with conges-
tion 14. For the congestion value c = 2, Kawarabayashi
and Kobayashi [13] have recently shown an Õ(n3/7)-
approximation algorithm, thus improving the best previously
known O(

√
n)-approximation for c = 2 [8], [9], [10].

We note that all the above mentioned algorithms rely on
the standard multi-commodity flow LP relaxation of the
problem. It is easy to see that the values of the optimal
solution of this LP relaxation for the EDP problem, where
no congestion is allowed, and for the EDPwC problem,
where congestion c is allowed, are within a factor c from
each other. Therefore, the statements of these results remain
valid even when the approximation factor is computed with
respect to the optimal solution to the EDPwC problem.

In this paper, we show a randomized O(poly log k)-
approximation algorithm for EDPwC with congestion 2.
Given an instance (G,M) of the EDP problem, our algo-
rithm w.h.p. routes at least Ω(OPT/poly log k) pairs with
congestion 2, where OPT is the maximum number of pairs
that can be routed with no congestion. Our algorithm also
achieves an O(poly log k)-approximation when compared
with the optimal solution to EDPwC with congestion 2.
The algorithm performs a rounding of the standard multi-
commodity flow relaxation for EDP. Therefore, our result
shows that when congestion 2 is allowed, the integrality
gap of this relaxation improves from Ω(

√
n) to polyloga-

rithmic. Our result is essentially optimal with respect to this
relaxation, both for the congestion and the number of pairs
routed, in the following sense. As observed above, if we
are interested in obtaining a sub-polynomial approximation
for EDP via the multi-commodity flow relaxation, then
the best congestion we can hope for is 2. On the other
hand, Andrews et al. [6] have shown that the integrality
gap of the multi-commodity flow relaxation for EDPwC

is Ω

((
logn

(log logn)2

)1/(c+1)
)

for any constant congestion

c. In particular, the integrality gap for congestion 2 is
polylogarithmic, though the degree of the logarithm is much
lower than the degree we obtain in our approximation
algorithm. Andrews et al. [6] have also shown that for
any constant ε, for any 1 ≤ c ≤ O

(
log logn

log log logn

)
, there

is no O
(

(log n)
1−ε
c+1

)
-approximation algorithm for EDPwC

with congestion c, unless NP ⊆ ZPTIME(npoly logn). In

particular, this gives an Ω
(

log(1−ε)/3 n
)

-hardness of ap-
proximation for EDPwC with congestion 2.

Our results. Our main result is summarized in the following
theorem.

Theorem 1: There is an efficient randomized algorithm, that,
given a graph G, and a collectionM of k source-sink pairs,
w.h.p. finds a routing of Ω(OPT/(poly log k)) of the pairs in
M with congestion at most 2, where OPT is the maximum
number of pairs that can be routed with congestion 2.

Organization. We start with preliminaries in Section II and
provide an overview of our algorithm in Section III. We de-
velop machinery to analyze vertex clusterings in Section IV,
and complete the algorithm description in Sections V and VI.
Due to lack of space, many proofs are omitted from this
extended abstract, and can be found in the full version of
the paper in arXiv:1208.1272v1.

II. PRELIMINARIES

Notation. Suppose we are given an EDPwC instance
(G,M). We denote by T the set of vertices that participate
in pairs in M, and we call them terminals. Let OPT
denote the maximum number of demand pairs that can be
simultaneously routed with congestion at most 2. Given
any subset M′ ⊆ M of the demand pairs, we denote by
T (M′) ⊆ T the subset of terminals participating in the
pairs in M′.
For any subset S ⊆ V of vertices, we denote by outG(S) =
EG(S, V \ S), and by EG(S) the subset of edges with
both endpoints in S, omitting the subscript G when clear
from context. Throughout the paper, we say that a random
event succeeds w.h.p., if the probability of its success is
(1− 1/poly(n)). All logarithms are to the base of 2.

Let P be any collection of paths in graph G. We say that
paths in P cause congestion η in G, iff for every edge e ∈ E,
at most η paths in P contain e. Given a set P of paths
connecting the edges of E1 to the edges of E2, we denote
P : E1 η E2 iff P = {Pe | e ∈ E1}, where e is the first
edge on Pe, and the total congestion caused by the paths in
P is at most η. If every edge of E2 has at most one path
terminating at it, then we denote P : E1

1:1
 η E2. We use a

similar notation for path sets connecting subsets of vertices
to each other, or a subset vertices with a subset of edges.

Given a subset S of vertices and two subsets E1, E2 ⊆
out(S) of edges, we say that a set P : E1 η E2 of paths
is contained in S iff all inner edges on every path in P
belong to G[S].

Reduction to Well-Linked Instances. Given an instance
(G,M), we can assume w.l.o.g. that every terminal t ∈ T
participates in exactly one source-sink pair: otherwise, for

each demand pair in which t participates, we can add a new
terminal connected to t to the graph, that will replace t in
the demand pair. Similarly, we can assume that the degree
of every terminal is exactly 1, and the degree of every non-
terminal vertex is at most 4. In order to achieve the latter
property, we replace every vertex v whose degree dv > 4
with a dv × dv grid, and connect the edges incident on v to
the vertices of the first row of the grid. It is easy to verify
that these transformations do not affect the solution value.

The notion of well-linkedness has been widely used in graph
decomposition and routing, see e.g. [14], [15], [11]. While
the main idea is similar, the definition details differ from
paper to paper. Our definition of well-linkedness is similar
to that of [12].

Definition 1. Let S be any subset of vertices of a graph
G. For any integer k1, for any 0 < α ≤ 1, we say that set
S is (k1, α)-well-linked iff for any pair T1, T2 ⊆ out(S)
of disjoint subsets of edges, with |T1|+ |T2| ≤ k1, for any
partition (X,Y) of S with T1 ⊆ out(X) and T2 ⊆ out(Y),
|EG(X,Y)| ≥ α ·min {|T1|, |T2|}.

Suppose a set S is not (k1, α)-well-linked. We say that a
partition (X,Y) of S is a (k1, α)-violating partition, iff there
are two subsets T1 ⊆ out(X) ∩ out(S), T2 ⊆ out(Y) ∩
out(S) of edges with |T1| + |T2| ≤ k1, and |EG(X,Y)| <
α ·min {|T1|, |T2|}.

Definition 2. Given a graph G, a subset S of its vertices, a
parameter α > 0, and a subset Γ ⊆ out(S) of edges, we say
that S is α-well-linked for Γ, iff for any partition (A,B) of
S, |E(A,B)| ≥ α · min {|Γ ∩ out(A)|, |Γ ∩ out(B)|}. We
say that the set S is α-well-linked iff it is α-well-linked for
the set out(S) of edges.

Notice that if | out(S)| ≤ k1, then S is α-well-linked iff it
is (k1, α)-well-linked.

Similarly, if we are given a graph G and a subset T of its
vertices called terminals, we say that G is α-well linked
for T , iff for any partition (A,B) of V (G), |E(A,B)| ≥
α·min {|A ∩ T |, |B ∩ T |}. Notice that if G is α-well-linked
for T , then for any pair (T1, T2) of subsets of T with
|T1| = |T2|, we can efficiently find a collection P of paths,
P : T1 1:1

 d1/αe T2. This follows from the min-cut max-flow
theorem and the integrality of flow.

Chekuri, Khanna and Shepherd [16], [14] have shown
an efficient algorithm, that, given any EDP instance
(G,M), partitions it into a number of sub-instances
(G1,M1), . . . , (G`,M`), such that, on the one hand, each
instance Gi is 1-well-linked for the set of terminals par-
ticipating in Mi, and on the other hand, the sum of
the values of the optimal fractional solutions in all these
instances is Ω(OPT/ log2 k). Therefore, it is enough to find

a polylogarithmic approximation with congestion 2 in each
such sub-instance separately. We say an instance (G,M) is
a well-linked instance if, every vertex in G has degree at
most 4, every terminal has degree exactly 1 and participate
in exactly one pair inM, and G is 1-well-linked for the set
T of terminals. From the above arguments, we only need to
consider well-linked instances.

Sparsest Cut and the Flow-Cut Gap. Suppose we are given
a graph G = (V,E), and a subset T ⊆ V of k terminals. The
sparsity of a cut (S, S) in G is Φ(S) = |E(S,S)|

min{|S∩T |,|S∩T |} ,
and the value of the sparsest cut in G is defined to be:
Φ(G) = minS⊂V {Φ(S)}. The goal of the sparsest cut prob-
lem is, given an input graph G and a set T of terminals, to
find a cut of minimum sparsity. Arora, Rao and Vazirani [17]
have shown an O(

√
log k)-approximation algorithm for the

sparsest cut problem. We denote this algorithm by AARV,
and its approximation factor by αARV(k) = O(

√
log k).

A problem dual to sparsest cut is the maximum concurrent
flow problem. For the above definition of the sparsest cut
problem, the corresponding variation of the concurrent flow
problem asks to find the maximum value λ, such that every
pair of terminals can send λ/k flow units to each other
simultaneously with no congestion. The flow-cut gap is
the maximum ratio, in any graph, between the value of
the minimum sparsest cut and the maximum value λ of
concurrent flow. The value of the flow-cut gap in undirected
graphs, that we denote by β(k) throughout the paper, is
Θ(log k) [18], [19], [20], [21]. Therefore, if Φ(G) = α,
then every pair of terminals can send α

kβ(k) flow units
to each other with no congestion. Equivalently, every pair
of terminals can send 1/k flow units to each other with
congestion at most β(k)/α. Moreover, any matching on the
set T of terminals can be fractionally routed with congestion
at most 2β(k)/α.

Given a graph G, a subset S ⊆ V (G) of vertices, and
a subset Γ ⊆ out(S) of edges, we define an instance
SC(G,S,Γ) of the sparsest cut problem as follows. First,
we sub-divide every edge e ∈ Γ by a new vertex te,
and we let T (Γ) = {te | e ∈ Γ}. Let GS(Γ) be the sub-
graph of the resulting graph, induced by S ∪ T (Γ). The
instance SC(G,S,Γ) of the sparsest cut problem is defined
over the graph GS(Γ), where the vertices of T (Γ) serve
as terminals. Observe that for all α ≤ 1, the value of the
sparsest cut in SC(G,S,Γ) is at least α iff set S is α-well-
linked with respect to Γ in graph G. If Γ = outG(S), then
we will denote the corresponding instance of the sparsest
cut problem by SC(G,S).

Expanders and the Cut-Matching Game. We say that
a (multi)-graph G = (V,E) is an α-expander, iff
min S⊆V :

|S|≤|V |/2

{
|E(S,S)|
|S|

}
≥ α.

We use the cut-matching game of Khandekar, Rao and
Vazirani [22]. In this game, we are given a set V of N
vertices, where N is even, and two players: a cut player,
whose goal is to construct an expander X on the set V of
vertices, and a matching player, whose goal is to delay its
construction. The game is played in iterations. We start with
the graph X containing the set V of vertices, and no edges.
In each iteration j, the cut player computes a bi-partition
(Aj , Bj) of V into two equal-sized sets, and the matching
player returns some perfect matching Mj between the two
sets. The edges of Mj are then added to X . Khandekar,
Rao and Vazirani have shown that there is a strategy for
the cut player, guaranteeing that after O(log2N) iterations
we obtain a 1

2 -expander w.h.p. Subsequently, Orecchia et
al. [23] have shown the following improved bound:

Theorem 2 ([23]): There is a probabilistic algorithm for the
cut player, such that, no matter how the matching player
plays, after γCMG(N) = O(log2N) iterations, graph X is an
αCMG(N) = Ω(logN)-expander, with constant probability.

Parameters. We now define some global parameters that
will be used in our algorithm. Let γCMG = γCMG(k) =
O(log2 k) be the parameter for the number of iterations in
the cut-matching game from Theorem 2. Let γ = 224γ4CMG.
We will also use the following two parameters for well-
linkedness: α = 1

211γ log k = Ω
(

1
log9 k

)
, used to perform

the well-linked decomposition, and αWL = α
αARV(k)

=

Ω
(

1
log9.5 k

)
- the well-linkedness factor we achieve. We

use a parameter k1 = k
192γ3 log γ = k

poly log k , and we
assume that the parameter k is large enough, so k1 > 4/α
(otherwise we can simply route one demand pair to obtain
an O(poly log k)-approximation). We say that a cluster
C ⊆ V (G) is large iff | out(C)| ≥ k1, and small otherwise.

III. ALGORITHM OVERVIEW

Chekuri, Khanna and Shepherd [16], [14], [24] have sug-
gested the following high-level approach to solve EDP
instances (G,M), where G is well-linked for the terminals.
They start by defining a graph called a crossbar: a graph H
with a subset Y ⊆ V (H) of vertices is called a crossbar
with congestion c, iff any matching over the vertices of
Y can be routed with congestion at most c in H . They
then note that if we could show an algorithm that finds a
crossbar (H,Y) in graph G, with |Y | = k/ poly log k, and
constant congestion, then we can obtain a polylogarithmic
approximation to EDPwC with constant congestion. An
algorithm for constructing such a crossbar with a constant
congestion follows from the recent work of [12].

We follow this approach, and define a structure that we call a
good crossbar, which gives slightly stronger properties than
the general crossbar defined above. The formal definition is
as follows (see Figure 1).

S1 S2
. . . Sγ

T1 T2 . . . Tk∗

t1 t2 · · · tk∗

Figure 1. A good crossbar

Definition 3. Given a well-linked instance (G,M) with
|M| = k and a parameter k∗ = k/ poly log k, a good
crossbar consists of the following three components:

1) A family S∗ =
{
S∗1 , . . . , S

∗
γCMG

}
of disjoint subsets of

non-terminal vertices. Each set S∗j ∈ S∗ is associated
with a subset Γ∗j ⊆ out(S∗j) of 2k∗ edges, and S∗j is
1-well-linked for Γ∗j .

2) A subset M∗ ⊆ M of k∗ demand pairs. Let T ∗ =
T (M∗) be the corresponding set of terminals.

3) A collection τ∗ = {T1, . . . , T2k∗} of trees in graph
G. Each tree Ti ∈ τ∗, contains a distinct terminal
ti ∈ T ∗, and for each 1 ≤ j ≤ γCMG, tree Ti contains
a distinct edge ei,j ∈ Γ∗j . In other words, T ∗ =
{t1, . . . , t2k∗}, where ti ∈ Ti for each 1 ≤ i ≤ 2k∗;
and for each 1 ≤ j ≤ γCMG, Γ∗j = {e1,j , . . . , e2k∗,j},
where ei,j ∈ Ti for each 1 ≤ i ≤ 2k∗.

We say that the congestion of the good crossbar is c iff every
edge of G participates in at most c trees in τ∗, while every
edge in

⋃γCMG
j=1 E(S∗j) belongs to at most c− 1 such trees.

Chuzhoy [12] has implicitly defined a good crossbar, and
has shown that, given a good crossbar that causes con-
gestion c, there is an efficient randomized algorithm to
route Ω(k∗/ poly log k) demand pairs with congestion at
most c in graph G. This algorithm uses the cut-matching
game of Khandekar, Rao and Vazirani [22] to embed an
expander into G, and then finds a routing in this expander
using the algorithm of Rao and Zhou [15]. She has also
shown an efficient algorithm for constructing a good cross-
bar with congestion 14, thus obtaining an O(poly log k)-
approximation with congestion 14 for EDPwC.

We follow a similar approach here, except that we construct
a good crossbar with congestion 2. Our main result is the
following theorem:

Theorem 3: Assume we are given a well-linked instance
(G,M) with |M| = k. Then there is an efficient randomized
algorithm, that w.h.p outputs: (i) either a subset M′ ⊆ M
of k/ poly log k demand pairs and the routing of the pairs
in M′ with congestion at most 2 in G; or (ii) a good
congestion-2 crossbar (S∗,M∗, τ∗).

Combining this with the result of [12], we obtain an
O(poly log k)-approximation to EDPwC with congestion 2.
From now on we focus on proving Theorem 3.

We now provide a high-level overview of the construction
of the good crossbar of [12], and the barriers that need to
be overcome to reduce the congestion to 2. The algorithm
of [12] consists of three steps. In the first step, we construct
a family R = {S1, . . . , Sγ} of disjoint clusters in G \ T ,
where each cluster Sj is associated a set Γj ⊆ out(Sj) of
k∗ = k/poly log k edges, for which Sj is 1-well-linked.
Additionally, for every 1 ≤ j ≤ γ, we are given a flow
Fj , sending k∗/2 flow units from Γj to the terminals in T .
A family R of vertex subsets that has these properties is
called a good family of vertex subsets. In the second step,
we construct a family τ ′ = {T ′1, . . . , T ′k∗} of trees, where
every tree Ti ∈ τ ′ contains a distinct terminals ti ∈ T , and
a distinct edge ei,j ∈ Γj for each 1 ≤ j ≤ γ. However, the
terminals in set T ′ = {ti | Ti ∈ τ ′} do not necessarily form
source-sink pairs in M. In order to construct the trees in
τ ′, consider the graph G′ obtained from G by the following
operations: for every 1 ≤ j ≤ γ, add a super-node vj ; for
every e ∈ Γj , connect vj to the end-point of e that is not
in Sj . Then the problem of finding the set τ ′ of trees is
similar to the problem of packing Steiner trees in G′, with
Steiner nodes being V (G′)\{v1, v2, · · · , vγ}. The existence
of the flows {Fj}γj=1 can be viewed as evidence for the
existence of the set τ ′ of trees in G′, and we can use existing
algorithms to find it. The well-linkedness of the sets Sj ∈ R
is then exploited to simulate the super-nodes vj , in order
to construct a collection τ ′ of trees in the original graph.
Finally, in the third step, we select a subset M∗ ⊆ M of
k∗/2 demand pairs, and connect all terminals participating
in the pairs in M∗ to the terminals in set T ′. The union of
these new paths with the trees in τ ′ gives the final collection
τ of trees.

There are several factors contributing to the accumulation of
congestion in this construction. We mention the main two
barriers to reducing the congestion to 2 here.

The first problem is that we have used each cluster Sj twice
in constructing the set τ ′ of trees: once for packing the
Steiner-trees and once for simulating the super nodes vj .
It seems that this is unavoidable from the properties of R:
on the one hand, we have to use Sj to simulate vj ; on the
other hand, we cannot remove the clusters Sj from G′ since
the flows Fj′ from Γj′ to T , for j′ 6= j, might use Sj .

The second problem is that step 2 and step 3 are executed
separately, each contributing to the total congestion. It
appears that one has to incur a congestion of at least 2 when
constructing the set τ ′ of trees, using current techniques. If
the terminals in set T ′ do not form demand pairs in M,
then we need to additionally select a subset M∗ ⊆ M of
the demand pairs, and to route the terminals participating in

M∗ to the terminals of T ′, thus increasing the congestion
beyond 2.

In order to find a good family F of vertex subsets, the
algorithm of [12] performs a number of iterations. In each
iteration we start with what is called a legal contracted
graph G′. This graph is associated with a collection C of
disjoint subsets of non-terminal vertices of G, such that
each set C ∈ C is well-linked for out(C), and G′ is
obtained from G by contracting every cluster C ∈ C into
a super-node. Additionally, we require that for each cluster
C ∈ C, | out(C)| is small. We call such a clustering C a
good clustering. At the beginning of the algorithm, C = ∅
and G′ = G. In every iteration, given a legal contracted
graph G′, the algorithm either computes a good family F of
vertex subsets, or produces a new legal contracted graph G′′,
containing strictly fewer vertices than G′. This guarantees
that after n iterations, the algorithm produces a good family
F of vertex subsets.

In order to overcome the two problems mentioned above
and avoid accumulating the congestion, we combine all
three steps of the algorithm together. We define a potential
function ϕ over collections C of disjoint non-terminal vertex
subsets, where ϕ(C) roughly measures the number of edges
in the graph obtained from G by contracting every cluster in
C into a super-node. The potential function ϕ has additional
useful properties, that allow us to perform a number of
standard operations (such as the well-linked decomposition)
on the clusters of C, without increasing the potential value.

Our algorithm also consists of a number of iterations (that
we call phases). In each such phase, we start with some legal
contracted graph G′ and a corresponding good clustering
C′. We then either construct a good crossbar, or produce
a new good clustering C′′ with ϕ(C′′) < ϕ(C′), together
with the corresponding new legal contracted graph G′′. Each
phase is executed as follows. We start with some clustering
C∗ of the vertices of G, where ϕ(C∗) < ϕ(C′), but C∗
is not necessarily a good clustering. We then perform a
number of iterations. In each iteration, we select a family
F = {S1, . . . , Sγ} of disjoint subsets of non-terminal
vertices, that we treat as a potential good family vertex
subsets, and we try to find a subsetM∗ ⊆M of k∗ demand
pairs and a family τ of trees, to complete the construction
of a good crossbar. If we do not succeed in constructing
a good crossbar in the current iteration, then we use the
family F of vertex subsets to refine the current clustering C∗,
such that the potential of the new clustering goes down by
a significant amount. This ensures that after polynomially-
many iterations, we will succeed in either constructing a
good crossbar, or a good clustering C∗ with ϕ(C∗) < ϕ(C′).

This combination of all three steps of the algorithm of [12]
appears necessary to overcome the two barriers described
above. For example, it is possible that the family F of vertex

subsets is a good family, but we are still unable to extend it to
a good crossbar (for example because of the problem of the
paths in Pj using the edges of G[Sj′], as described above).
Still, we will be able to make progress in such cases by
refining the current clustering C∗. Similarly, we construct the
trees and connect the terminals participating in pairs inM∗
to them simultaneously, to avoid accumulating congestion.
Again, whenever we are unable to do so, we will be able to
refine the current clustering C∗.
In the following section we define several types of cluster-
ings the algorithm uses, the notion of the legal contracted
graphs, and several operations on a given clustering, that are
used throughout the algorithm.

IV. VERTEX CLUSTERINGS AND LEGAL CONTRACTED
GRAPHS

In this section we define several types of vertex clusterings
that the algorithm uses, the notion of the legal contracted
graph, and several operations on a given clustering, that are
used throughout the algorithm.

Definition 4. Given a partition C of the vertices of V (G)
into clusters, we say that C is an acceptable clustering of G
iff:

• Every terminal t ∈ T is in a separate cluster, that is,
{t} ∈ C;

• Each small cluster C ∈ C is αWL-well-linked; and
• Each large cluster C ∈ C is a connected component.

An acceptable clustering that contains no large clusters is
called a good clustering.

Definition 5. Given a good clustering C of G, let HC be the
graph obtained from G by contracting every cluster C ∈ C
into a super-node vC (remove self-loops, but keep parallel
edges). Then we say that HC is the legal contracted graph
of G associated with C.

The following claim was proved in [12]; the proof is omitted
here.

Claim 1: If G′ is a legal contracted graph for G, then G′\T
contains at least k/3 edges.

Potential Function on Clusterings. Given any clustering
C of the vertices of G, we define a potential ϕ(C) for this
clustering. For any integer h, we define ϕ(h) as follows. For
h < k1, ϕ(h) = 4α log h. In order to define ϕ(h) for h ≥ k1,
we consider the sequence {n0, n1, . . .} of numbers, where
ni =

(
3
2

)i
k1. The potentials for these numbers are ϕ(n0) =

ϕ(k1) = 4α log k1 + 4α, and for i > 0, ϕ(ni) = 4αk1ni +
ϕ(ni−1). Notice that for all i, ϕ(ni) ≤ 12α + 4α log k1 ≤
8α log k1 ≤ 1

28γ .

We now partition all integers h > k1 into sets S1, S2, . . .,
where set Si contains all integers h with ni−1 ≤ h < ni.
For h ∈ Si, we define ϕ(h) = ϕ(ni−1). This finishes the
definition of potentials of integers. Clearly, for all h, ϕ(h) ≤
1

28γ .

Assume now that we are given some edge e ∈ E. If both
endpoints of e belong to the same cluster of C, then we set
its potential ϕ(e) = 0. Otherwise, if e = (u, v), and u ∈ C
with | out(C)| = h, while v ∈ C ′ with | out(C ′)| = h′, then
we set ϕ(e) = 1 + ϕ(h) + ϕ(h′). We think of ϕ(h) as the
contribution of u, and ϕ(h′) the contribution of v to ϕ(e).
Notice that ϕ(e) ≤ 1.1. Finally, we set ϕ(C) =

∑
e∈E ϕ(e).

Well-linked decomposition of small clusters. Suppose we
are given any partition C of V (G). Our first step is to show
that we can perform a well-linked decomposition of small
clusters in C, without increasing the potential. The proof of
the following theorem is omitted due to lack of space.

Theorem 4: Let C be any partition of V (G), and let C ∈ C
be any small cluster, such that G[C] is connected. Then there
is an efficient algorithm that finds a partition W of C into
small clusters, such that each cluster R ∈ W is αWL-well-
linked, and additionally, if C′ is a partition obtained from
C by removing C and adding the clusters of W to it, then
ϕ(C′) ≤ ϕ(C).

We denote the procedure given by Theorem 4 by
DECOMPOSE(C).

Given an acceptable clustering C of G, we define two
operations on C, each of which produces a new acceptable
clustering of G, whose potential is at most ϕ(C)− 2.

Operation 1: Partitioning a large cluster. Suppose we
are given an acceptable clustering C of G, a large cluster
C ∈ C, and a (k1, α)-violating partition (X,Y) of C.
Then PARTITION(C, C,X, Y) returns a new acceptable
clustering C′. In this operation, we first replace C with X
and Y in C. Additionally, if any of the clusters X and Y
become small, we perform the operation DECOMPOSE on
that cluster and update C with the resulting partitioning.
Clearly, the final clustering C′ is an acceptable clustering.
The proof of the following claim is omitted due to lack of
space.

Claim 2: Let C′ be the clustering returned by the operation
PARTITION(C, C,X, Y). Then ϕ(C′) ≤ ϕ(C)− 2.

Operation 2: Separating a large cluster. Let C ∈ C be a
large cluster in an acceptable clustering C. Assume further
that we are given a cut (A,B) in graph G, with C ⊆ A,
T ⊆ B, and |EG(A,B)| < k1/2. We perform the following
operation, that we denote by SEPARATE(C, C,A).

Consider some cluster S ∈ C. If S is a small cluster, but
S \A is a large cluster, then we modify A by removing all

vertices of S from it. Notice that in this case, the number of
edges in E(S) that originally contributed to the cut (A,B),
|E(S∩A,S∩B)| > | out(S)∩E(A)| must hold, so | out(A)|
only goes down as a result of this modification. We assume
from now on that if S ∈ C is a small cluster, then S \A is
also a small cluster. We build a new partition C′ of V (G) as
follows. First, we add every connected component of G[A]
to C. Notice that all these clusters are small, as | out(A)| <
k1/2. Next, for every cluster S ∈ C, such that S \A 6= ∅, we
add every connected component of G[S \ A] to C′. Notice
that every terminal t ∈ T is added as a separate cluster to
C′. In our final step, we replace every small cluster C ∈ C′
with the clusters produced by DECOMPOSE(C). Let C′′ be
the resulting acceptable clustering. Notice that if S ∈ C′′ is
a large cluster, then there must be some large cluster S′ in
the original partition C with S ⊆ S′.
Claim 3: Let C′′ be the clustering returned by the operation
SEPARATE(C, C,A). Then ϕ(C′′) ≤ ϕ(C)− 1.

Proof: In order to prove the claim, it is enough to prove
that ϕ(C′) ≤ ϕ(C) − 1, by Theorem 4. We can bound the
changes in the potential as follows:

• Every edge in out(A) contributes at most 1.1 to the
potential of C′′, and there are at most k1−12 such edges.
These are the only edges whose potential in C′′ may be
higher than their potential in C.

• Every edge in out(C) contributed at least 1 to the
potential of C′, and there are at least k1 such edges,
since C is a large cluster.

Therefore, the decrease in the potential is at least k1 −
1.1(k1−1)

2 ≥ 1.

V. THE ALGORITHM

In this section we prove Theorem 3, by providing an efficient
randomized algorithm, that w.h.p. either computes a subset
M′ ⊆ M of k/ poly log k demand pairs and their routing
with congestion at most 2 in G, or finds a good congestion-2
crossbar in G.

We maintain, throughout the algorithm, a good clustering
C of G. Initially, C is a partition of V (G), where every
vertex of G belongs to a distinct cluster, that is, C =
{{v} | v ∈ V (G)}. Clearly, this is a good clustering. We
then perform a number of phases. Each phase is executed
as follows.

For simplicity let, G′ = HC be the legal contracted graph
of G associated with C. Let m be the number of edges in
G′ \ T . From Claim 1, m ≥ k/3. As a first step of each
phase, we randomly partition the vertices in G′ \ T into
γ subsets X1, . . . , Xγ , where each vertex v ∈ V (G′) \ T
selects an index 1 ≤ j ≤ γ independently uniformly at
random, and is then added to Xj . We need the following

claim, that appeared in [12]; we omit the proof here due to
lack of space.

Claim 4: With probability at least 1
2 , for each 1 ≤ j ≤ γ,

| outG′(Xj)| < 10m
γ , while |EG′(Xj)| ≥ m

2γ2 .

We repeat the randomized partitioning procedure until the
conditions of Claim 4 hold (which can be checked effi-
ciently). From Claim 4, we are guaranteed to obtain the
desired partition after poly(n) iterations w.h.p. Assume now
that we are given a partition X1, . . . , Xγ of V (G′) \ T ,
for which the conditions of Claim 4 hold. Then for each
1 ≤ j ≤ γ, |EG′(Xj)| > | outG′ (Xj)|

20γ . Let X ′j ⊆ V (G)\T be
the set obtained from Xj , after we un-contract each cluster,
that is, for each super-node vC ∈ Xj , we replace vC with
the vertices of C. Notice that

{
X ′j
}γ
j=1

is a partition of
V (G) \ T .

Recall that C is the current good clustering of the vertices
of G, and every cluster C ∈ C is either contained in X ′j ,
or it is disjoint from it. For each 1 ≤ j ≤ γ, we construct
an acceptable clustering Cj of G as follows. Initially, Cj
is just the clustering obtained from C by replacing the
clusters contained in X ′j with the connected components
of X ′j . If any of these components C ′ is a small cluster,
then we replace it with the collection of clusters returned by
procedure DECOMPOSE(C ′). Clearly, Cj is an acceptable
clustering, with the following property:

P1) If C ∈ Cj is a large cluster, then C ⊆ X ′j .

We need the following claim that bounds the potential of
the clustering Cj .
Claim 5: For each 1 ≤ j ≤ γ, ϕ(Cj) ≤ ϕ(C)− 1.

Proof: Let C′j be the partition of V (G), obtained as
follows: we add to C′j all clusters C ∈ C with C ∩Xj = ∅,
and we add all connected components of G[Xj] to C′j (that
is, C′j is obtained like Cj , except that we do not perform
well-linked decompositions of the small clusters). From
Theorem 4, it is enough to prove that ϕ(C′j) ≤ ϕ(C) − 1.
The changes of the potential from C to C′j can be bounded
as follows:

• The edges in EG′(Xj) contribute at least 1 to ϕ(C) and
contribute 0 to ϕ(C′j).

• The potential of edges in outG(X ′j) may increase. The
increase is at most ϕ(n) ≤ 1

28γ per edge. So the total

increase is at most | outG′ (Xj)|28γ ≤ |EG′ (Xj)|4 . These are
the only edges whose potential may increase.

Overall, the decrease in the potential is at least |EG′ (Xj)|2 ≥
m
4γ2 ≥ k

12γ2 ≥ 1.

If there is some 1 ≤ j ≤ γ such that Cj is a good partition,
then we replace C with Cj and start a new phase. Otherwise,
we select any large cluster Sj ∈ Cj for each 1 ≤ j ≤

γ. We then consider the resulting collection S1, . . . , Sγ of
large clusters, and try to exploit them to construct a good
crossbar. Notice that for each 1 ≤ j ≤ γ, Sj ⊆ X ′j , the sets
S1, . . . , Sγ are mutually disjoint and they do not contain
terminals, due to Property (P1). Our algorithm then uses the
following theorem, whose proof appears in the following
section:

Theorem 5: Suppose we are given a family R =
{S1, S2, · · · , Sγ} of disjoint large clusters in G \ T . Then
there is an efficient randomized algorithm, that w.h.p. com-
putes one of the following:

• Either a subset M′ ⊆ M of k/ poly log k demand
pairs, and a routing of pairs in M′ with congestion
at most 2 in G;

• Or a good congestion-2 crossbar (S∗,M∗, τ∗);
• Or a (k1, α)-violating partition (X,Y) of Sj , for some

1 ≤ j ≤ γ;
• Or a cut (A,B) in G with Sj ⊆ A, T ⊆ B and
|EG(A,B)| < k1/2, for some 1 ≤ j ≤ γ.

We apply the algorithm in Theorem 5 to the current fam-
ily {S1, S2, · · · , Sγ} of vertex subsets. If the algorithm
returns either a routing of M′, or a good congestion-2
crossbar, then we terminate the algorithm. Otherwise, we
apply the appropriate action: PARTITION(Cj , Sj , X, Y), or
SEPARATE(Cj , Sj , A) to obtain a new partition C′j with
ϕ(C′j) ≤ ϕ(Cj) − 1. Moreover, it is easy to see that this
new clustering also has Property (P1): if the PARTITION
operation is performed, then we only partition existing
clusters; if the SEPARATE operation is performed, then the
only large clusters in the new partition C′j are subsets of
large clusters in Cj .
If all clusters in C′j are small, then we replace C with C′j
and start a new phase. Otherwise, we replace Cj with C′j ,
let Sj be any large subset in the new partition Cj , and
apply Theorem 5 to the new collection {S1, . . . , Sγ} of
clusters, which are again guaranteed to be disjoint due to
Property (P1). Notice that every time we apply Theorem 5,
we reduce the potential of some clustering Cj by at least
1. Therefore, after applying the theorem polynomially many
times, we are guaranteed to terminate the current phase of
the algorithm, obtaining either a good clustering C′ with
ϕ(C′) ≤ ϕ(C) − 1, or a good congestion-2 crossbar, or a
routing of a subset M′ of Ω(k/ poly log k) demand pairs
with congestion at most 2.

In each phase, the potential of the clustering C is decreased
by at least 1. Therefore, the algorithm terminates after a
polynomial number of phases. In order to complete the proof
of Theorem 3, it is now enough to prove Theorem 5.

VI. PROOF OF THEOREM 5

Throughout the algorithm, we will sometimes be interested
in routing flow across the sets Sj ∈ R. Specifically, given
two subsets Γ,Γ′ ⊆ out(Sj) of edges, with |Γ| = |Γ′| ≤
k1/2, we will be interested in routing integrally the edges of
Γ to the edges of Γ′ inside Sj , with congestion at most 1/α.
In other words, we will be looking for a set P : Γ

1:1
 d1/αe Γ′

of paths contained in Sj . Notice that if such a set does not
exist, then we can find a (k1, α)-violating partition (X,Y)
of Sj , by using the min-cut max-flow theorem. We can then
return this partition and terminate the algorithm. Therefore,
in order to simplify the exposition of the algorithm, we will
assume that whenever the algorithm attempts to find such a
set P of paths, it always succeeds.

We start by verifying that for each 1 ≤ j ≤ γ, the vertices
of Sj can send k1/2 flow units with no congestion to the
terminals. If this is not the case for some set Sj , then there
is a cut (A,B) with Sj ⊆ A, T ⊆ B and |EG(A,B)| <
k1/2. We then return the partition (A,B) of G and finish
the algorithm. From now on we assume that each set Sj can
send k1/2 flow units with no congestion to the terminals.

The rest of the proof consists of three steps. In the first step,
we construct a degree-3 tree T̃ , whose vertex set is V (T̃) =
{vS | S ∈ R′}, for a large enough family R′ ⊆ R of vertex
subsets, and each edge e = (vS , vS′) in tree T̃ corresponds
to a collection Pe of paths in G, connecting the vertices of
S to the vertices of S′. Moreover, we will ensure that the
paths in

⋃
e∈E(T̃) Pe only cause congestion 2 in G. In the

second step, we find a subsetM∗ ⊆M of the demand pairs,
and route the terminals in T (M∗) to the vertices of S ∪S′,
where (S, S′) is some pair of vertex subsets in R′. In the
final third step, we construct a good congestion-2 crossbar.
We only provide a sketch of the three steps, omitting the
proofs of Theorem 6, 7 and 8. The complete proof appears
in the full version of the paper.

A. Step 1: Constructing the Tree T̃

This step is summarized in the following theorem.

Theorem 6: There is an efficient algorithm, that either com-
putes a (k1, α)-violating partition of some set Sj ∈ R, or
finds a subset R′ ⊆ R of size r = 8γCMG, a tree T̃ of
maximum degree 3 with vertex set V (T̃) = {vS | S ∈ R′},
and a collection Pe of k2 = Ω

(
k1α·αWL
γ3.5

)
paths in G for

every edge e ∈ E(T̃), such that:

• For each edge e = (vS , vS′) ∈ E(T̃), every path P ∈
Pe connects a vertex of S to a vertex of S′, and does
not contain the vertices of

⋃
Sj∈R′ Sj as inner vertices.

• The paths in
⋃
e∈E(T̃) Pe cause congestion 2 in G.

B. Step 2: connecting the terminals

To simplify the notation, assume that R′ = {S1, . . . , Sr}.
In this step we connect a subset of terminals to two subsets
S, S′ ∈ {S1, . . . , Sr}, using the following theorem.

Theorem 7: There is an efficient algorithm, that either finds
a routing of a subset M′ ⊆ M of k/poly log k demand
pairs via edge-disjoint paths in G, or finds the following:

• A subset M1 ⊆ M of k4 = Ω(k2/r
2) demand pairs

and a partition of T (M1) into two subsets T ′1 , T ′′1 of
size k4 such that for each pair (s, t) ∈M1, s ∈ T ′1 , t ∈
T ′′1 or vice versa,

• A sub-tree T ∗ of T̃ of size r′ ≥ 2γCMG with V (T ∗) =
{vS′′ : S′′ ∈ R′′} for some R′′ ⊆ R′, a vertex vS′ of
degree at most 2, and a vertex vS of degree 1 in T ∗

(possibly vS = vS′),
• Two sets P ′1 : T ′1

1:1
 out(S), P ′′1 : T ′′1

1:1
 out(S′) of

paths in G, and
• For each edge e ∈ E(T ∗) ⊆ E(T̃), a subset P ′e ⊆ Pe

of bk2/2c paths.

Moreover, paths in P ′1 ∪ P ′′1 ∪
(⋃

e∈E(T∗) P ′e
)

do not

contain any vertices of
⋃
vS̃∈V (T∗) S̃ as inner vertices, and

they cause congestion 2 in G. Additionally, every edge in
out(S) ∪ out(S′) is used by at most one path in the set.

C. Step 3: Building the Good Crossbar

Assume w.l.o.g R′′ = {S1, . . . , Sr′}, where r′ ≥ 2γCMG.
Consider some set Sj ∈ R′′, and let P be any collection of
paths in G. We denote by Γj(P) ⊆ out(Sj) the multi-set of
edges, that appear as the first or the last edge on any path
in P . We use the following theorem:

Theorem 8: There is an efficient algorithm, that either com-
putes a subsetM′ ⊆M1 of k/ poly log k demand pairs and
their routing with congestion at most 2 in G, or a (k1, α)-
violating partition of some set Sj ∈ R′′, or it computes, for
each edge e ∈ E(T ∗), a subset P ′′e ⊆ P ′e of k5 = Ω(α2

WLk2)
paths, and two subsets P ′2 ⊆ P ′1,P ′′2 ⊆ P ′′1 , such that:

• Each set Sj ∈ R′′ is 1-well-linked for the set Γj(P ′)
of edges, where P ′ = P ′2 ∪ P ′′2 ∪

(⋃
e∈E(T∗) P ′′e

)
.

• There is a subset M2 ⊆M1 of size Ω(α2
WL) · |M1| =

Ω(α2
WL · k4) demand pairs such that P ′2 : T ′2

1:1
 out(S)

and P ′′2 : T ′′2
1:1
 out(S′), where T ′2 = T ′1 ∩ T (M2)

and T ′′2 = T ′′1 ∩ T (M2).

Let k6 = |M2| = Ω(α2
WL)k4. Notice that 2k6 < k5. For

each edge e ∈ E(T ∗), while |P ′′(e)| > 2k6, we discard
arbitrary paths from P ′′(e), until |P ′′(e)| = 2k6 holds. We
now assume that |P ′′(e)| = 2k6 for all e ∈ E(T ∗), and
recall that |P ′2|, |P ′′2 | = k6.

We are now ready to define the good crossbar in graph G.
Let S∗ contain all sets Sj , where the degree of vertex vj
in tree T ∗ is either 1 or 2 (excluding the set S). Notice
that at least half the vertices of T ∗ must have this property,
and therefore, |S∗| ≥ γCMG. If |S∗| > γCMG, then we discard
vertex subsets from S∗ arbitrarily, until |S∗| = γCMG holds.

Instead of defining the set τ∗ of 2k6 trees explicitly, we
specify a set of paths in graph G, whose disjoint union will
give the collection τ∗ of trees. First, all the paths in P ′2 ∪
P ′′2 ∪

(⋃
e∈E(T∗) P ′′e

)
are included to construct τ∗.

Consider some degree-2 vertex vj of T ∗. Let e, e′ be the two
edges incident to vj in T ∗, and Γ,Γ′ ⊆ out(Sj) be the sets
of edges lying on the paths P ′′e and P ′′e′ , respectively. Since
Sj is 1-well-linked for Γ∪Γ′, we can find a setQj : Γ

1:1
 1 Γ′

of paths contained in Sj . Then, paths in Qj are included to
construct τ∗.

For a degree-3 vertex vj of T ∗, define e, e′, e′′ and
Γ,Γ′,Γ′′ ⊆ out(Sj) in the same way. Then, we can find
2 sets Qj : Γ

1:1
 1 Γ′ and Q′j : Γ

1:1
 1 Γ′′ of paths in Sj . The

paths in Qj and Q′j are included to construct τ∗.

Notice that the included paths already form 2k6 trees. The
remaining task is to connect the 2k6 terminals to the 2k6
trees.

We first consider the case S = S′. Let e be the unique edge
incident on vS in tree T ∗ (recall that vS′ has degree 1 in T ∗).
Let Γ ⊆ out(S) be the subset of edges lying on the paths
in P ′′e , and Γ′ ⊆ out(S) be the subset of edges lying on the
paths in P ′2∪P ′′2 . We can then find a set Q(v) : Γ

1:1
 1 Γ′ of

paths in set S. The paths in Q(v) are included to construct
τ∗.

For the case S 6= S′, let e be some edge incident to vS
and e′ be the unique edge incident to vS′ in tree T ∗. Let
Γ1 ⊆ out(S) be the subset of edges lying on the paths in
P ′2 and Γ2 ⊆ out(S) be the subset of edges lying on the
paths in P ′′e . Let Γ′1 ⊆ out(S′) be the subset of edges lying
on the paths in P ′′2 and Γ′2 ⊆ out(S) be the subset of edges
lying on the paths in P ′′e′ . Notice that |Γ1| = |Γ′1| = k6 and
|Γ2| = |Γ′2| = 2k6. We discard some edges in Γ2 and Γ′2 so
that |Γ2| = |Γ′2| = k6. Since S is 1-well-linked for Γ1 ∪ Γ2

and S′ is 1-well-linked for Γ′1 ∪ Γ′2, we can find 2 sets of
paths Q : Γ1

1:1
 1 Γ2 and Q′ : Γ′1

1:1
 1 Γ′2. Q and Q′ are

included to construct τ∗. We discard edges in Γ2 and Γ′2
in such a way that each tree in τ ′ will contain exactly 1
terminal in T (M2).

We have included all the paths that constitute τ∗. It is easy
to check that the paths form 2k6 trees, each containing a
distinct terminal in T (M2). Moreover, the 2k6 trees cause
congestion 2 in G; each edge inside any cluster S ∈ S∗
is used at most once by τ∗. The final good crossbar is
(S∗,M∗ =M2, τ

∗).

REFERENCES

[1] N. Robertson and P. D. Seymour, “Outline of a disjoint paths
algorithm,” in Paths, Flows and VLSI-Layout. Springer-
Verlag, 1990.

[2] R. Karp, “Reducibility among combinatorial problems,”
in Complexity of Computer Computations, R. Miller and
J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[3] C. Chekuri, S. Khanna, and F. B. Shepherd, “An O(
√
n)

approximation and integrality gap for disjoint paths and
unsplittable flow,” Theory of Computing, vol. 2, no. 1, pp.
137–146, 2006.

[4] N. Garg, V. V. Vazirani, and M. Yannakakis, “Primal-dual
approximation algorithms for integral flow and multicut in
trees, with applications to matching and set cover,” in ICALP,
ser. Lecture Notes in Computer Science, A. Lingas, R. G.
Karlsson, and S. Carlsson, Eds., vol. 700. Springer, 1993,
pp. 64–75.

[5] M. Andrews and L. Zhang, “Hardness of the undirected edge-
disjoint paths problem,” in STOC, H. N. Gabow and R. Fagin,
Eds. ACM, 2005, pp. 276–283.

[6] M. Andrews, J. Chuzhoy, V. Guruswami, S. Khanna, K. Tal-
war, and L. Zhang, “Inapproximability of edge-disjoint paths
and low congestion routing on undirected graphs,” Combina-
torica, vol. 30, no. 5, pp. 485–520, 2010.

[7] P. Raghavan and C. D. Tompson, “Randomized
rounding: a technique for provably good algorithms
and algorithmic proofs,” Combinatorica, vol. 7,
pp. 365–374, December 1987. [Online]. Available:
http://portal.acm.org/citation.cfm?id=45291.45296

[8] Y. Azar and O. Regev, “Strongly polynomial algorithms for
the unsplittable flow problem,” in In Proceedings of the
8th Conference on Integer Programming and Combinatorial
Optimization (IPCO), 2001, pp. 15–29.

[9] A. Baveja and A. Srinivasan, “Approximation algorithms for
disjoint paths and related routing and packing problems,”
Mathematics of Operations Research, vol. 25, p. 2000, 2000.

[10] S. G. Kolliopoulos and C. Stein, “Approximating disjoint-
path problems using packing integer programs,” Mathematical
Programming, vol. 99, pp. 63–87, 2004.

[11] M. Andrews, “Approximation algorithms for the edge-disjoint
paths problem via Raecke decompositions,” in Proceedings
of the 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, 2010, pp. 277–286.

[12] J. Chuzhoy, “Routing in undirected graphs with constant
congestion,” in Proceedings of the 44th symposium on
Theory of Computing, 2012, pp. 855–874.

[13] K. Kawarabayashi and Y. Kobayashi, “Breaking O(n1/2)-
approximation algorithms for the edge-disjoint paths problem
with congestion two,” in STOC, L. Fortnow and S. P. Vadhan,
Eds. ACM, 2011, pp. 81–88.

[14] C. Chekuri, S. Khanna, and F. B. Shepherd, “Multicommodity
flow, well-linked terminals, and routing problems,” in STOC
’05: Proceedings of the thirty-seventh annual ACM sympo-
sium on Theory of computing. New York, NY, USA: ACM,
2005, pp. 183–192.

[15] S. Rao and S. Zhou, “Edge disjoint paths in moderately
connected graphs,” SIAM J. Comput., vol. 39, no. 5, pp. 1856–
1887, 2010.

[16] C. Chekuri, S. Khanna, and F. B. Shepherd, “The all-or-
nothing multicommodity flow problem,” in STOC, L. Babai,
Ed. ACM, 2004, pp. 156–165, a full version at
http://www.math.mcgill.ca/˜bshepherd/PS/all.pdf.

[17] S. Arora, S. Rao, and U. V. Vazirani, “Expander flows, geo-
metric embeddings and graph partitioning,” J. ACM, vol. 56,
no. 2, 2009.

[18] F. T. Leighton and S. Rao, “Multicommodity max-flow min-
cut theorems and their use in designing approximation algo-
rithms,” Journal of the ACM, vol. 46, pp. 787–832, 1999.

[19] N. Garg, V. Vazirani, and M. Yannakakis, “Approximate max-
flow min-(multi)-cut theorems and their applications,” SIAM
Journal on Computing, vol. 25, pp. 235–251, 1995.

[20] N. Linial, E. London, and Y. Rabinovich, “The geometry of
graphs and some of its algorithmic applications,” Proceedings
of 35th Annual IEEE Symposium on Foundations of Computer
Science, pp. 577–591, 1994.

[21] Y. Aumann and Y. Rabani, “An O(log k) approximate min-
cut max-flow theorem and approximation algorithm,” SIAM
J. Comput., vol. 27, no. 1, pp. 291–301, 1998.

[22] R. Khandekar, S. Rao, and U. V. Vazirani, “Graph partitioning
using single commodity flows,” in STOC, J. M. Kleinberg, Ed.
ACM, 2006, pp. 385–390.

[23] L. Orecchia, L. J. Schulman, U. V. Vazirani, and N. K.
Vishnoi, “On partitioning graphs via single commodity
flows,” in Proceedings of the 40th annual ACM symposium
on Theory of computing, ser. STOC ’08. New York,
NY, USA: ACM, 2008, pp. 461–470. [Online]. Available:
http://doi.acm.org/10.1145/1374376.1374442

[24] C. Chekuri, S. Khanna, and F. B. Shepherd, “Edge-disjoint
paths in planar graphs,” in Proceedings of the 45th Annual
IEEE Symposium on Foundations of Computer Science, ser.
FOCS ’04. Washington, DC, USA: IEEE Computer Society,
2004, pp. 71–80.

