CSE 486/586 Distributed Systems

Consensus

Steve Ko
Computer Sciences and Engineering
University at Buffalo

Recap: Finger Table
• Finding a <key, value> using fingers

Let's Consider This...

Amazon EC2 Service Level Agreement
Effective Date: October 23, 2008
This Amazon EC2 Service Level Agreement ("SLA") is a policy governing the use of the Amazon Elastic Compute Cloud ("Amazon EC2") under the terms of the Amazon Web Services Subscription Agreement (the "AWS Agreement") between Amazon Web Services, LLC ("AWS"); and "you" or "customer" and "us" or "Amazon". This SLA applies separately to each account using Amazon EC2, unless otherwise provided herein. This SLA is subject to the terms of the AWS Agreement and capitalized terms will have the meanings specified in the AWS Agreement. We reserve the right to change the terms of this SLA in accordance with the AWS Agreement.

Let's Consider This...

One Reason: Impossibility of Consensus
• Q: Should Steve give an A to everybody taking CSE 486/586?
• Input: everyone says either yes/no.
• Output: an agreement of yes or no.
• Bad news
 Asynchronous systems cannot guarantee that they will reach consensus even with one faulty process.
• Many consensus problems
 Reliable, totally-ordered multicast (what we saw already)
 Mutual exclusion, leader election, etc. (what we will see)
 Cannot reach consensus.

The Consensus Problem
• N processes
• Each process p has
 – input variable \(x_p \): initially either 0 or 1
 – output variable \(y_p \): initially 0 (bundled choice) – can be changed only once
• Consensus problem: Design a protocol so that either
 – all non-faulty processes set their output variables to 0
 – Or all non-faulty processes set their output variables to 1
 – There is at least one initial state that leads to each outcomes 1 and 2 above

Assumptions (System Model)
• Processes fail only by crash-stopping
• Synchronous system: bounds on
 – Message delays
 – Max time for each process step
 – e.g., multiprocessor (common clock across processors)
• Asynchronous system: no such bounds
 – E.g., the Internet
Example: State Machine Replication

- Run multiple copies of a state machine
- For what?
 - Reliability
- All copies agree on the order of execution.
- Many mission-critical systems operate like this.
 - Air traffic control systems, Warship control systems, etc.

First: Synchronous Systems

- Every process starts with an initial input value (0 or 1)
- Every process keeps the history of values received so far.
- The protocol proceeds in rounds.
- At each round, everyone multicasts the history of values.
- After all the rounds are done, pick the minimum.

First: Synchronous Systems

- For a system with at most \(f \) processes crashing, the algorithm proceeds in \(f+1 \) rounds (with timeout), using basic multicast (B-multicast).
- \(\text{Values}_i^r \): the set of proposed values known to process \(p_i \) at the beginning of round \(r \).
- Initially \(\text{Values}_i^0 = \{ \} \); \(\text{Values}_i^1 = \{ v_i = x_i \} \)

\[
\sum_{r=1}^{f+1} \text{multicast (Values}_i^r) \\
\text{Why Does It Work?}
\]

- Assume that two non-faulty processes differ in their final set of values \(\Rightarrow \) proof by contradiction
- Suppose \(p_i \) and \(p_j \) are these processes.
- Assume that \(p_i \) possesses a value \(v \) that \(p_j \) does not possess.
- Intuition: \(p_j \) must have consistently missed \(v \) in all rounds. Let’s backtrack this.
 - In the last round, some third process, \(p_k \), sent \(v \) to \(p_i \), and crashed before sending \(v \) to \(p_j \).
 - Any process sending \(v \) in the penultimate round must have crashed; otherwise, both \(p_k \) and \(p_j \) should have received \(v \).
 - Proceeding in this way, we infer at least one crash in each of the preceding rounds.
 - But we have assumed at most \(f \) crashes can occur and there are \(f+1 \) rounds \(\Rightarrow \) contradiction.

Second: Asynchronous Systems

- Messages have arbitrary delay, processes arbitrarily slow
- Impossible to achieve consensus
 - even a single failed is enough to avoid the system from reaching agreement!
 - a slow process indistinguishable from a crashed process
- Impossibility applies to any protocol that claims to solve consensus
- Proved in a now-famous result by Fischer, Lynch and Patterson, 1983 (FLP)
 - Stopped many distributed system designers dead in their tracks
 - A lot of claims of “reliability” vanished overnight

Are We Doomed?

- Asynchronous systems (i.e., systems with arbitrary delay) cannot guarantee that they will reach consensus even with one faulty process.
- Key word: “guarantee”
 - Does not mean that processes can never reach a consensus if one is faulty
 - Allows room for reaching agreement with some probability greater than zero
 - In practice many systems reach consensus.
- How to get around this?
 - Two key things in the result: one faulty process & arbitrary delay
Techniques to Overcome Impossibility

- Technique 1: masking faults (crash-stop)
 - For example, use persistent storage and keep local checkpoints
 - Then upon a failure, restart the process and recover from the last checkpoint.
 - This masks fault, but may introduce arbitrary delays.

- Technique 2: using failure detectors
 - For example, if a process is slow, mark it as a failed process.
 - Then actually kill it somehow, or discard all the messages from that point on (fail-silent)
 - This effectively turns an asynchronous system into a synchronous system
 - Failure detectors might not be 100% accurate and requires a long timeout value to be reasonably accurate.

CSE 486/586 Administrivia

- PA2-B due on Friday next week (3/17)
 - Please do not use someone else's code!

- Midterm on Wednesday (3/15)
 - Cheat sheet allowed (letter-sized, front-and-back)

- No class this Friday (3/10) & no office hours today and Friday

Recall

- Each process \(p \) has a state
 - program counter, registers, stack, local variables
 - input register \(x_p \), initially either 0 or 1
 - output register \(y_p \), initially b (b=undecided)

- Consensus Problem: Design a protocol so that either
 - all non-faulty processes set their output variables to 0
 - Or non-faulty all processes set their output variables to 1
 - (No trivial solutions allowed)

Proof of Impossibility: Reminder

- State machine
 - Forget real time, everything is in steps & state transitions.
 - Equally applicable to a single process as well as distributed processes

- A state (S1) is reachable from another state (S0) if there is a sequence of events from S0 to S1.

- There an initial state with an initial set of input values.

Different Definition of “State”

- State of a process
 - Configuration: = Global state. Collection of states, one per process; and state of the global buffer

- Each Event consists atomically of three sub-steps:
 - receipt of a message by a process (say p), and
 - processing of message, and
 - sending out of all necessary messages by p (into the global message buffer)

- Note: this event is different from the Lamport events
 - Schedule: sequence of events
Event $e'=(p',m')$

Schedule $s'=(e',e'',...)$

Equivalent

Event $e''=(p'',m'')$

Configuration C

State Valencies
- Let C have a set of decision values V reachable from it
 - If $|V|=2$, C is bivalent
 - If $|V|=1$, C is said to be 0-valent or 1-valent, as is the case
- Bivalent means that the outcome is unpredictable (but still doesn't mean that consensus is not guaranteed). Three possibilities:
 - Unanimous 0
 - Unanimous 1
 - 0's and 1's

Guaranteeing Consensus
- If we want to say that a protocol guarantees consensus (with one faulty process & arbitrary delays), we should be able to say the following:
 - Consider all possible input sets (i.e., all initial configurations).
 - For each input set (i.e., for each initial configuration), the protocol should produce either 0 or 1 even with one failure for all possible execution paths (runs).
 - I.e., no "0's and 1's"
- The impossibility result: We can't do that.
 - I.e., there is always a run that will produce "0's and 1's".

Lemma 1
Schedules are commutative
- $C'

The Theorem
- Lemma 2: There exists an initial configuration that is bivalent
- Lemma 3: Starting from a bivalent config., there is always another bivalent config. that is reachable
- Insight: It is not possible to distinguish a faulty node from a slow node.
- Theorem (Impossibility of Consensus): There is always a run of events in an asynchronous distributed system (given any algorithm) such that the group of processes never reaches consensus (i.e., always stays bivalent)

Summary
- Consensus: reaching an agreement
- Possible in synchronous systems
- Asynchronous systems cannot guarantee.
 - Asynchronous systems cannot guarantee that they will reach consensus even with one faulty process.
Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC).