
C 1

CSE 486/586, Spring 2013

CSE 486/586 Distributed Systems
Mid-Semester Overview

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2013

We’re at a Mid-Point: What We’ve
Discussed So Far
•  Main communication infrastructure: the Internet
•  Communication between two processes

–  Socket API
– RPC

•  Communication between multiple processes
– Multicast algorithms

•  Concept of time in distributed systems
•  Organization of distributed systems

–  Server-client
–  Peer-to-peer, DHTs

•  Impossibility of consensus
•  Distributed algorithms

–  Failure detection, global snapshots, mutual exclusion, leader
election

2

CSE 486/586, Spring 2013

The Other Half of the Semester
•  Distributed storage
•  Consensus algorithm: Paxos
•  BFT (Byzantine Fault Tolerance)
•  Security

3 CSE 486/586, Spring 2013

Data Centers

4

•  Buildings full of machines

CSE 486/586, Spring 2013

Data Centers
•  Hundreds of Locations in the US

5 CSE 486/586, Spring 2013

Inside
•  Servers in racks

– Usually ~40 blades per rack
–  ToR (Top-of-Rack) switch

•  Incredible amounts of engineering efforts
–  Power, cooling, etc.

6

C 2

CSE 486/586, Spring 2013

Inside
•  Network

7 CSE 486/586, Spring 2013

Inside
•  3-tier for Web services

8

CSE 486/586, Spring 2013

Web Services
•  Amazon, Facebook, Google, Twitter, etc.
•  World-wide distribution of data centers

–  Load balance, fault tolerance, performance, etc.

•  Replicated service & data
–  Each data center might be a complete stand-alone web

service. (It depends though.)

•  At the bare minimum, you’re doing read/write.
•  What needs to be done when you issue a read req?

–  Server selection

•  What needs to be done when you issue a write req?
–  Server selection
– Replicated data store management

9 CSE 486/586, Spring 2013

Server Selection Primer
•  Can happen at multiple places
•  Server resolution process: DNS -> External IP ->

Internal IP
•  DNS

10

www.facebook.com

69.63.187.17

69.63.187.18

69.63.187.19

California

www.facebook.com

69.63.181.11

69.63.181.12

North Carolina

CSE 486/586, Spring 2013

IP Anycast
•  BGP (Border Gateway Protocol) level

11

Hey, I know where
69.63.187.17 is…

in California

Hey, I know where
69.63.187.17 is…

in New York

CSE 486/586, Spring 2013

Inside
•  Load balancers

12

69.63.176.13

Web Servers

10.0.0.1 10.0.0.2 10.0.0.200

C 3

CSE 486/586, Spring 2013

Example: Facebook

13

69.63.176.13

69.63.176.14

Oregon

69.63.181.11

69.63.181.12

North Carolina

69.63.187.17

69.63.187.18

69.63.187.19

California

www.facebook.com

CSE 486/586, Spring 2013

Example: Facebook Geo-Replication
•  (At least in 2008) Lazy primary-backup replication
•  All writes go to California, then get propagated.
•  Reads can go anywhere (probably to the closest

one).
•  Ensure (probably sequential) consistency through

timestamps
–  Set a browser cookie when there’s a write
–  If within the last 20 seconds, reads go to California.

•  http://www.facebook.com/note.php?
note_id=23844338919

14

CSE 486/586, Spring 2013

Core Issue: Handling Replication
•  Replication is (almost) inevitable.

–  Failures, performance, load balance, etc.

•  We will spend most of our time looking at this in the
second half of the semester.

•  Data replication
– Read/write can go to any server.
– How to provide a consistent view? (i.e., what consistency

guarantee?) linearizability, sequential consistency, causal
consistency, etc.

– What happens when things go wrong?

•  State machine replication
– How to agree on the instructions to execute?
– How to handle failures and malicious servers?

15 CSE 486/586, Spring 2013

CSE 486/586 Administrivia
•  Midterm: 3/12 (Wednesday) in class

–  Everything up to leader election
–  1-page cheat sheet is allowed.

•  Best way to prepare
– Read the textbook & go over the slides.
– Go over the problems in the textbook.

16

CSE 486/586, Spring 2013

Banking Example (Once Again)
•  Banking transaction for a customer (e.g., at ATM or

browser)
–  Transfer $100 from saving to checking account
–  Transfer $200 from money-market to checking account
– Withdraw $400 from checking account

•  Transaction
1.  savings.deduct(100)
2.  checking.add(100)
3.  mnymkt.deduct(200)
4.  checking.add(200)
5.  checking.deduct(400)
6.  dispense(400)

17 CSE 486/586, Spring 2013

Wait…We’ve Seen This Before…
•  What are some things that can go wrong?

– Multiple clients
– Multiple servers

•  How do you solve this?
– Group everything as if it’s a single step

•  Where have we seen this?
– Mutual exclusion lecture

•  So, we’re done?
– No, we’re not satisfied.

18

C 4

CSE 486/586, Spring 2013

Why Not Satisfied?

•  Process 1

lock(mutex);
savings.deduct(100);
checking.add(100);
mnymkt.deduct(200);
checking.add(200);
checking.deduct(400);
dispense(400);
unlock(mutex);

•  Process 2

lock(mutex);
savings.deduct(100);
checking.add(100);
mnymkt.deduct(200);
checking.add(200);
checking.deduct(400);
dispense(400);
unlock(mutex);

19 CSE 486/586, Spring 2013

Why Not Satisfied?

 1. savings.deduct(100)
 2. checking.add(100)
 3. mnymkt.deduct(200)
 4. checking.add(200)
 5. checking.deduct(400)
 6. dispense(400)

20

A failure at these
points means the
customer loses
money; we need
to restore old state"

A failure at
these points
does not cause
lost money, but
old steps
cannot be
repeated"

CSE 486/586, Spring 2013

Why Not Satisfied?
•  What we discussed in mutual exclusion is one big

lock.
–  Everyone else has to wait.
–  It does not necessarily deal with failures.

•  Performance
– Observation: we can interleave some operations from

different processes.

•  Failure
–  If a process crashes while holding a lock

•  Let’s go beyond simple locking!

21 CSE 486/586, Spring 2013 22

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

