
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Leader Election

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap: Mutual Exclusion
•  Centralized
•  Ring-based
•  Ricart and Agrawala’s
•  Maekawa’s

2

CSE 486/586

Why Election?
•  Example 1: sequencer for TO multicast
•  Example 2: leader for mutual exclusion
•  Example 3: group of NTP servers: who is the root

server?

3 CSE 486/586

What is Election?
•  In a group of processes, elect a leader to undertake

special tasks.
•  What happens when a leader fails (crashes)

–  Some process detects this (how?)
–  Then what?

•  Focus of this lecture: election algorithms
–  1. Elect one leader only among the non-faulty processes
–  2. All non-faulty processes agree on who is the leader

•  We’ll look at 3 algorithms

4

CSE 486/586

Assumptions
•  Any process can call for an election.
•  A process can call for at most one election at a time.
•  Multiple processes can call an election

simultaneously.
–  All of them together must yield a single leader only
–  The result of an election should not depend on which

process calls for it.

•  Messages are eventually delivered.

5 CSE 486/586

Problem Specification
•  At the end of the election protocol, the non-faulty

process with the best (highest) election attribute
value is elected.

–  Attribute examples: CPU speed, load, disk space, ID
– Must be unique

•  Each process has a variable elected.
•  A run (execution) of the election algorithm must

always guarantee at the end:
–  Safety: ∀ non-faulty p: (p's elected = (q: a particular non-

faulty process with the best attribute value) or ⊥)
–  Liveness: ∀ election: (election terminates) & ∀ p: non-faulty

process, p’s elected is eventually not ⊥

6

C 2

CSE 486/586

Algorithm 1: Ring Election
[Chang & Roberts’79]
•  N Processes are organized in a logical ring

–  pi has a communication channel to pi+1 mod N.
–  All messages are sent clockwise around the ring.

•  To start election
–  Send election message with my ID

•  When receiving message (election, id)
–  If id > my ID: forward message

»  Set state to participating
–  If id < my ID: send (election, my ID)

»  Skip if already participating
»  Set state to participating

–  If id = my ID: I am elected (why?) send elected message
»  elected message forwarded until it reaches leader

7 CSE 486/586

Ring-Based Election: Example
•  The worst-case

scenario occurs
when?

–  the counter-clockwise
neighbor (@ the
initiator) has the
highest attr.

•  In the example:
– The election was

started by process 17.
– The highest process

identifier encountered
so far is 24

–  (final leader will be 33)

8

24

15

4

33

28

17

24

1

9

CSE 486/586

Ring-Based Election: Analysis
•  In a ring of N

processes, in the
worst case:

– N-1 election messages
to reach the new
coordinator

– Another N election
messages before
coordinator decides it’s
elected

– Another N elected
messages to announce
winner

•  Total Message
Complexity = 3N-1

•  Turnaround time =
3N-1

9

24

15

9

4

33

28

17

24

1

CSE 486/586

Correctness?
•  Safety: highest process elected
•  Liveness: complete after 3N-1 messages

– What if there are failures during the election run?

10

CSE 486/586

Example: Ring Election

Election: 2

Election: 4

Election: 4 Election: 3

Election: 4

P1

P2

P3

P4

P0

P5

1.  P2 initiates
election after old
leader P5 failed

P1

P2

P3
P4

P0

P5

2. P2 receives "election",
P4 dies

P1

P2

P3
P4

P0

P5

3. Election: 4 is
forwarded forever?

May not terminate when process failure occurs during the election!
Consider above example where attr==highest id

11 CSE 486/586

CSE 486/586 Administrivia
•  PA2 due next week
•  Midterm: 3/11 (Wednesday) in class

– Multiple choices
–  Everything up to today

12

C 3

CSE 486/586

Algorithm 2: Modified Ring Election
•  election message tracks all IDs of nodes that

forwarded it, not just the highest
–  Each node appends its ID to the list

•  Once message goes all the way around a circle, new
coordinator message is sent out

– Coordinator chosen by highest ID in election message
–  Each node appends its own ID to coordinator message

•  When coordinator message returns to initiator
–  Election a success if coordinator among ID list
– Otherwise, start election anew

13 CSE 486/586

Example: Ring Election

Election: 2

Election:
2, 3,4,0,1

Election: 2,3,4
Election: 2,3

Coord(4): 2

Coord(4): 2,3

Coord(4)
2, 3,0,1

Election: 2

Election: 2,3

Election:
2,3,0

Election:
2, 3,0,1

Coord(3): 2

Coord(3): 2,3

Coord(3):
2,3,0

Coord(3):
2, 3,0,1

P1

P2

P3

P4

P0

P5

1. P2 initiates election

P1

P2

P3
P4

P0

P5

2. P2 receives "election",
P4 dies

P1

P2

P3
P4

P0

P5

3. P2 selects 4 and
announces the result

P1

P2

P3
P4

P0

P5

4. P2 receives "Coord", but
P4 is not included

P1

P2

P3
P4

P0

P5

5. P2 re-initiates election

P1

P2

P3
P4

P0

P5

6. P3 is finally elected

14

CSE 486/586

Modified Ring Election
•  How many messages?

–  2N

•  Is this better than original ring protocol?
– Messages are larger

•  Reconfiguration of ring upon failures
– Can be done if all processes "know" about all other

processes in the system

•  What if initiator fails?
–  Successor notices a message that went all the way around

(how?)
–  Starts new election

•  What if two people initiate at once
– Discard initiators with lower IDs

15 CSE 486/586

What about that Impossibility?
•  Can we have a totally correct election algorithm in a

fully asynchronous system (no bounds)
– No! Election can solve consensus

•  Where might you run into problems with the modified
ring algorithm?

– Detect leader failures
– Ring reorganization

16

CSE 486/586

Algorithm 3: Bully Algorithm
•  Assumptions:

–  Synchronous system
–  attr=id
–  Each process knows all the other processes in the system

(and thus their id's)

17 CSE 486/586

Algorithm 3: Bully Algorithm
•  3 message types

–  election – starts an election
–  answer – acknowledges a message
–  coordinator – declares a winner

•  Start an election
–  Send election messages only to processes with higher IDs

than self
–  If no one replies after timeout: declare self winner
–  If someone replies, wait for coordinator message

»  Restart election after timeout

•  When receiving election message
–  Send answer
–  Start an election yourself

»  If not already running

18

C 4

CSE 486/586 19

Example: Bully Election

OK
OK

P1

P2

P3

P4

P0

P5

1. P2 initiates election 2. P2 receives replies

P1

P2

P3

P4

P0

P5

3. P3 & P4 initiate election

P1

P2

P3

P4

P0

P5

P1

P2

P3

P4

P0

P5

4. P3 receives reply

OK

ElectionElection

Election

Election
Election

Election

P1

P2

P3

P4

P0

P5

5. P4 receives no reply

P1

P2

P3

P4

P0

P5

5. P4 announces itself

coordin
ator

answer=OK

CSE 486/586

The Bully Algorithm

The coordinator p4 fails and p1 detects this

p3 fails

p 1 p
2 p

3 p
4

p
1 p

2 p
3 p

4

C
coordinator

Stage 4

C
election

election
Stage 2

p
1 p

2 p
3 p

4

C
election

answer

answer

election
Stage 1

timeout
Stage 3

Eventually.....

p
1 p

2 p
3 p

4

election

answer

election

20

CSE 486/586

Analysis of The Bully Algorithm
•  Best case scenario?
•  The process with the second highest id notices the

failure of the coordinator and elects itself.
– N-2 coordinator messages are sent.
–  Turnaround time is one message transmission time.

21 CSE 486/586

Analysis of The Bully Algorithm
•  Worst case scenario?
•  When the process with the lowest id in the system

detects the failure.
– N-1 processes altogether begin elections, each sending

messages to processes with higher ids.
–  The message overhead is O(N2).

22

CSE 486/586

Turnaround time
•  All messages arrive within T units of time

(synchronous)
•  Turnaround time:

–  election message from lowest process (T)
–  Timeout at 2nd highest process (X)
–  coordinator message from 2nd highest process (T)

•  How long should the timeout be?
–  X = 2T + Tprocess

–  Total turnaround time: 4T + 3Tprocess

23 CSE 486/586

Summary
•  Coordination in distributed systems sometimes

requires a leader process
•  Leader process might fail
•  Need to (re-) elect leader process
•  Three Algorithms

– Ring algorithm
– Modified Ring algorithm
–  Bully Algorithm

24

C 5

CSE 486/586 25

Acknowledgements
•  These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

