
C 1

CSE 486/586, Spring 2014

CSE 486/586 Distributed Systems
Replication with

View Synchronous Group Communication

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586, Spring 2014

Recap: Non-Exclusive Locks

 non-exclusive lock compatibility
 Lock already Lock requested
 set read write
 none OK OK
 read OK WAIT
 write WAIT WAIT

2

CSE 486/586, Spring 2014

Recap: Two-Version Locking

lock compatibility
 Lock already Lock requested
 set read write commit
 none OK OK OK
 read OK OK WAIT
 write OK WAIT
 commit WAIT WAIT

3 CSE 486/586, Spring 2014

Recap: Distributed Transactions
•  Atomic commit problem

–  Either all commit or all abort

•  2PC
–  Voting phase
– Commit phase

4

CSE 486/586, Spring 2014

Replication
•  Enhances a service by replication

–  In what ways?

•  Increased availability of service. When servers fail or
when the network is partitioned.

–  P: probability that one server fails= 1 – P= availability of
service. e.g. P = 5% => service is available 95% of the time.

–  Pn: probability that n servers fail= 1 – Pn= availability of
service. e.g. P = 5%, n = 3 => service available 99.875% of
the time

•  Fault tolerance
– Under the fail-stop model, if up to f of f+1 servers crash, at

least one is alive.

•  Load balancing
– One approach: Multiple server IPs can be assigned to the

same name in DNS, which returns answers round-robin.

5 CSE 486/586, Spring 2014

Goals of Replication

•  Replication transparency
– User/client need not know that multiple physical copies of

data exist.
•  Replication consistency

– Data is consistent on all of the replicas (or is converging
towards becoming consistent)

6

Client! Front End!
RM"

RM"

RM"
Client! Front End!

Client! Front End!

Service!
server!

server!

server!

Replica Manager"

C 2

CSE 486/586, Spring 2014

Replica Managers
•  Request Communication

–  Requests can be made to a single RM or to multiple RMs

•  Coordination: The RMs decide
–  whether the request is to be applied
–  the order of requests

»  FIFO ordering: If a FE issues r then r', then any correct RM
handles r and then r'.

»  Causal ordering: If the issue of r "happened before" the issue
of r', then any correct RM handles r and then r'.

»  Total ordering: If a correct RM handles r and then r', then any
correct RM handles r and then r'.

•  Execution: The RMs execute the request (often they
do this tentatively – why?).

7 CSE 486/586, Spring 2014

Replica Managers
•  Agreement: The RMs attempt to reach consensus on

the effect of the request.
–  E.g., two phase commit through a coordinator
–  If this succeeds, effect of request is made permanent

•  Response
– One or more RMs respond to the front end.
–  The first response to arrive is good enough because all the

RMs will return the same answer.

8

CSE 486/586, Spring 2014

Replica Managers
•  One way to provide (strong) consistency

–  Start with the same initial state
–  Agree on the order of read/write operations and when writes

become visible
–  Execute the operations at all replicas
–  (This will end with the same, consistent state)

•  Thus each RM is a replicated state machine
–  "Multiple copies of the same State Machine begun in the

Start state, and receiving the same Inputs in the same order
will arrive at the same State having generated the same
Outputs." [Wikipedia, Schneider 90]

•  Does this remind you of anything? What
communication primitive do you want to use?

– Group communication (reliable, ordered multicast)

9 CSE 486/586, Spring 2014

Revisiting Group Communication

•  Can use group communication as a building block
•  "Member"= process (e.g., an RM)
•  Static Groups: group membership is pre-defined
•  Dynamic Groups: members may join and leave, as

necessary

10

Group
Send!

Address
Expansion!

Multicast
Comm.!

Membership
Management!

Leave!

Fail!

Join!

Group!

CSE 486/586, Spring 2014

Revisiting Reliable Multicast
•  Integrity: A correct (i.e., non-faulty) process p delivers

a message m at most once.
–  “Non-faulty”: doesn’t deviate from the protocol & alive

•  Agreement: If a correct process delivers message m,
then all the other correct processes in group(m) will
eventually deliver m.

–  Property of “all or nothing.”
•  Validity: If a correct process multicasts (sends)

message m, then it will eventually deliver m itself.
– Guarantees liveness to the sender.

•  Validity and agreement together ensure overall
liveness: if some correct process multicasts a
message m, then, all correct processes deliver m too.

11 CSE 486/586, Spring 2014

Multicast with Dynamic Groups
•  How do we define something similar to reliable

multicast in a dynamic group?
•  Approach

– Make sure all processes see the same versioned
membership

– Make sure reliable multicast happens within each version of
the membership

•  Versioned membership: views
–  “What happens in the view, stays in the view.”

12

C 3

CSE 486/586, Spring 2014

CSE 486/586 Administrivia
•  PA3 deadline: 4/11 (Friday)
•  Midterm next Monday

13 CSE 486/586, Spring 2014

Views
•  A group membership service maintains group views,

which are lists of current group members.
–  This is NOT a list maintained by one member, but…
–  Each member maintains its own local view

•  A view Vp(g) is process p's understanding of its group
(list of members)

–  Example: Vp.0(g) = {p}, Vp.1(g) = {p, q}, V p.2 (g) = {p, q, r}, V p.3 (g) =
{p,r}

–  The second subscript indicates the "view number" received at p

•  A new group view is disseminated, throughout the
group, whenever a member joins or leaves.

–  Member detecting failure of another member reliable multicasts a
"view change" message (requires causal-total ordering for
multicasts)

–  The goal: the compositions of views and the order in which the
views are received at different members is the same.

14

CSE 486/586, Spring 2014

Views
•  An event is said to occur in a view vp,i(g) if the event

occurs at p, and at the time of event occurrence, p
has delivered vp,i(g) but has not yet delivered vp,i+1(g).

•  Messages sent out in a view i need to be delivered in
that view at all members in the group

•  Requirements for view delivery
– Order: If p delivers vi(g) and then vi+1(g), then no other

process q delivers vi+1(g) before vi(g).
–  Integrity: If p delivers vi(g), then p is in all v *, i(g).
– Non-triviality: if process q joins a group and becomes

reachable from process p, then eventually, q will always be
present in the views that delivered at p.

»  Exception: partitioning of group
»  We'll discuss partitions next lecture. Ignore for now.

15 CSE 486/586, Spring 2014

View Synchronous Communication
•  View Synchronous Communication = Group

Membership Service + Reliable multicast
•  "What happens in the view, stays in the view"
•  It is virtual

–  View and message deliveries are allowed to occur at
different physical times at different members

16

CSE 486/586, Spring 2014

Reminder: Reliable Multicast
•  Integrity: A correct (i.e., non-faulty) process p delivers

a message m at most once.
–  “Non-faulty”: doesn’t deviate from the protocol & alive

•  Validity: If a correct process multicasts (sends)
message m, then it will eventually deliver m itself.

– Guarantees liveness to the sender.
•  Agreement: If a correct process delivers message m,

then all the other correct processes in group(m) will
eventually deliver m.

–  Property of “all or nothing.”

•  Validity and agreement together ensure overall
liveness: if some correct process multicasts a
message m, then, all correct processes deliver m too.

17 CSE 486/586, Spring 2014

View Synchronous Communication
Guarantees
•  Integrity: If p delivered message m, p will not deliver

m again. Furthermore, p and the process that sent m
is in the same view in which p delivers m.

•  Validity: Correct processes always deliver all
messages. That is, if p delivers message m in view
v(g), and some process q ∈ v(g) does not deliver m
in view v(g), then the next view v'(g) delivered at p
will not include q.

•  Agreement: Correct processes deliver the same
sequence of views, and the same set of messages in
any view.

–  If p delivers m in V, and then delivers V', then all processes
in V ∩ V' deliver m in view V

•  All view delivery conditions (order, integrity, and non-
triviality conditions, from last slide) are satisfied

18

C 4

CSE 486/586, Spring 2014

Examples

19

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

p!

q!

r!

V(p,q,r)!

X
XX

V(q,r)!

V(q,r)!

V(q,r)!

V(q,r)!

X

X X

Not Allowed! Not Allowed!

Allowed! Allowed!

CSE 486/586, Spring 2014

State Transfer
•  When a new process joins the group, state transfer

may be needed (at view delivery point) to bring it up
to date

–  "state" may be list of all messages delivered so far
(wasteful)

–  "state" could be list of current server object values (e.g., a
bank database) – could be large

–  Important to optimize this state transfer

•  View Synchrony = "Virtual Synchrony"
–  Provides an abstraction of a synchronous network that hides

the asynchrony of the underlying network from distributed
applications

–  But does not violate FLP impossibility (since can partition)

•  Used in ISIS toolkit (NY Stock Exchange)

20

CSE 486/586, Spring 2014

Summary
•  Replicating objects across servers improves

performance, fault-tolerance, availability
•  Raises problem of Replica Management
•  Group communication an important building block
•  View Synchronous communication service provides

totally ordered delivery of views+multicasts
•  RMs can be built over this service

21 CSE 486/586, Spring 2014 22

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

