
C 1

CSE 486/586

CSE 486/586 Distributed Systems
Consistency --- 2

Steve Ko
Computer Sciences and Engineering

University at Buffalo

CSE 486/586

Recap: Linearizability
• Linearizability

– Should provide the behavior of a single client and a single
copy

– A read operation returns the most recent write, regardless of
the clients according to their original actual-time order.

• Complication
– In the presence of concurrency, read/write operations

overlap.
– There, you should be able to show that you’re using some

ordering of requests, where you return the most recent write
(every time there’s a read).

2

CSE 486/586

Linearizability Examples
• Example 1

• Example 2

3

a.write(x)
a.read() -> x

a.write(x)
a.read() -> 0

a.read() -> x

a.read() -> x

a.read() -> x
If this were
a.read() -> 0, it
wouldn’t support
linearizability.

CSE 486/586

Linearizability Examples
• Example 3

4

a.write(x)

a.read() -> x

a.read() -> y

a.read() -> x

a.write(y)

CSE 486/586

Linearizability
• Linearizability is all about client-side perception.

– The same goes for all consistency models for that matter.

• If you write a program that works with a linearizable
storage, it works as you expect it to work.

• There’s no surprise.

5 CSE 486/586

Implementing Linearizability
• Will this be difficult to implement? Any strategy?

6North CarolinaCalifornia

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5

C 2

CSE 486/586

Implementing Linearizability
• Will this be difficult to implement?

– It depends on what you want to provide.

• How about:
– All clients send all read/write to CA datacenter.
– CA datacenter propagates to NC datacenter.
– A request never returns until all propagation is done.
– Correctness (linearizability)? yes
– Performance? No

7

You (NY)
x.write(5)

Friend (CA)
x.write(2) read(x) à 5

CSE 486/586

Implementing Linearizability
• Importance of latency

– Amazon: every 100ms of latency costs them 1% in sales.
– Google: an extra .5 seconds in search page generation time

dropped traffic by 20%.

• Linearizability typically requires complete
synchronization of multiple copies before a write
operation returns.

– So that any read over any copy can return the most recent
write.

– No room for asynchronous writes (i.e., a write operation
returns before all updates are propagated.)

• It makes less sense in a global setting.
– Inter-datecenter latency: ~10s ms to ~100s ms

• It might still makes sense in a local setting (e.g.,
within a single data center).

8

CSE 486/586

Passive (Primary-Backup)
Replication

• Request Communication: the request is issued to the
primary RM and carries a unique request id.

• Coordination: Primary takes requests atomically, in
order, checks id (resends response if not new id.)

• Execution: Primary executes & stores the response
• Agreement: If update, primary sends updated

state/result, req-id and response to all backup RMs
(1-phase commit enough).

• Response: primary sends result to the front end

9

Client Front End
RM

RM

RM
Client Front End RM

primary

Backup

Backup
Backup

….

CSE 486/586

Chain Replication
• One technique to provide linearizability with better

performance
– All writes go to the head.
– All reads go to the tail.

• Linearizability?
– Clear-cut cases: straightforward
– Overlapping ops?

10

N0 N1 N2

Reads RepliesWrites

Head Tail

CSE 486/586

Chain Replication

• What ordering does this have for overlapping ops?
– We have freedom to impose an order.
– Case 1: A write is at either N0 or N1, and a read is at N2.

The ordering we’re imposing is read then write.
– Case 2: A write is at N2 and a read is also at N2. The

ordering we’re imposing is write then read.

• Linearizability
– Once a write becomes visible (at the tail), all following reads

get the write result.
11

N0 N1 N2

Reads RepliesWrites

Head Tail

CSE 486/586

CSE 486/586 Administrivia

12

C 3

CSE 486/586

Relaxing the Guarantees
• Do we need linearizability?

• Does it matter if I see some posts some time later?
• Does everyone need to see these in this particular

order?
13 CSE 486/586

Relaxing the Guarantees
• Linearizability advantages

– It behaves as expected.
– There’s really no surprise.
– Application developers do not need any additional logic.

• Linearizability disadvantages
– It’s difficult to provide high-performance (low latency).
– It might be more than what is necessary.

• Relaxed consistency guarantees
– Sequential consistency
– Causal consistency
– Eventual consistency

• It is still all about client-side perception.
– When a read occurs, what do you return?

14

CSE 486/586

Sequential Consistency
• A little weaker than linearizability, but still quite strong

– Essentially linearizability, except that it allows writes from
other processes to show up later.

• It still captures some reasonable expectation, but not
the most natural one (which is captured by
linearizability).

• For the remaining discussion,
– Let’s assume that there are multiple processes.
– Let’s also assume that each write has a unique value (just

for the same of illustration).

15 CSE 486/586

Sequential Consistency
• Scenario 1: does this meet our natural expectation?

• Scenario 2: does this meet our natural expectation?

– No. Why? Not the most recent write.
– Another way to put it: we expect that a program order for a

process is preserved.
• Sequential consistency at least preserves this

expectation (each process’s program order).

16

P1
x.write(2) x.read() à 3x.write(3)

P1
x.write(2) x.read() à 2x.write(3)

CSE 486/586

Sequential Consistency
• Scenario 3: what if this happens (remember, there

are multiple processes)?

– We’ll think that there must be a write after the last write.

• Would we care which of these were true?

– Or,

17

P2
x.write(5)

P1
x.write(2) x.read() à 5x.write(3)

P1
x.write(2) x.read() à 5x.write(3)

P2
x.write(5)

P1
x.write(2) x.read() à 5x.write(3)

CSE 486/586

Sequential Consistency
• In both cases, the logical ordering is this:

• Sequential consistency: Your storage should appear
to process all requests in a single interleaved
ordering, where…

– …each and every process’s program order is preserved,
– …and each process’s program order is only logically

preserved w.r.t. other processes’ program orders, i.e., it
doesn’t need to preserve its physical-time ordering.

• It works as if all clients are reading out of a single
copy.

– This meets the expectation from a (isolated) client, working
with a single copy.

18

x.write(5)
P

x.write(2) x.read() à 5x.write(3)

C 4

CSE 486/586

Sequential Consistency Examples
• Example 1: Can a sequentially consistent storage

show this behavior? (I.e., can you come up with an
interleaving that behaves like a single copy?)

– P1: a.write(A)
– P2: a.write(B)
– P3: a.read()->B a.read()->A
– P4: a.read()->B a.read()->A

• Example 2
– P1: a.write(A)
– P2: a.write(B)
– P3: a.read()->B a.read()->A
– P4: a.read()->A a.read()->B

19 CSE 486/586

Implementing Sequential
Consistency
• In what implementation would the following happen?

– P1: a.write(A)
– P2: a.write(B)
– P3: a.read()->B a.read()->A
– P4: a.read()->A a.read()->B

• Possibility
– P3 and P4 use different copies.
– In P3’s copy, P2’s write arrives first and gets applied.
– In P4’s copy, P1’s write arrives first and gets applied.
– Writes are applied in different orders across copies.
– This doesn’t provide sequential consistency.

20

CSE 486/586

Implementing Sequential
Consistency
• Typical implementation

– You’re not obligated to make the most recent write
(according to actual time) visible (i.e., applied to all copies)
right away.

– But you are obligated to apply all writes in the same order
for all copies. This order should be FIFO-total.

21 CSE 486/586

Active Replication

• A front end FIFO-orders all reads and writes.
• A read can be done completely with any single replica.
• Writes are totally-ordered and asynchronous (after at

least one write completes, it returns).
– Total ordering doesn’t guarantee when to deliver events, i.e.,

writes can happen at different times at different replicas.
• Sequential consistency, not linearizability

– Read/write ops from the same client will be ordered at the front
end (program order preservation).

– Writes are applied in the same order by total ordering (single
copy).

– No guarantee that a read will read the most recent write based
on actual time. 22

Client Front End RM

RM

Client Front End RM

….

CSE 486/586

Two More Consistency Models
• Even more relaxed

– We don’t even care about providing an illusion of a single
copy.

• Causal consistency
– We care about ordering causally related write operations

correctly.

• Eventual consistency
– As long as we can say all replicas converge to the same

copy eventually, we’re fine.

23 CSE 486/586

Summary
• Linearizability

– The ordering of operations is determined by time.
– Primary-backup can provide linearizability.
– Chain replication can also provide linearizability.

• Sequential consistency
– The ordering of operations preserves the program order of

each client.
– Active replication can provide sequential consistency.

24

C 5

CSE 486/586 25

Acknowledgements
• These slides contain material developed and

copyrighted by Indranil Gupta (UIUC).

