
C 1

CSE 486/586, Spring 2013

CSE 486/586 Distributed Systems
Transactions on Replicated Data

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2013

Recap
•  Gossiping?
•  Dynamo

– Gossiping for membership and failure detection
– Consistent hashing for node & key distribution
– Object versioning for eventually-consistent data objects
– Quorums for partition/failure tolerance
– Merkel tree for resynchronization after failures/partitions

•  Causal consistency?
•  Eventual consistency?

2

CSE 486/586, Spring 2013

Optimistic Quorum Approaches
•  An Optimistic Quorum selection allows writes to

proceed in any partition.
•  “Write, but don’t commit”

– Unless the partition gets healed in time.

•  Resolve write-write conflicts after the partition heals.
•  Optimistic Quorum is practical when:

– Conflicting updates are rare
– Conflicts are always detectable
– Damage from conflicts can be easily confined
– Repair of damaged data is possible or an update can be

discarded without consequences
–  Partitions are relatively short-lived

3 CSE 486/586, Spring 2013

View-based Quorum
•  An optimistic approach
•  Quorum is based on views at any time

– Uses group communication as a building block (see
previous lecture)

•  We define thresholds for each of read and write :
– W: regular writer quorum
– R: regular reader quorum
–  Aw: minimum nodes in a view for write, e.g., Aw > N/4
–  Ar: minimum nodes in a view for read
–  E.g., Aw + Ar > N/2

•  Protocol
–  Try regular quorum first; if it doesn’t work, change the view.

If the minimum is satisfied, then proceed.
–  Aw & Ar effectively determine which partition can proceed.

4

CSE 486/586, Spring 2013

Example: View-based Quorum
•  Consider: N = 5, w = 5, r = 1, Aw = 3, Ar = 1

5

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Initially all nodes
are in!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Network is
partitioned!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

Read is initiated,
quorum is reached!

read!

1!
V1.0!

2!
V2.0!

3!
V3.0!

4!
V4.0!

5!
V5.0!

write is initiated,
quorum not reached!

w! X!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P1 changes view,
writes & updates
views!

w!

CSE 486/586, Spring 2013

Example: View-based Quorum
(cont'd)

6

• 

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

Partition is repaired!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P5 initiates read,
has quorum, reads
stale data!

r!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P3 initiates write,
notices repair!

w!

1!
V1.2!

2!
V2.2!

3!
V3.2!

4!
V4.2!

5!
V5.2!

Views are updated
to include P5; P5 is
informed of updates!

1!
V1.1!

2!
V2.1!

3!
V3.1!

4!
V4.1!

5!
V5.0!

P5 initiates write,
no quorum, Aw not
met, aborts.!

w
X
X
X
X

C 2

CSE 486/586, Spring 2013

Transactions on Replicated Data

7

B	

A	

Client + front end	

B	

B	

 B	

A	

 A	

getBalance(A)	

Client + front end	

Replica managers	

 Replica managers	

deposit(B,3);	

U	

T	

CSE 486/586, Spring 2013

Correctness with Replication
•  In a non-replicated system, transactions appear to be

performed one at a time in some order. This is
achieved by ensuring a serially equivalent
interleaving of transaction operations.

– Remember serial equivalence?

•  How can we achieve something similar with
replication? What do we want?

•  One-copy serializability: The effect of transactions
performed by clients on replicated objects should be
the same as if they had been performed one at a
time on a single set of objects (i.e., 1 replica per
object).

–  Equivalent to combining serial equivalence + replication
transparency/consistency

8

CSE 486/586, Spring 2013

Revisiting Atomic Commit
•  Participants need to agree on commit or abort.
•  One way: use two level nested 2PC

9

B	

B	

B	

 B	

Coordinator	

Replica managers	

canCommit?	

U	

canCommit?	

CSE 486/586, Spring 2013

Revisiting Atomic Commit
•  In the first phase, the coordinator sends the

canCommit? command to the participants, each of
which then passes it onto the other RMs involved
(e.g., by using view synchronous communication)
and collects their replies before replying to the
coordinator.

•  In the second phase, the coordinator sends the
doCommit or doAbort request, which is passed onto
the members of the groups of RMs.

10

CSE 486/586, Spring 2013

Primary Copy Replication
•  All the client requests are directed to a single primary

RM.
•  Concurrency control is applied at the primary.

–  Let’s assume we use strict two-phase locking.

•  To commit a transaction, the primary communicates
with the backup RMs and replies to the client.

•  Communication is view synchronous totally-ordered
group comm.

•  One-copy serializability
–  View synchronous TO group comm.
–  Strict two-phase locking at the primary

•  Disadvantage?
–  Performance is low since primary RM is bottleneck.

11 CSE 486/586, Spring 2013

CSE 486/586 Administrivia
•  PA2 grading done. Will post it today.
•  Anonymous feedback form still available.
•  Please come talk to me!

12

C 3

CSE 486/586, Spring 2013

Read One/Write All Replication
•  An FE (client front end) may communicate with any RM.
•  Every write operation must be performed at all of the RMs.
•  A read operation can be performed at any single RM.

13

B	

A	

Client + front end	

B	

B	

 B	

A	

 A	

getBalance(A)	

Client + front end	

Replica managers	

 Replica managers	

deposit(B,3);	

U	

T	

CSE 486/586, Spring 2013

Read One/Write All Replication
•  An FE (client front end) may communicate with any RM.

–  Use view synchronous TO group comm.

•  Every write operation must be performed at all of the RMs
–  Each contacted RM sets a write lock on the object.

•  A read operation can be performed at any single RM
–  A contacted RM sets a read lock on the object.

•  Serial equivalence
–  Any pair of write operations will require locks at all of the RMs
è not allowed

–  A read operation and a write operation will require conflicting
locks at some RM è not allowed

•  Consistency
–  Sequential consistency

•  Disadvantage?
–  Failures block the system (esp. writes).

14

CSE 486/586, Spring 2013

Available Copies Replication
•  A client's read request on an object can be

performed by any RM, but a client's update request
must be performed across all available (i.e., non-
faulty) RMs in the group.

•  As long as the set of available RMs does not change,
local concurrency control achieves one-copy
serializability in the same way as in read-one/write-all
replication.

•  May not be true if RMs fail and recover during
conflicting transactions.

15 CSE 486/586, Spring 2013

Available Copies Approach

16

A	

X	

Client + front end	

P	

B	

Client + front end	

Replica managers	

deposit(A,3);	

U	

T	

deposit(B,3);	

getBalance(B)	

getBalance(A)	

Replica managers	

Y	

M	

B	

N	

A	

B	

CSE 486/586, Spring 2013

The Impact of RM Failure
•  Assume that:

– RM X fails just after T has performed getBalance; and
– RM N fails just after U has performed getBalance.
–  Both failures occur before any of the deposit()'s.

•  Subsequently:
–  T's deposit will be performed at RMs M and P
– U's deposit will be performed at RM Y.

•  The concurrency control on A at RM X does not
prevent transaction U from updating A at RM Y.

•  Solution: Must also serialize RM crashes and
recoveries with respect to entire transactions.

17 CSE 486/586, Spring 2013

Local Validation
•  From T's perspective,

–  T has read from an object at X è X must have failed after T's
operation.

–  T observes the failure of N when it attempts to update the
object B è N's failure must be before T.

–  Thus: N fails à T reads object A at X; T writes objects B at M
and P à T commits à X fails.

•  From U's perspective,
–  Thus: X fails à U reads object B at N; U writes object A at Y à

U commits à N fails.
•  At the time T tries to commit,

–  it first checks if N is still not available and if X, M and P are still
available. Only then can T commit.

–  If T commits, U's validation will fail because N has already
failed.

•  Can be combined with 2PC.
•  Caveat: Local validation may not work if partitions occur in

the network

18

C 4

CSE 486/586, Spring 2013

Summary
•  Optimistic quorum
•  Distributed transactions with replication

– One copy serialization
–  Primary copy replication
– Read-one/write-all replication
–  Active copies replication

19 CSE 486/586, Spring 2013 20

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

