
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Distributed Hash Tables

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Last Time
•  Evolution of peer-to-peer

– Central directory (Napster)
– Query flooding (Gnutella)
– Hierarchical overlay (Kazaa, modern Gnutella)

•  BitTorrent
–  Focuses on parallel download
–  Prevents free-riding

2

CSE 486/586, Spring 2014

Today’s Question
•  How do we organize the nodes in a distributed

system?
•  Up to the 90’s

–  Prevalent architecture: client-server (or master-slave)
– Unequal responsibilities

•  Now
–  Emerged architecture: peer-to-peer
–  Equal responsibilities

•  Studying an example of client-server: DNS
•  Today: studying peer-to-peer as a paradigm

3 CSE 486/586, Spring 2014

What We Want
•  Functionality: lookup-response

4

P

P

P

P

P
P

P

E.g., Gnutella

CSE 486/586, Spring 2014

What We Don’t Want
•  Cost (scalability) & no guarantee for lookup

•  Napster: cost not balanced, too much for the server-
side

•  Gnutella: cost still not balanced, just too much, no
guarantee for lookup

5

Memory Lookup
Latency

#Messages
for a lookup

Napster O(1)
(O(N)@server)

O(1)

O(1)

Gnutella O(N) O(N) O(N)

CSE 486/586, Spring 2014

What We Want
•  What data structure provides lookup-response?
•  Hash table: data structure that associates keys with

values

•  Name-value pairs (or key-value pairs)
–  E.g., “http://www.cnn.com/foo.html” and the Web page
–  E.g., “BritneyHitMe.mp3” and “12.78.183.2”

6

Table Index Values

C 2

CSE 486/586, Spring 2014

Hashing Basics
•  Hash function

–  Function that maps a large, possibly variable-sized datum
into a small datum, often a single integer that serves to
index an associative array

–  In short: maps n-bit datum into k buckets (k << 2n)
–  Provides time- & space-saving data structure for lookup

•  Main goals:
–  Low cost
– Deterministic
– Uniformity (load balanced)

•  E.g., mod
–  k buckets (k << 2n), data d (n-bit)
–  b = d mod k
– Distributes load uniformly only when data is distributed

uniformly
7 CSE 486/586, Spring 2014

DHT: Goal
•  Let’s build a distributed system with a hash table

abstraction!

8

P

P

P

P

P P

P

lookup(key) value key value

CSE 486/586, Spring 2014

Where to Keep the Hash Table
•  Server-side à Napster
•  Client-local à Gnutella
•  What are the requirements?

– Deterministic lookup
–  Low lookup time (shouldn’t grow linearly with the system

size)
–  Should balance load even with node join/leave

•  What we’ll do: partition the hash table and distribute
them among the nodes in the system

•  We need to choose the right hash function
•  We also need to somehow partition the table and

distribute the partitions with minimal relocation of
partitions in the presence of join/leave

9 CSE 486/586, Spring 2014

Where to Keep the Hash Table
•  Consider problem of data partition:

– Given document X, choose one of k servers to use

•  Two-level mapping
– Map one (or more) data item(s) to a hash value (the

distribution should be balanced)
– Map a hash value to a server (each server load should be

balanced even with node join/leave)

10

CSE 486/586, Spring 2014

Using Basic Hashing?
•  Suppose we use modulo hashing

– Number servers 1..k

•  Place X on server i = (X mod k)
–  Problem? Data may not be uniformly distributed

11

Table Index Values

Server 0

Server 1

Server 15

Mod

CSE 486/586, Spring 2014

Using Basic Hashing?
•  Place X on server i = hash (X) mod k
•  Problem?

– What happens if a server fails or joins (k à k±1)?
– Answer: (Almost) all entries get remapped to new

nodes!

12

Table Index Values

Server 0

Server 1

Server 15

Hash

C 3

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA2 due in ~2 weeks
•  (In class) Midterm on Wednesday (3/12)

13 CSE 486/586, Spring 2014

Chord DHT
•  A distributed hash table system using consistent

hashing
•  Organizes nodes in a ring
•  Maintains neighbors for correctness and shortcuts for

performance
•  DHT in general

– DHT systems are “structured” peer-to-peer as opposed to
“unstructured” peer-to-peer such as Napster, Gnutella, etc.

– Used as a base system for other systems, e.g., many
“trackerless” BitTorrent clients, Amazon Dynamo, distributed
repositories, distributed file systems, etc.

14

CSE 486/586, Spring 2014

•  Represent the hash key space as a ring
•  Use a hash function that evenly distributes items over

the hash space, e.g., SHA-1
•  Map nodes (buckets) in the same ring
•  Used in DHTs, memcached, etc.

Chord: Consistent Hashing

15

0 1

Hash(IP_address) à node_id

Id space

represented

as a ring.

2128-1

Hash(name) à object_id

CSE 486/586, Spring 2014

Chord: Consistent Hashing
•  Maps data items to its “successor” node
•  Advantages

–  Even distribution
–  Few changes as

nodes come and go…

16

Hash(name) à object_id

Hash(IP_address) à node_id

CSE 486/586, Spring 2014

Chord: When nodes come and go…
•  Small changes when nodes come and go

– Only affects mapping of keys mapped to the node that
comes or goes

17

Hash(name) à object_id

Hash(IP_address) à node_id

CSE 486/586, Spring 2014

Chord: Node Organization
•  Maintain a circularly linked list around the ring

–  Every node has a predecessor and successor

18

node

pred

succ

C 4

CSE 486/586, Spring 2014

Chord: Basic Lookup
lookup (id):!
 if (id > pred.id &&!
 id <= my.id)!

return my.id;!
else!
!return succ.lookup(id);!

•  Route hop by hop via successors
– O(n) hops to find destination id

19

node

Lookup

Object ID

CSE 486/586, Spring 2014

Chord: Efficient Lookup --- Fingers
•  ith entry at peer with id n is first peer with:

–  id >=

20

€

n+ 2i(mod2m)

N80"
80 + 20!

80 + 21!
80 + 22!

80 + 23!

80 + 24!

80 + 25! 80 + 26!
i ft[i]

0 96

1 96

2 96

3 96

4 96

5 114

6 20

Finger Table at N80
N114"

N96"

N20"

CSE 486/586, Spring 2014

Finger Table
•  Finding a <key, value> using fingers

21

N86"

86 + 24!

N102"

N20"

20 + 26!

CSE 486/586, Spring 2014

Chord: Efficient Lookup --- Fingers
lookup (id):!
 if (id > pred.id &&!
 id <= my.id)!

return my.id;!
else!
!// fingers() by decreasing distance!

for finger in fingers():!
! if id >= finger.id!
 return finger.lookup(id);!
return succ.lookup(id);

•  Route greedily via distant “finger” nodes
– O(log n) hops to find destination id

22

CSE 486/586, Spring 2014

Chord: Node Joins and Leaves
•  When a node joins

– Node does a lookup on its own id
–  And learns the node responsible for that id
–  This node becomes the new node’s successor
–  And the node can learn that node’s predecessor (which will

become the new node’s predecessor)
•  Monitor

–  If doesn’t respond for some time, find new

•  Leave
– Clean (planned) leave: notify the neighbors
– Unclean leave (failure): need an extra mechanism to handle

lost (key, value) pairs

23 CSE 486/586, Spring 2014

Summary
•  DHT

– Gives a hash table as an abstraction
–  Partitions the hash table and distributes them over the

nodes
–  “Structured” peer-to-peer

•  Chord DHT
–  Based on consistent hashing
–  Balances hash table partitions over the nodes
–  Basic lookup based on successors
–  Efficient lookup through fingers

24

C 5

CSE 486/586, Spring 2014 25

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC), Michael
Freedman (Princeton), and Jennifer Rexford
(Princeton).

