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Abstract

Large-scale distributed systems are subject to churn, i.e.,

continuous arrival, departure and failure of processes. Anal-

ysis of protocols under churn requires one to use churn mod-

els that are tractable (easy to apply), realistic (apply to de-

ployment settings), and general (apply to many protocols and

properties). In this paper, we propose two new churn models

- called train and crowd - that together achieve these goals,

for a broad class of stability properties called quiescent prop-

erties, and for arbitrary distributed protocols. We show (i)

how analysis of protocol quiescence in the train model can

be extended to the crowd model, (ii) how to apply the train

and crowd model to several distributed membership proto-

cols, (iii) how, even under real churn traces, the train and

crowd models are reasonably good at predicting system-wide

stability metrics for membership protocols.

1 Introduction

Today’s distributed protocols (i.e., algorithms) have to

withstand various patterns, degrees and rates of churn, when

they are run in large-scale distributed systems such as peer-to-

peer (p2p) systems, geographically distributed clusters (e.g.,

PlanetLab), the Grid, etc. [2, 8, 19]. Churn is defined as the

continuous arrival, departure, and failure of processes from

the distributed system. While one traditionally analyzes the

fault-tolerance properties of a distributed protocol using a va-

riety of failure models such as crash-recovery, crash-stop, etc.

[15], several researchers have pointed out the need to explic-

itly define churn models [5, 10, 11, 13, 16] which assume nei-

ther a bounded number of failures, nor that the failures occur

prior to protocol execution.

Churn models have three desirable characteristics:

tractability, realism, and generality. Tractability means that

the model is easy to handle and apply in analysis of a dis-

tributed protocol. Realism implies that the results from such

an analysis can be generalized to arbitrary churn behavior in

real deployed distributed systems. Generality implies that the
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model enables analysis of a broad class of self-stabilization

properties for arbitrary distributed protocols.

We can classify existing work on churn models into two

categories – node-based models and system-based models.

Node-based models such as [7, 10, 11, 13] specify the behav-

ior pattern for each process, typically via probability distribu-

tions for uptime and downtime for processes in the system.

On the other hand, system-based models such as [5, 14, 16]

specify a pattern for a schedule of processes joining, failing

and leaving the system. The schedule typically specifies at

what times and how many processes are churned, and option-

ally which processes are churned.

We focus only on system-based models in this paper.

System-based churn models view churn in the distributed sys-

tem as a holistic phenomenon, without modeling individual

process behavior. Yet, they can be used to analyze emer-

gent system-wide behavior arising out of individual process

actions. In essence, any system-based model is equivalent

to some node-based model, and vice-versa, i.e., each can be

derived from the other. However, node-based models of-

ten have either low tractability, realism, or generality. For

instance, exact uptime/downtime distributions derived from

crawling real deployed distributed systems [2, 8, 19] are re-

alistic, but cumbersome to apply in a mathematical analysis.

Other node-based models use Poisson arrival and departure

[10, 11, 13], making them less realistic. On the other hand,

existing system-based models such as [5, 7, 14, 16] are typi-

cally not general, since they have been used to analyze only

specific protocols, e.g., a DHT (p2p distributed hash table) in

[14], replication [7], leader election in [5, 16], etc.

Our goals of tractability, realism, and generality motivate

the four concrete contributions in this paper: (1) We present

two new system-based churn models called Train and Crowd

that are respectively tractable and realistic, where the crowd

model is a generalization of the train model. (2) We prove

how, for an important class of stability properties called qui-

escent properties, analysis using the tractable train model can

be generalized to the more realistic model, for an arbitrary

protocol under analysis. (3) We derive quiescence bounds for

several membership protocols, including generic full mem-

bership protocols, generic DHTs, and gossip-based member-



ship. (4) We use real churn traces from two deployed p2p

systems: Overnet and Azureus – to verify that the train and

crowd model are good at predicting quiescence behavior for

gossip-based and DHT-based membership.

Intuitively, a quiescent property (defined in Section 4) is

a global property that, at any given point of time, has a bi-

nary value for the entire distributed system, i.e., it is either

true or false. Once true, the property continues to hold until

churn happens, when it becomes false. In the absence of fur-

ther churn, the quiescent property will begin to hold true at

some of time again due to the actions of the protocol being

analyzed. Thus, analysis of quiescent properties is invaluable

in analyzing the correctness of the protocol’s behavior under

realistic churn settings. For instance, a distributed member-

ship protocol would want to have all nodes know all the latest

membership changes. Piergiovanni et al [17] discuss how to

achieve connectivity during quiescent periods. In leader elec-

tion, one desires a unique alive leader elected and known at

all alive processes. These are all examples of quiescent prop-

erties that these protocols desire to achieve. Similarly, quies-

cent properties can be derived for protocols that seek to solve

aggregation or consensus among alive processes.

The rest of the paper is organized as follows. Section 2

presents the system model. Section 3 presents the two new

churn models. Section 4 defines quiescent properties and

proves the relations between quiescence in the two different

churn models. Section 5 uses the train model to analyze mem-

bership protocols. Section 6 shows simulation results with

real churn traces and two real distributed membership sys-

tems. We elaborate on related work in Section 7, and con-

clude in Section 8.

2 System Model for Analysis

We analyze protocols that are intended to run in asyn-

chronous message-passing distributed systems. However, we

are interested in analyzing timing properties related to qui-

escence. Thus, it is inevitable for our analysis to assume

synchronized clocks and bounded message delays. It is im-

portant to note that the analyzed protocol need not be syn-

chronous; only the model for our analysis is synchronous.

This means that our analysis also extends to asynchronous

systems loosely synchronized via NTP.

Processes in our system have unique identifiers. We as-

sume the crash-stop model of failure, which means that when

a process fails or leaves, it can rejoin (if at all) only as a new

process with a unique and new identifier. In addition, our

mathematical analysis makes the following assumption:

Definition 2.1 - System Size Invariant Condition: For our

analysis, we assume that the system size N , i.e., the total

number of non-faulty processes, stays constant and stable at

all times. Thus, in our churn models, for each process that

leaves or fails at time instant t, a unique new process joins (or

rejoins) the system at the same time instant t.

This condition is a part of our model and not assumed in

the underlying system. The condition is needed to make our

analysis tractable and is motivated by real trace data, as we

explain below. Our experiments in Section 6 also show that

our models work even under real traces where online popula-

tion size varies over time. The above invariant condition and

the successful experimental results, arise out of the fact that

in p2p file sharing and streaming systems, the online popu-

lation size does not vary much (in spite of churn) even over

several weeks. For instance, the online population size varies

by a factor of 2 per week and 3 per month for Overnet [2], 2

per day and per month in Gnutella [3, 20], and a factor of 9

per day and per week for PPLive [9]. Intuitively, our analysis

with a value N holds for systems whose size varies around

N .

3 A Family of Churn Models

This section presents the new system-based churn models

Train and Crowd. As one goes from the train and to the crowd

model, tractability decreases while realism increases.

A churn model specifies rules for generating a family of

schedules. Each schedule consists of multiple churn batches.

We define these terms below:

Definition 3.1 - Churn Batch: A churn batch is a group of

processes joining, leaving and failing from the system simul-

taneously. A churn batch is associated with a size (say a).

Such a churn batch consists of a unique process joins and

a unique process failures or leaves, all occurring simultane-

ously. Notice that this satisfies the system size invariant con-

dition (definition 2.1).

Definition 3.2 - Schedule: A schedule (or churn schedule)

specifies a linear, possibly infinite, series of churn batches,

giving the size and occurrence time for each batch.

A churn model thus has two components: (i) a timing

component that decides when churn batches occur, and (ii) a

choice component deciding which processes appear in churn

batches. For the latter choice component, there are several

possible options such as random, adversarial, benign, deter-

ministic, etc. However, to maintain focus, we will assume the

random choice component in the rest of this paper, unless oth-

erwise mentioned1. Many of our results may apply to other

choice components too, however a discussion of this is out of

the scope of this paper.

The two models we define differ in their timing compo-

nents as follows:

I. TRAIN MODEL: The train model allows churn batches to

occur during protocol execution, but only at periodic times

and in fixed sizes. Given a churn rate c, a train schedule is

defined by a positive integer parameter denoted as K. Con-

cretely: (1) processes are allowed to join and leave/fail at

only time instances that are integer multiples of K time units,

where K ∈ R+, and (2) at each instance, (c × K) processes
leave/fail from, and a new set of (c × K) processes join into,

1Our bounds analysis for generic full membership protocols in Section 5.1

uses the adversarial choice model.
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Fig. 1. Examples of (a) Train schedule and (b)
Crowd schedule. Each of these two schedules
has a churn rate of 8
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unit.

the system, where c ∈ R+. Notice that given c, one can only

choose K so that (c × K) ∈ I+. We define the (long-term)

churn rate of this train schedule as a cK
K

= c processes per

time unit. Notice that this is half of the real churn rate, but we

prefer the smaller value due to notational convenience. This

model is illustrated with an example in Figure 1(a).

II. CROWD MODEL: The crowd model is a generalization

of the train model. Here, churn batches are allowed to occur

at arbitrary times and in arbitrary sizes. The churn rate of a

crowd schedule is defined as

∑
all batches a

∑
all batches t(a)

, where t(a) is

the time between the arrival of the a batch, and its immedi-

ately consecutive batch. Figure 1(b) shows an example crowd

schedule.

Notice that a train schedule is trivially a crowd sched-

ule, but not the other way around. The crowd model is less

tractable than train, but it creates a more realistic class of

churn models. Examples of crowd models are the two α-

churn models by Raynal et al [5, 16], and the half-life model

[14].

Analyzing the behavior of a protocol in the train model

is tractable since it involves considering only a single churn

batch – the protocol’s behavior between two consecutive

batches can be generalized to the entire schedule. However,

the arbitrariness of churn batch arrivals in the crowd model

makes a similar analysis challenging. Motivated by this ob-

servation, the next section shows how to generalize conclu-

sions from analysis using the train model, to the crowd model.

4 Analyzing Quiescent Properties under Train

and Crowd Models

We consider an important class of stability properties

called quiescent properties, defined for arbitrary distributed

protocols (in Section 4.1). We then relate, for arbitrary pro-

tocols and quiescent properties, the behavior in the train and

crowd models (in Sections 4.2 and 4.3). For ease of exposi-

tion and understanding, our discussion below uses a formal

approach yet avoids formal temporal logic.

4.1 Quiescent Property, Reliable Quies-
cence, and Infinite Quiescence

Definition 4.1.1 - Quiescent Property: Let prop be a global

property for a distributed system. At any given point of time,

prop is either true or false in the system. prop is usually

defined w.r.t. a distributed protocol P , and typically expressed

in terms of states of individual processes. Then, prop is said

to be a quiescent property if and only if (1) once prop is true,

it continues to hold until a churn batch occurs, and (2) if one

considers a synchronous timing model, after occurrence of a

churn batch that makes prop false, the system takes a bounded

amount of time for prop to become true again. This time is a

function of the churn batch size and protocol P .

Examples of quiescent properties include, in general, any

liveness property that may be affected (i.e., made false) by

churn in the system, but that may become true again after a

while, due to actions by protocols running at individual pro-

cesses. A useful and concrete example of such a property

is completeness in membership protocols, i.e., “all non-faulty

processes have been informed of all process joins and leaves

in the system until now” (see Section 5). Quiescent properties

can also be defined for classical distributed computing prob-

lems such as election, aggregation, consensus, system size es-

timation, etc., by considering the desirable liveness conditions

for the problem at hand.

To analyze behavior of a given protocol P w.r.t. a given

quiescent property, one needs to define a notion of quiescence

time for the protocol and property. This is the only part of the

analysis of P that uses the synchronous timing model. How-

ever, P itself is allowed to be an asynchronous protocol. The

notion of quiescence time of a protocol (w.r.t. a property) is

expressed as follows. Given a stable system size N , a pro-

tocol P can be associated with a function fP : I+ → R+,

mapping the size a of a churn batch to the time taken there-

after for prop to become true again. In other words, suppose

a set of a processes joins and a processes leaves the system

at time t, and the first time instant when prop holds again is

(t + t′); then fP (a) = t′. We will assume that the function

fP is smooth, i.e., it is continuous and monotonically increas-

ing. Notice that our notation for fP (.) omits prop since we

assume this to be implicit.

We are now ready to define reliable quiescence and infinite

quiescence, two different metrics for analyzing the behavior

of a protocol in a given churn schedule w.r.t. a given quiescent

property.

Definition 4.1.2 - Protocol Satisfying Reliable Quiescence

(RQ) in a Churn Schedule: 2 Given a quiescent property prop,

a protocol P is said to “satisfy reliable quiescence (or RQ) in

a churn schedule C” if and only if for each churn batch in

the schedule, there is a non-zero interval of time that starts

sometime after the batch’s arrival but before the immediately

succeeding batch’s arrival, during which prop holds. Intu-

itively, a protocol satisfies RQ in a given churn schedule (w.r.t.

a given property) if between every consecutive pair of churn

batches, there is a non-zero time interval when quiescence

2Notice that this notion of quiescence is completely different from, and

not intentionally related to, the notion of quiescence in failure detectors as

defined by Chen et al in [1].
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Fig. 2. Examples of (a) RQ and (b) IQ, both in
the crowd schedule from Figure 1(b). We focus

only on time t = 0 − 40. Notice that (a) also
satisfies IQ, but (b) does not satisfy RQ.

holds, i.e., the quiescence property prop is true. Another way

of visualizing RQ is that every process that joins the system

is guaranteed to see at least one non-zero interval of quies-

cence during its presence in the system. Figure 2(a) shows an

example of RQ in a crowd schedule.

Definition 4.1.3 - Protocol Satisfying Infinite Quiescence (IQ)

in a Churn Schedule: Given a quiescent property prop, a

protocol P is said to “satisfy infinite quiescence (or IQ) in

a churn schedule C” if and only if for each churn batch in

the schedule, there is at least one non-zero interval of time

that starts sometime after the batch’s arrival, during which

property prop holds.

IQ is a weaker property than RQ since it does not guaran-

tee that each process sees an interval of quiescence, only that

each churn batch element is eventually incorporated into the

system. Intuitively, a protocol satisfies IQ in a given churn

schedule (w.r.t. a quiescent property) if all churn batches

can be partitioned into finite-sized sets of churn batches, with

each set containing a contiguous sequence of churn batches.

For each set, there should be a non-zero time interval of qui-

escence after occurrence of the set’s last batch but before oc-

currence of the following set’s first batch. Figure 2(b) shows

an example of IQ in a crowd schedule. Notice that there is no

quiescence between the first two batches, but one right after

both of them.

We now relate RQ and IQ for a given protocol and a given

quiescent property.

Theorem 4.1.4: If a protocol P does not satisfy IQ in any

train (or respectively crowd) schedule with churn rate ≥ c,

then it does not satisfy RQ in any train (or respectively crowd)

model with churn rate ≥ c.

Proof This is proved by observing the contrapositive - if

P satisfies RQ in at least one train (or respectively crowd)

schedule C with churn rate ≥ c, then P satisfies IQ as well in

C.

Next, we set up our discussion for the next few sections

by classifying a given protocol P as either convex, concave,

or linear, based on the nature of the quiescence time function

fP (.):

Definition 4.1.5 - Convex, Concave and Linear Protocols:

We call a protocol P convex (respectively concave, or linear)

iff the function fP is strictly convex (respectively strictly con-

cave, or strictly linear).

In this paper, we are most interested in protocols that are

either concave or linear. This is because quiescence time is

minimized most effectively by such protocols. Consider a

convex protocol P , i.e., ∀a, b : fP (a + b) > fP (a) + fP (b).
Then the following modified protocol P ′ would quiesce much

faster than P . For each batch of size (a + b), P ′ prevents the

batch b from being processed the system until the batch a has

quiesced. The total time for P ′ to reach quiescence would be

fP (a) + fP (b), which is earlier than P ’s quiescence time of

fP (a + b). Hence a protocol designer would prefer a non-

convex protocol.

4.2 Relating Reliable Quiescence in the
Train and Crowd Models

This section shows how conditions for a given protocol P

to satisfy reliable quiescence (RQ) in the train model, can also

be extended to the crowd model.

Theorem 4.2.1: Consider a distributed protocol P that is

non-convex, i.e., function fP is non-convex and smooth. If

P does not satisfy RQ in any train schedule with given churn

rate c, then P does not satisfy RQ in any crowd schedule with

churn rate ≥ c.

Proof The proof is by contradiction. Suppose P does not

satisfy RQ in any train schedule with churn rate c, but satisfies

RQ in a crowd schedule C ′ that has a churn rate ≥ c.

No RQ in any train schedule C ′ implies that for any K ∈
I+, for any churn batch of size (c ·K), the time until the next

batch, i.e., K time units, is insufficient for RQ to be achieved

by P . That is, we have: ∀K ∈ I+ : K < fP (c · K). This is
because all churn batches are similar to each other. Since fP

is smooth and non-convex, we write this as:

∀a ∈ I+ : a
c
≤ fP (a) (1.1)

Now, consider that crowd schedule C ′ with churn rate ≥ c,

where P satisfies RQ. For each churn batch of size a in this

schedule, suppose t(a) is the time until the immediately next

churn batch. Then, since RQ is satisfied:

t(a) > fP (a) (1.2)

But then, churn rate in the crowd schedule C ′ is:

=

∑
all batches a

∑
all batches t(a)

<

∑
all batches a

∑
all batches fP (a)

(due to eq 1.2)

≤

∑
all batches a

∑
all batches

a
c

= c (due to eq 1.1)

However, this implies that the crowd schedule’s churn rate

< c, a contradiction. Hence proved.

The above theorem showed how to generalize non-

satisfiability of RQ from the train model to the crowd model.

The following observation relates the satisfiability across

these two models:



Observation 4.2.2: Suppose there is at least one train sched-

ule C (i.e., with a given K) with given churn rate c, where

P satisfies RQ. Then (trivially) there is some crowd schedule

with churn rate c that also satisfies RQ. (The train schedule C

itself is a witness crowd schedule where P satisfies RQ.)

A stronger result than the above is difficult because of the

following difficulty with the crowd model:

Observation 4.2.3: Given a crowd schedule C ′, with churn

rate c, where P satisfies RQ, there is a different crowd sched-

ule C ′′ with the same churn rate c, where P does not satisfy

RQ.

The schedule C ′′ can be derived from C ′ by changing the

arrival times of just one consecutive pair of batches in C ′ so

that the first batch does not quiesce, while the second batch

still does. In other words, consider any pair of consecutive

batches of sizes a and b in the crowd schedule. Construct C ′′

fromC ′ by changing the t(.) values for only these two batches
to tnew(.) with:
tnew(a) = fP (a) − ǫ, and tnew(b) = t(b) + t(a) − tnew(a)
In C ′′, the a batch does not quiesce and thus RQ is not satis-

fied, yet the churn rate remains c.

4.3 Relating Infinite Quiescence in the
Train and Crowd Models

In this section, we study the reducibility between the train

and crowd schedules w.r.t. the infinite quiescence (IQ) prop-

erty defined in Section 4.1.

Unlike RQ, for IQ, we need to define a separate quiescence

time function that takes into account the sets of churn batches

that share a unique time interval of quiescence after their oc-

currence. Concretely, given a protocol P and a stable sys-

tem size N , in the synchronous system model, one can de-

fine a function gP : (I+)
m

→ R+, where m is a finite, but

variable, positive integer. gP takes as input a (finite) set of

churn batches (each of positive size), and outputs the mini-

mum time that protocol P takes to reach quiescence after this

set of batches is started to be introduced into the system. No-

tice that the minimum is taken across all possible interleav-

ings and times of entry for each of the batches in the set.

For instance, for two batches of sizes a and b respectively,

gP (a, b) represents the minimum time taken to reach quies-

cence, given that one is free to choose both (1) which of the a

batch or the b batch is introduced first, and (2) the time when

the second of these batches is introduced. Note that the time

to quiescence will be counted from the time that the first batch

of the two is introduced, and until the first moment of quies-

cence after both batches have been introduced.

In general, the function gP is related to the function fP for

the same protocol. Specifically, for analysis, we assume there

exists a constant lP ∈ (0, 1] such that, for any positive integer
m and any numbers a1, a2, . . . am ∈ I+, we have:

gP (a1, a2, . . . am) ≥ lP .(
∑i=m

i=1 fP (ai))

Theorem 4.3.1: Consider a distributed protocol P for

which fP is non-convex and smooth, and gP and lP are de-

fined as above. If P does not satisfy IQ in any train schedule

with given churn rate c (for any given value of c), then P does

not satisfy IQ in any crowd schedule with churn rate ≥ ( c
lP

).

Proof The proof works by contradiction. Suppose P does

not satisfy IQ in any train schedule with churn rate c, but sat-

isfies IQ in a crowd schedule C ′ that has churn rate ≥ c
lP
.

From Theorem 4.1.4, absence of IQ satisfaction in any

train schedule with churn rate c also implies non-satisfaction

of RQ by P in any train schedule with churn rate c. Thus,

similar to the proof of Theorem 4.2.1, we can write: ∀K ∈
I+ : K < fP (c · K). Thus: ∀a ∈ I+ : a

c
≤ fP (a) (2.1)

Now, in the crowd schedule C ′, consider a set of batches

A =< a1, . . . am > (m finite, ai’s are consecutive batches)

that has no interval of quiescence between occurrences of a1

and am, but does have a non-zero interval of quiescence be-

tween occurrences of am, and am’s immediately succeeding

batch. Let t(A) =
∑m

i=1 t(ai). Then, since A has a interval

of quiescence at its end, we have:

t(A) > gP (A), which is ≥ lP ·
∑j

i=1 fP (ai) (2.2)

This leads us to calculate the churn rate in the crowd schedule

C ′, where P satisfies IQ, as:

=

∑
all batches a

∑
all batches t(a)

<

∑
all batches a

∑
all batches lP .fP (a)

(due to eq 2.2)

≤ 1
lP

·

∑
all batches a

∑
all batches

a
c

= c
lP

(due to eq 2.1)

This is a contradiction, since it implies the crowd schedule C ′

has a churn rate < c
lP
.

Finally, we make the following observation for relating satis-

fiability in the train and crowd models:

Observation 4.3.2: Suppose there is at least one train sched-

ule C (i.e., with a given K) with given churn rate c, where P

satisfies IQ. Then (trivially) there is at least one crowd sched-

ule with churn rate c that also satisfies IQ. (The schedule C

itself is a witness crowd schedule where P satisfies IQ.)

5 Bounds for Quiescence of Membership Pro-

tocols in Train Model

In this section, we demonstrate the applicability of the train

model to real distributed protocols. Specifically, we study

necessary conditions for quiescence in three distributed mem-

bership protocols: full membership, DHT-based, and gossip-

based. A distributed membership protocol [4, 14, 21, 22]

maintains, at each non-faulty process, a list (possibly partial)

of other processes also currently in the system. The protocol

actions update membership lists at non-faulty processes with

information about processes that have joined, left or failed

from the system. Membership protocols are used in p2p sys-

tems [14] and other large-scale distributed systems [4, 21, 22].

A full membership protocol is one that attempts to main-

tain, at each process, a list of all other processes currently in

the system. This requires all membership changes to be com-

municated to all non-faulty processes. A membership proto-

col that is not full is said to be partial. Protocols [4, 21] are



full protocols, while DHTs [14] and [22] are partial.

Broadly, the quiescent property of interest for any such

membership protocol is as follows: “all non-faulty processes

have a correct membership list reflecting all churn batches

that have occurred so far”. This may be either a deterministic

or probabilistic property, and is elaborated for each individual

protocol below.

To standardize our analysis, we will assume an upper band-

width bound of 1 message per time unit at each process, and

restrict each message to carry at most one process identifier in

its contents (besides sender and destination identifiers). The

choice of homogeneous bandwidth in our model is for ease

of analysis. Extension of our results to models with hetero-

geneous bandwidth bound is beyond the scope of this paper.

In addition, we will also ignore the detection time for process

failures; an extension of our analysis with failure detection

times is straightforward.

5.1 Bounds for Arbitrary Full Membership
Protocols under Adversarial Choice

In this section, we analyze, under the train model, arbitrary

full membership protocols which aim to have all processes

be informed of all membership changes. We assume that the

choice of processes in each churn batch is adversarial. This

is a worst-case scenario - per churn batch, we assume that a

single unique non-faulty process (labeled as p) is responsible

for initiating all membership updates for the churn batch. We

first analyze RQ:

Theorem 5.1.1: Given adversarial choice in each churn

batch, and a full membership protocol that is non-convex and

smooth, it will not satisfy RQ in the train model if the churn

rate is ≥ 1
2 processes per time unit.

Proof Consider a train schedule with churn rate c and pa-

rameter K. Given a churn batch of size (c · K), the op-

timal time to disseminate the (2 · c · K) entries (joins and

leaves/failures) to allN processes is given by [6]: fP (c·K) =
(⌈log2(N)⌉+2·c·K−1) time units. This is because in the ad-

versarial model, the minimal time for disseminating a batch’s

updates to all other N processes (including to new processes,

which initialize their membership lists from p) is via a span-

ning tree rooted at p, with the (2 · c ·K) updates pipelined via
this tree. Thus, for RQ to be satisfied:

(⌈log2(N)⌉ + 2 · c · K − 1) ≤ K

⇒ 1
2 · (⌈log2(N)⌉ − 1) ≤ K · ( 1

2 − c)
Hence, if c ≥ 1

2 , then for any given N > 1, there exists no K

satisfying the above equation.

Notice that the above bound may not be tight, i.e., it is still

possible that a given membership protocol does not satisfy

RQ even in a train schedule with churn rate c < 1
2 .

Since full membership lists are updated via probabilistic

protocols such as gossiping [4, 21], it is not enough to ana-

lyze only RQ, but also the completeness of individual mem-

bership entries. This leads us to define and analyze a new

notion called fractional inquiescence for a protocol:

Definition 5.1.2 - Fractional Inquiescence: Consider a full

membership protocol P that satisfies RQ in a given train

schedule. Then the fractional inquiescence of P w.r.t. that

schedule, is denoted as FI(P ), and is defined as the fraction

of time that, a random non-faulty process p does not know

about a random membership update u (i.e., join, leave or fail-

ure) in a churn batch B, considering only time instances be-

tween the occurrence of B and of its immediately succeeding

batch.

Theorem 5.1.3: Given adversarial choice in each churn

batch, in any train schedule with churn rate c and parame-

ter K, the fractional inquiescence FI(P ) value of any non-

convex, smooth and full membership protocol P is bounded

from below by ( ⌈log2(N)⌉+2cK−1
N ·K ).

Proof We use the spanning tree from Theorem 5.1.1’s proof

for optimal pipelining of updates in a churn batch. With a

bandwidth bound per process of 1 message per time unit, the

ith of these elements (i = 1 to 2cK) is received by all pro-

cesses by time 3(⌈log2(N)⌉ + i − 1). Since the ith element

starts spreading at time (i − 1) and the number of processes

knowing it doubles every time instant thereafter, the expected

time for a random process to receive it is: ( ⌈log2(N)⌉
2 + i− 1)

time units. Per churn batch, there are (2 · c · K) updates

intended for dissemination within K time units to N pro-

cesses. Thus, denoting X = (⌈log2(N)⌉
2 , we have: FI(P ) ≥

X+(X+1)+...+(X+2cK−1)
(2·c·K)·K·N = ⌈log2(N)⌉+2cK−1

N ·K .

5.2 Bounds for Two Membership Protocols
in Literature under Random Choice

In this section, we present our bounds analysis for RQ and

FI in the train model for two systems - a generic DHT, e.g.,

[14], and a gossip-style membership protocol [21]. We con-

sider only a random choice component in our churn models4.

Although we have applied our analysis to two other protocols,

Cyclon [22] and SWIM [4], we exclude these for brevity.

Bound for Distributed Hash Tables (DHTs): Consider a

generic DHT where each process has d neighbors, and the

routing length (in number of hops) between a random pair

of processes is RL. The quiescent property (w.r.t. a churn

batch) we are interested in is: “All neighbors of each non-

faulty process are updated correctly, according to the DHT

rules.” Note that a DHT is a partial membership protocol.

In the train model, a churn batch of (c · K) will need to

update 2×d× (c ·K) other membership entries of non-faulty

processes across the entire distributed system. In addition,

each of the (c · K) incoming processes will need to hear of

d neighbors. Each of the above updates consumes RL mes-

sages. However, due to our per-process bandwidth constraint

3All times are relative to the instant of occurrence of the churn batch.
4Unfortunately adversarial choice models appear to make the analysis in-

tractable even for the simplest of partial membership protocols.



of 1 message per time unit, the maximum capacity of band-

width available across the entire system between this churn

batch and the next, is only (N ×K) messages. Thus, the nec-

essary condition for a DHT to satisfy RQ is that the number

of messages is smaller than the capacity:

(2×d×(c ·K)+d×(c ·K))×RL ≤ (N×K) ⇒ c ≤ N
3·RL·d

This quantity ( N
3·RL·d ) is thus the upper bound on the churn

rate required for any DHT to satisfy RQ in any train sched-

ule. Further, this bound also applies to any crowd sched-

ule because DHTs are non-convex and smooth, and due to

Theorem 4.2.1. DHTs are non-convex since for any churn

batch of size (a + b), the DHT can schedule the dissem-

ination of the first a entries completely, and only then al-

low dissemination of the second batch of b entries. Thus,

fDHT (a + b) ≤ fDHT (a) + fDHT (b). Hence, fDHT (.) is

non-convex.

Although our derivation did not assume a specific DHT,

the above bound appears to tally with proven existing re-

sults for the Chord DHT [14]. For Chord, d = O(log(N)),
and RL = O(log(N)), and Theorem 5.7 in [14] shows that

the maximal rate of churn that Chord can tolerate, in order

to remain “stable” and answer queries correctly w.h.p., is

O( N
log2(N) ). This is asymptotically equivalent to O( N

3·RL·d ).

Bound for Gossip-style Membership Protocols: A

gossip-style membership protocol [21] is a full membership

protocol where each process attempts to maintain a complete

list of processes currently in the system. In addition, each

process gossips continuously about its membership list by

sending out, at a rate of 1 entry per time unit, random ele-

ments of its membership list to target processes in the system.

Since target selection mechanisms are typically probabilistic,

the quiescent property of interest should also be probabilistic:

(for any given churn batch) “a high probability fraction

(1 − ǫ) of non-faulty processes in the system is informed

about updates in the latest churn batch”. The authors show in

[21] that the time for a churn batch of size (c · K) to quiesce

is: fgossip−membership(c · K) = 2 × c · K × N · l · log(N),
where l is a constant that can be derived based on the value of

ǫ, as well as the actual target selection mechanism used [21].

Thus, the necessary condition for gossip-style membership

to satisfy RQ is: 2·c·K ·N ·l·log(N) ≥ K ⇒ c ≥ 1
2·l·N ·log(N)

This quantity ( 1
2·l·N ·log(N) ) is thus an upper bound on the

churn rate required by the gossip-style membership protocol

of [21] to satisfy RQ in any train schedule. This bound also

applies to any crowd schedule, since fgossip−membership(.)
is linear and smooth, and due to Theorem 4.2.1. This churn

rate bound is asymptotically smaller than a DHT’s churn rate

bound of ( N
3·RL·d ), since gossip-style is a full membership

protocol, while DHTs are partial.

Finally, we calculate fractional inquiescence FI(gossip−
membership). If the expected time for a (single) gossip

to reach a random process, among N given processes, is
log(N)

M
, where M is a constant > 1, derived from the ac-

tual target selection mechanism used [21], then we can write:

FI(gossip − membership) =
l·N ·

log(N)
M

·2cK

(2·c·K)·K·N = l·log(N)
M ·K .

Notice that the above FI(gossip−membership) is indepen-
dent of churn rate c. It turns out that the SWIM membership

protocol [4] shares the same RQ bound and FI values as the

gossip-style membership. We exclude these for brevity.

6 Experimental Results

Our experimental methodology has three characteristics.

First, we relax the assumption of the system size invariant

condition (definition 2.1), so that the total number of nodes

in the system can vary over time. Second, we use real churn

traces from two deployed p2p systems in order to inject churn

workloads into our simulations. The two real churn traces

are from the Overnet p2p system (collected by Bhagwan et al

[2]), and from the Azureus p2p system (collected by Ledlie et

al [12]). These churn traces have heterogeneous availability

variations across nodes and across time, and also have varying

number of online nodes over time.

Third, we evaluate quiescent properties for two practi-

cal membership protocols in the literature - the gossip-based

membership protocol [21], and the Pastry DHT [18]. These

are two different classes of membership protocols that have

been widely used to develop many p2p applications, e.g., ag-

gregation, publish-subscribe etc. We implemented a variant

of the gossip-based membership protocol from [21], and used

the FreePastry implementation by the authors of [18].

While the paper has so far looked at reliable quiescence

(RQ) and fractional inquiescence (FI), our main goal in this

section is to study key quiescence metrics of the above two

systems, and observe how closely the train and crowd models

predict them. Our studies find that several quiescence prop-

erties related to RQ and FI are predicted reasonably well by

the train and crowd models.

We first describe the churn traces from Overnet and

Azureus in Section 6.1, then study gossip-based membership

in Section 6.2, and Pastry in Section 6.3.

6.1 Traces

Overnet Trace: We use the Overnet trace collected by

Bhagwan et al [2]. This trace was collected over a period of 7

days by probing 2400 hosts every 20 minutes to measure the

availability of hosts in the Overnet filesharing network. The

churn rate of the Overnet trace is 3.7 × 10−5/node/second.

The average number of online nodes is 455.978.

Smoothened Overnet Trace: We modify the 20-minute

Overnet trace so that it can be injected continuously. More

concretely, let the ith Overnet trace be collected at time ti.

The hosts that join and leave in the ith trace must have joined

and left the system over the period (ti−1, ti]. So, for each of

the joins and leaves at ti, we inject it at a time instant selected

uniformly at random from the interval (ti−1, ti].



Azureus Trace: We use the Azureus trace collected by

Ledlie et al. where hosts were probed at a median rate of

248 seconds [12]. We use a subset (2400) of the 9849 host

traces for our simulation. This is a higher probing frequency

than the Overnet traces, and thus this trace is more realistic

than the smoothened Overnet traces. The churn rate of the

Azureus trace is 9.8 × 10−6/node/second. The average num-

ber of online nodes is 301.11. Compared to the Overnet trace,

the Azureus trace has a lower churn rate and a lower average

number of online nodes.

Train and Crowd Models: For each churn trace above, in

order to have a baseline for comparison, our train and crowd

models are fixed to have the the same long term churn rates

as the real trace, as well as the same number of initial nodes

at the beginning of simulation (i.e., N in our models is set to

the initial system size in the trace). For train, we set the inter-

batch arrival time to 20 minutes. For crowd, the inter-batch

arrival time follows a Poisson distribution with an average of

20 minutes; each batch size is scaled up proportional to the

latest inter-batch arrival time. In models for the Overnet trace

comparison, the average number of online nodes is 520.0 and

506.0 for train and crowd model, respectively. In traces for

the Azureus trace comparison, the average number of online

nodes is 292.0 and 293.0 for train and crowd model, respec-

tively.

6.2 Gossip-based Membership Protocol

Methodology: Our implementation of the gossip style

membership protocol from [21] works as follows. Each node

maintains a membership list locally, containing a list of all

nodes it believes are alive. Each entry in this list is associated

with an integer-valued heartbeat counter. Each node runs the

following steps asynchronously. Every Tgossip (= 2) seconds,

a node: (i) increments its own heartbeat counter, (ii) chooses a

target node at random from its own membership list, and (iii)

sends a gossip message to the target node, containing both

its heartbeat counter and its entire local membership list. A

node receiving a gossip message uses the received list to both

add new entries to its local list, and to update heartbeat coun-

ters for each local list entry (as a max of received and known

heartbeat counters for the entry).

An entry is dropped (marked as failed) when its heartbeat

counter has not changed in the past Tfail (= 22) seconds.

However, the entry is retained for another Tfail seconds in

order to avoid it from being added again to the membership

list if it were to be received again via a gossip message. The

detection time of this protocol turns out to be Tfail, since af-

ter a failure, it takes that much time for all entries pointing to

the failed node to be deleted everywhere.

Now, membership lists may be incorrect in two ways: (1)

an entry in the list may be inaccurate, i.e., it points to a node

that has failed; (2) the list may be incomplete, i.e., it does

not contain entries for at least one node that is currently alive.

Thus, the quiescent property we study is completeness and
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accuracy of membership lists. Specifically, we study two met-

rics related to RQ and FI: (a) entry-level inquiescence met-

ric: similar to FI , this is the fraction of entries that are either

inaccurate or incomplete, across all membership lists in the

system; (b) system-level quiescence metric: similar to RQ,

this is the fraction of time that all nodes have correct member-

ship lists. Our plots show the average value of these metrics,

with each data point derived from 5 runs with different seeds.

Results: Figures 3 and 4 show the entry-level inquiescence

metric for the above protocol, for the Overnet and Azureus

traces respectively. The plots show variation of the metric

across different node population sizes. Each node population

size x corresponds to the total number of nodes that are either

offline or online; this set was selected by injecting traces for

the first x nodes encountered in the churn traces.

We observe that the train and crowd model predict the

average value of this metric within an error factor of 2 for

the Overnet trace, and within an error factor of 1.5 for the

Azureus trace. The higher error in the Overnet traces is be-

cause of the varying size of churn batches in the trace, as op-

posed to our train model which has fixed size batches. On the

other hand, the error in the smoothened Overnet traces is be-

cause nodes are continuously joining and leaving (rather than

in batches), thus giving the system little time to stabilize be-
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fore the next churn event. For the Azureus trace, which accu-

rately contains the time of each node join and leave, our mod-

els show a comparatively lower error factor (of 1.5). This is

reasonable considering that the only things that are common

between our models and the churn traces are the long term

churn rate and the number of online nodes. Thus, we conclude

that train and crowd models predict system-level quiescence

metrics reasonably well for gossip-based membership.

Figures 5 and 6 show the variation of the system-level qui-

escence metric with a varying population size (we used a sub-

set of nodes in the trace). The plots have a downward trend

because with increasing population size, it takes longer for the

status of a churned node to be propagated to all other nodes

([21] showed that the propagation time is O(log(N)) for N

online nodes). We observe that the train and crowd model

predict the average value of this metric within an error fac-

tor of 2 for the Overnet trace, and with a much smaller error

factor for the Azureus trace. With Azureus trace, which is

more realistic than Overnet and smoothened Overnet traces,

the error rate is within 11.44% for train and 15.2% for crowd

at 800 nodes, and within 34.5% for train and 17.5% for crowd

at 2400 nodes. The causes for these error rates are similar to

the explanation for the errors in the entry-level metric.

Thus, we conclude that for gossip-based membership, the

train and crowdmodels are reasonably good at predicting both

the entry- and the system-level quiescence metrics.
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6.3 Pastry DHT

Methodology and Results: We rely on FreePastry, an

open-source implementation of the Pastry DHT. We use the

built-in simulator of FreePastry and drive our simulation with

the traces described in Section 6.1. Although we do not mea-

sure latency-related metrics, in order to measure the perfor-

mance in wide area settings, we use FreePastry’s Euclidean

topology. This is a random placement of nodes on a 2-

dimensional plane with the inter-node latencies varying from

2 ms to 200 ms based on Euclidean distance.

Pastry has each node maintain a routing table pointing to a

few other nodes (peers). These peers are selected according to

certain structured rules (Pastry uses prefix matching). Churn

in the system thus causes Pastry routing tables to be updated

as joined nodes satisfy the prefix match, and departed nodes

are deleted. We are interested in measuring the volatility of

routing tables in the system. Thus, unlike the two metrics

measured for gossip-based membership, for Pastry our main

inquiescence metric of interest is the number of routing table

changes per second, across the entire system. This is some-

what akin to the FI metric (see definition 5.1.2).

Our experimental setup uses the default parameters of

FreePastry. Specifically, the parameters pertinent to our sim-

ulation are the leafset maintenance frequency and the rout-

ing table maintenance frequency, since those parameters con-

tribute to routing table changes. The default values are 60



seconds for the leafset maintenance frequency and 900 sec-

onds for the routing table maintenance frequency.

Figures 7 and 8 plot for different population sizes, respec-

tively for the Overnet trace and Azureus traces. We observe

that the train and crowd models predict the values within an

error factor of 5% for both traces, in spite of having only the

long-term churn rate and average number of online nodes in

common with the churn traces. Thus, our models are accurate

at predicting quiescence of Pastry.

7 Related Work
Real Churn Measurements: Trace-based measurements

have shown high rates of churn (up to 100% per hour) and

short session times (O(minutes)) for p2p systems such as

Overnet [2] and Gnutella [8]. Some past work has mathemat-

ically modeled session times in these systems, e.g., [19] for

Gnutella, BitTorrent, and Kad, [8] for Kazaa and Gnutella.
Node-based Churn Models: Krishnamurthy et al [11]

analyzed Chord’s stability using a Poisson-based ar-

rival/departure churn model and predicted the fraction of

incorrect DHT membership entries and failed lookups,

given arbitrary churn rates. Leonard et al [13] defined

non-exponential process uptime/downtime distributions, and

showed how to derive both residual and new process life-

times. Kong et al [10] analyzed the probability of non-

partitionability of seven different p2p systems under a one-

time failure model. Godfrey et al [7] used arbitrary up-

time/downtime distributions to analyze and compare different

replica selection policies under churn.
System-based Churn Models: Fernandez et al [5] general-

ized traditional bounded-failure models to churn, by propos-

ing a model with a known lower bound α on the number of

processes that remain non-faulty across churn batches. They

used this model to propose and analyze two eventual leader

election protocols. Mostefaoui et al [16] used the same α-

based churn model from above to adapt a leader election pro-

tocol originally proposed for a static system model to a churn-

based distributed system. Finally, in [14] Liben-Nowell et al

defined the notion of half-life for a p2p system as the time

to either replace 50% of existing processes or add on 100%

new processes. They then showed that, under steady-state

system size, as long as the half-life of this churn model is

Ω(log2(N)), the Chord DHT would continue to guarantee

lookups completed successfully w.h.p.

8 Conclusions

In this paper, we have proposed two new churn models -

a tractable and periodic train model, and a generic and prac-

tical crowd model. We then showed the relation between the

train and crowd models w.r.t. the satisfaction of two types

of protocol properties - reliable quiescence (RQ) and infinite

quiescence (IQ). We used these models to study quiescence

in several membership protocols, including full membership,

gossip-based membership, and DHT membership. Our ex-

periments with gossip-based and Pastry DHT showed that the

train and crowd models predict the values of quiescence met-

rics within a factor of 1.5-2 (gossip-based membership), and

within a factor of 5% (the Pastry DHT). Based on our results,

we believe that simple churn models such as train and crowd

can be used to provide tractable and practical analysis of qui-

escence properties in a variety of distributed protocols.
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