CSE 486/586 Distributed Systems
Leader Election

Steve Ko
Computer Sciences and Engineering
University at Buffalo

CSE 486/586

Recap: Mutual Exclusion

» Centralized
* Ring-based
* Ricart and Agrawala’s
* Maekawa’s

CSE 486/586

~

Why Election?

« Example 1: sequencer for TO multicast
* Example 2: leader for mutual exclusion

« Example 3: group of NTP servers: who is the root
server?

CSE 486/586

What is Election?

« In a group of processes, elect a leader to undertake
special tasks.

« What happens when a leader fails (crashes)
— Some process detects this (how?)
— Then what?
» Focus of this lecture: election algorithms
— 1. Elect one leader only among the non-faulty processes
— 2. All non-faulty processes agree on who is the leader
« We'll look at 3 algorithms

CSE 486/586

Assumptions

» Any process can call for an election.
» A process can call for at most one election at a time.

« Multiple processes can call an election
simultaneously.
— All of them together must yield a single leader only

— The result of an election should not depend on which
process calls for it.

« Messages are eventually delivered.

CSE 486/586

Problem Specification

« At the end of the election protocol, the non-faulty
process with the best (highest) election attribute
value is elected.

— Attribute examples: CPU speed, load, disk space, ID
— Must be unique

« Each process has a variable elected.

* A run (execution) of the election algorithm must
always guarantee at the end:

— Safety: V non-faulty p: (p's elected = (q: a particular non-
faulty process with the best attribute value) or L)

— Liveness: V election: (election terminates) & ¥ p: non-faulty
process, p’s elected is eventually not L

CSE 486/586

Algorithm 1: Ring Election
[Chang & Roberts’79]

« N Processes are organized in a logical ring
— p; has a communication channel to pj. moq n-
— All messages are sent clockwise around the ring.
« To start election
— Send election message with my ID
« When receiving message (election, id)
— If id > my ID: forward message
» Set state to participating
— Ifid < my ID: send (election, my ID)
» Skip if already participating
» Set state to participating
— If id = my ID: | am elected (why?) send elected message
» elected message forwarded until it reaches leader

CSE 486/586 7

o

Ring-Based Election: Example

The worst-case i
scenario occurs 3
when? /
— the counter-clockwise 4
neighbor (@ the
initiator) has the
highest attr. 3)
In the example:
— The election was

17

.

started by process 17.

15

— The highest process /

identifier encountered N /
so faris 24 -

— (final leader will be 33)

CSE 486/586 8

Ring-Based Election: Analysis

* Inaring of N
processes, in the 33—
worst case: y U/
—N-1 election messages 4 \
to reach the n
coordinator 24
— Another N election
messages before
coordinator decides it's
elected
— Another N telected
messages to announce
winnerg 15\ //
+ Total Message
Complexity = 3N-1 ==

¢ Turnaround time =
3N-1

CSE 486/586 9

Correctness?

« Safety: highest process elected
« Liveness: complete after 3N-1 messages
— What if there are failures during the election run?

CSE 486/586 10

Example: Ring Election

. P2initiates
election after old
leader P5 failed

May not terminate when process failure occurs during the election!
Consider above example where attr==highest id

CSE 486/586 11

CSE 486/586 Administrivia

* PA2 due next week

« Midterm: 3/11 (Wednesday) in class
— Multiple choices
— Everything up to today

CSE 486/586 12

Ny

Algorithm 2: Modified Ring Election

« election message tracks all IDs of nodes that
forwarded it, not just the highest

— Each node appends its ID to the list
* Once message goes all the way around a circle, new
coordinator message is sent out
— Coordinator chosen by highest ID in election message
— Each node appends its own ID to coordinator message
« When coordinator message returns to initiator
— Election a success if coordinator among ID list
— Otherwise, start election anew

CSE 486/586 13

Example: Ring Election

NN

&'\®

ez
s goffon: 2,3 \ ‘\ .
~3, Coord(d); 2.3~ =
~ 23 P2 receives electlon
. 3. P2 selects 4 and
1. P2 initiates election P4 dies e

Coord(4)

Coord(3):
Elecli pr Q1
0

i w]

l] ' :
' @ R R
' 1

@0‘ 2@ \Eg®

\
~o -

4. P2 receives "Coord", but Elecii®n:2.3 Eid C
P4 is not included [5. P2 re-initiates election] [6. P3 is finally elected]

CSE 486/586 14

b

Modified Ring Election

* How many messages?
-2N
« |s this better than original ring protocol?
g — Messages are larger
» Reconfiguration of ring upon failures

— Can be done if all processes "know" about all other
processes in the system

« What if initiator fails?

— Successor notices a message that went all the way around
(how?)

— Starts new election

« What if two people initiate at once
— Discard initiators with lower IDs

CSE 486/586

What about that Impossibility?

« Can we have a totally correct election algorithm in a
fully asynchronous system (no bounds)

— No! Election can solve consensus
» Where might you run into problems with the modified
ring algorithm?
— Detect leader failures
— Ring reorganization

CSE 486/586 16

Algorithm 3: Bully Algorithm

* Assumptions:
— Synchronous system
— attr=id

— Each process knows all the other processes in the system
(and thus their id's)

CSE 486/586

Algorithm 3: Bully Algorithm

« 3 message types
— election — starts an election
— answer — acknowledges a message
— coordinator — declares a winner

« Start an election

— Send election messages only to processes with higher IDs
than self

— If no one replies after timeout: declare self winner
— If someone replies, wait for coordinator message
» Restart election after timeout
« When receiving election message
— Send answer
— Start an election yourself
» If not already running

CSE 486/586 18

(&%)

Example: Bully Election

answer=0K

[4. P3 receives reply] l 5. P4 receives no reply] [5. P4 announces itself]

CSE 486/586 19

The coordinator p, fails and p, detects this

p fails

The Bully Algorithm

election

election
c

Stage 1 ><
4

answer
election

olectiondx C

Stage 2 ><
o ranser .

2 3 4

timeout

X X

P P
1 2 Py 7
Eventually....
coordinator
Stage 4 >< ><
P
1 p2 pﬁ pA
CSE 486/586 20

Analysis of The Bully Algorithm

& .
/ * Best case scenario?

« The process with the second highest id notices the
failure of the coordinator and elects itself.
— N-2 coordinator messages are sent.
— Turnaround time is one message transmission time.

CSE 486/586 21

A

Analysis of The Bully Algorithm

« Worst case scenario?
* When the process with the lowest id in the system
detects the failure.

— N-1 processes altogether begin elections, each sending
messages to processes with higher ids.

— The message overhead is O(N2).

CSE 486/586 22

Turnaround time

« All messages arrive within T units of time
(synchronous)

* Turnaround time:

— election message from lowest process (T)

— Timeout at 2" highest process (X)

— coordinator message from 29 highest process (T)
* How long should the timeout be?

= X=2T + Tyrocess

— Total turnaround time: 4T + 3T ceqs

CSE 486/586 23

Summary

« Coordination in distributed systems sometimes
requires a leader process

» Leader process might fail
* Need to (re-) elect leader process
« Three Algorithms

— Ring algorithm

— Modified Ring algorithm

— Bully Algorithm

CSE 486/586 24

Acknowledgements

« These slides contain material developed and
copyrighted by Indranil Gupta (UIUC).

CSE 486/586

(@]

