Understanding Your Workload

• Engineering principle
 – Make the common case fast, and rare cases correct
 – (From Patterson & Hennessy books)
 – This principle cuts through generations of systems.

• Example?
 – CPU Cache
• Knowing common cases == understanding your workload
 – E.g., read dominated? Write dominated? Mixed?

Content Distribution Problem

• Power law (Zipf distribution)
 – Models a lot of natural phenomena
 – Social graphs, media popularity, wealth distribution, etc.
 – Happens in the Web too.

Content Distribution Workload

• What are the most frequent things you do on Facebook?
 – Read/write wall posts/comments/likes
 – View/upload photos
 – Very different in their characteristics

• Read/write wall posts/comments/likes
 – Mix of reads and writes so more care is necessary in terms of consistency
 – But small in size so probably less performance sensitive

“Hot” Photos

• How would you serve these photos?
• Caching should work well.
 – Many views for popular photos
• Where should you cache?
 – Close to users
• What's commonly used these days?
 – CDN
 – CDN mostly relies on DNS, so we'll look at DNS then CDN.
• (Very warm and warm: next two lectures)
CSE 486/586 Administrivia

• Final: 5/18/2017, Thursday, 6 pm – 8 pm, Knox 110

Domain Name System (DNS)

Proposed in 1983 by Paul Mockapetris

Separating Names and IP Addresses

• Names are easier (for us!) to remember
 – www.cnn.com vs. 64.236.16.20
• IP addresses can change underneath
 – Move www.cnn.com to 173.15.201.39
 – E.g., renumbering when changing providers
• Name could map to multiple IP addresses
 – www.cnn.com to multiple replicas of the Web site
• Map to different addresses in different places
 – Address of a nearby copy of the Web site
 – E.g., to reduce latency, or return different content
• Multiple names for the same address
 – E.g., aliases like ee.mit.edu and cs.mit.edu

Two Kinds of Identifiers

• Host name (e.g., www.cnn.com)
 – Mnemonic name appreciated by humans
 – Provides little (if any) information about location
 – Hierarchical, variable # of alpha-numeric characters
• IP address (e.g., 64.236.16.20)
 – Numerical address appreciated by routers
 – Related to host’s current location in the topology
 – Hierarchical name space of 32 bits

Hierarchical Assignment Processes

• Host name: www.cse.buffalo.edu
 – Domain: registrar for each top-level domain (e.g., .edu)
 – Host name: local administrator assigns to each host
• IP addresses: 128.205.32.58
 – Prefixes: ICANN, regional Internet registries, and ISPs
 – Hosts: static configuration, or dynamic using DHCP

Overview: Domain Name System

• A client-server architecture
 – The server-side is still distributed for scalability.
 – But the servers are still a hierarchy of clients and servers
• Computer science concepts underlying DNS
 – Indirection: names in place of addresses
 – Hierarchy: in names, addresses, and servers
 – Caching: of mappings from names to/from addresses
• DNS software components
 – DNS resolvers
 – DNS servers
• DNS queries
 – Iterative queries
 – Recursive queries
• DNS caching based on time-to-live (TTL)
Strawman Solution #1: Local File

- Original name to address mapping
 - Flat namespace
 - /etc/hosts
 - SRI kept main copy
 - Downloaded regularly
- Count of hosts was increasing: moving from a machine per domain to machine per user
 - Many more downloads
 - Many more updates

Strawman Solution #2: Central Server

- Central server
 - One place where all mappings are stored
 - All queries go to the central server
- Many practical problems
 - Single point of failure
 - High traffic volume
 - Distant centralized database
 - Single point of update
 - Does not scale

Need a distributed, hierarchical collection of servers

Domain Name System (DNS)

- Properties of DNS
 - Hierarchical name space divided into zones
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers
 - Top-level domain (TLD) servers
 - Authoritative DNS servers
- Performing the translations
 - Local DNS servers
 - Resolver software

DNS Root Servers

- 13 root servers (see http://www.root-servers.org/)
- Labeled A through M

TLD and Authoritative DNS Servers

- Top-level domain (TLD) servers
 - Generic domains (e.g., com, org, edu)
 - Country domains (e.g., uk, fr, ca, jp)
 - Typically managed professionally
 - Network Solutions maintains servers for “com”
 - Educause maintains servers for “edu”
- Authoritative DNS servers
 - Provide public records for hosts at an organization
 - For the organization’s servers (e.g., Web and mail)
 - Can be maintained locally or by a service provider

Distributed Hierarchical Database
Using DNS

- Local DNS server ("default name server")
 - Usually near the end hosts who use it
 - Local hosts configured with local server (e.g., /etc/resolv.conf) or learn the server via DHCP
- Client application
 - Extract server name (e.g., from the URL)
 - Do gethostbyname() to trigger resolver code
- Server application
 - Extract client IP address from socket
 - Optional gethostbyaddr() to translate into name

Example

Host at cis.poly.edu wants IP address for gaia.cs.umass.edu

Recursive vs. Iterative Queries

- Recursive query
 - Ask server to get answer for you
 - E.g., request 1 and response 8
- Iterative query
 - Ask server who to ask next
 - E.g., all other request-response pairs

DNS Caching

- Performing all these queries take time
 - And all this before the actual communication takes place
 - E.g., 1-second latency before starting Web download
- Caching can substantially reduce overhead
 - The top-level servers very rarely change
 - Popular sites (e.g., www.cnn.com) visited often
 - Local DNS server often has the information cached
- How DNS caching works
 - DNS servers cache responses to queries
 - Responses include a "time to live" (TTL) field
 - Server deletes the cached entry after TTL expires

Negative Caching

- Remember things that don’t work
 - Misspellings like www.cnn.comm and www.cnnn.com
 - These can take a long time to fail the first time
 - Good to remember that they don’t work
 - ... so the failure takes less time the next time around

DNS Resource Records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

- Type=A
 - name is hostname
 - value is IP address
- Type=NS
 - name is domain
 - (e.g. foo.com)
 - value is hostname of authoritative name server for this domain
- Type=CNAME
 - name is alias for some "canonical" (the real) name:
 - www.ibm.com is really sreast.backup2.ibm.com
 - value is canonical name
- Type=MX
 - value is name of mailserver associated with name
Reliability

- DNS servers are replicated
 - Name service available if at least one replica is up
 - Queries can be load balanced between replicas
- UDP used for queries
 - Need reliability: must implement this on top of UDP
- Try alternate servers on timeout
 - Exponential backoff when retrying same server
- Same identifier for all queries
- Don’t care which server responds

Inserting Resource Records into DNS

- Example: just created startup “FooBar”
- Register foo.bar.com at Network Solutions
 - Provide registrar with names and IP addresses of your authoritative name server (primary and secondary)
 - Registrar inserts two RR into the com TLD server:
 - (foo.bar.com, dns1.foo.bar.com, NS)
 - (dns1.foo.bar.com, 212.212.212.1, A)
- Put in authoritative server dns1.foo.bar.com
 - Type A record for www.foo.bar.com
 - Type MX record for foo.bar.com

- Play with “dig” on UNIX

$ dig nytimes.com @ns1t.nytimes.com
; QUESTION SECTION:
 nytimes.com. IN A

; ANSWER SECTION:
 nytimes.com. 247 IN A 199.239.137.200
 nytimes.com. 247 IN A 199.239.136.200

; AUTHORITY SECTION:
 nytimes.com. 247 IN SOA ns1t.nytimes.com. 2009070102 1800 3600 604800 3600

; ADDITIONAL SECTION:

$ dig nytimes.com ANY+
; QUESTION SECTION:
 nytimes.com.

; ANSWER SECTION:
 nytimes.com. 172800 IN NS K.EMAIL-SERVERS.NET
 nytimes.com. 172800 IN NS E.EMAIL-SERVERS.NET
 nytimes.com. 172800 IN NS D.EMAIL-SERVERS.NET
 nytimes.com. 172800 IN NS I.EMAIL-SERVERS.NET
 nytimes.com. 172800 IN NS C.EMAIL-SERVERS.NET

; ADDITIONAL SECTION:
 A.EMAIL-SERVERS.NET 172800 IN A 192.5.6.30
 A.EMAIL-SERVERS.NET 172800 IN AAAA 2001:503:231d::2:30
 B.EMAIL-SERVERS.NET 172800 IN A 192.33.214.130
 B.EMAIL-SERVERS.NET 172800 IN A 2001:503:231d::30

$ dig nytimes.com +norec @a.root-servers.net
; OPTION: recursion wanted
;QUESTION SECTION:
 nytimes.com.

; ANSWER SECTION:

; AUTHORITY SECTION:

; ADDITIONAL SECTION:
 ns1t.nytimes.com. 100 A 199.239.137.15
 ns1t.nytimes.com. 100 AAAA 2001:503:231d::2:30

$ dig nytimes.com +norec @ns1t.nytimes.com
; QUESTION SECTION:
 nytimes.com.

; ANSWER SECTION:

; AUTHORITY SECTION:

; ADDITIONAL SECTION:
 ns1t.nytimes.com. 172800 IN A 199.239.137.254
 ns1t.nytimes.com. 172800 IN A 199.239.136.200

$ dig nytimes.com +norec @a.root-servers.net
; OPTION: recursion wanted
; QUESTION SECTION:
 nytimes.com.

; ANSWER SECTION:

; AUTHORITY SECTION:

; ADDITIONAL SECTION:
 ns1t.nytimes.com. 100 A 199.239.137.254
 ns1t.nytimes.com. 100 A 199.239.136.200
Content Distribution Networks (CDNs)

- Content providers are CDN customers

Content replication
- CDN company installs thousands of servers throughout Internet
 - In large datacenters
 - Or, close to users
- CDN replicates customers’ content
- When provider updates content, CDN updates servers

Server Selection

- Which server?
 - Lowest load: to balance load on servers
 - Best performance: to improve client performance
 - Based on what? Location? RTT? Throughput? Load?
 - Any alive node: to provide fault tolerance
- How to direct clients to a particular server?
 - As part of routing: anycast, cluster load balancer
 - As part of application: HTTP redirect
 - As part of naming: DNS

How Akamai Works

1. DNS lookup
 - cache.cnn.com
 - ALIAS: g.akamai.net

2. GET index.html

4. DNS lookup
 - g.akamai.net
 - ALIAS: a73.g.akamai.net

5. DNS lookup
 - @akamai.net

6. End-user
Summary

- DNS as an example client-server architecture
- Why?
 - Names are easier (for us!) to remember
 - IP addresses can change underneath
 - Name could map to multiple IP addresses
 - Map to different addresses in different places
 - Multiple names for the same address
- Properties of DNS
 - Distributed over a collection of DNS servers
- Hierarchy of DNS servers
 - Root servers, top-level domain (TLD) servers, authoritative DNS servers

Acknowledgements

- These slides contain material developed and copyrighted by Indranil Gupta (UIUC), Michael Freedman (Princeton), and Jennifer Rexford (Princeton).