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Abstract

Clusters of Symmetrical Multiprocessors (SMPs) have
recently become very popular as low cost, high perfor-
mance computing solutions. While some programs can be
automatically parallelized for use on a single SMP node,
using multiple nodes in a cluster requires the programmer
to rewrite the sequential code and employ explicit message
passing. This paper explores an alternate approach, the use
of a multithreaded Distributed Shared Memory (DSM) sys-
tem, Strings. Though shared memory programs are eas-
ier to write, a DSM system may not perform as well as
a message passing library. The performance of both ap-
proaches is evaluated using two applications from the field
of medical computing. The first application is a program
for deblurring images obtained from Magnetic Resonance
Imaging. The other program is part of a system for radia-
tion treatment planning. Each program was initially paral-
lelized using a message passing approach. The programs
were then rewritten to use a multithreaded approach over
the DSM. Our results show that current implementations
of the standard message passing libraries PVM and MPI
are not able to effectively exploit multiple processors on an
SMP node. SinceStringsis multithreaded, it provides very
good speed-up for both the programs in this environment.
It is also seen that the DSM code is as good as the message
passing version for one program, and nearly as good in the
other program.

1 Introduction

Though current microprocessors are getting faster at a
very rapid rate, there are still some very large and com-
plex problems that can only be solved by using multi-
ple cooperating processors. These problems include the
so-calledGrand Challenge Problems, such as Fuel com-�This research was supported in part by NSF grants MIP-9309489,
EIA-9729828, US Army Contract DAEA 32-93D004 and Ford Motor
Company grants 96-136R and 96-628R

bustion, Ocean modeling, Image understanding, and Ra-
tional drug design. Recently many vendors of traditional
workstations have adopted a design strategy wherein mul-
tiple state-of-the-art microprocessors are used to build high
performance shared-memory parallel workstations. These
symmetrical multiprocessors (SMPs) are then connected
through high speed networks or switches to form a scal-
able computing cluster.

Using multiple nodes on such SMP clusters requires the
programmer to either write explicit message passing pro-
grams, using libraries like MPI or PVM; or to rewrite the
code using a new language with parallel constructs eg. HPF
and Fortran 90. Message passing programs are cumber-
some to write and may have to be tuned for each individual
architecture to get the best possible performance. Parallel
languages work well with code that has regular data access
patterns. In both cases the programmer has to be intimately
familiar with the application program as well as the target
architecture. The shared memory model on the other hand,
is easier to program since the programmer does not have
to worry about sending data explicitly from one process to
another. Hence, an alternate approach to using compute
clusters is to provide an illusion of logically shared mem-
ory over physically distributed memory, known as a Dis-
tributed Shared Memory (DSM) or Shared Virtual Memory
(SVM).

This paper evaluates the performance of two large ap-
plications which are parallelized for execution on a cluster
of symmetrical multiprocessors. The first program (MRI)
is used for deblurring of images obtained from magnetic
resonance imaging at the Department of Radiology, Wayne
State University. The other application (RTTP) forms part
of the system routinely used for radiation therapy treatment
planning for patients at the Gershenson Radiation Oncol-
ogy Center at Harper Hospital, Detroit. The parallel ver-
sions of the code were written using the standard message
passing libraries PVM and MPI, and also implemented
with a shared memory model over a DSM,Strings. Our
results show that implementations of theStringsDSM ef-



fectively exploits multiple processors on SMP nodes, since
it is a multithreaded runtime. Good speed-up and scala-
bility in this environment are obtained in this environment.
The DSM version of the MRI program performs as good
as, and sometimes better than the message passing code,
depending on the algorithm that is implemented. Though
the RTTP program is more challenging, theStringscode
comes within 12 – 20 % of the performance of the original
MPI program.

The next section provides some background about the
different runtime environments used in this evaluation. The
two applications are introduced in Section 3. The perfor-
mance results are shown and discussed in Section 4. Sec-
tion 5 concludes this paper.

2 Programming Environments

The programming environments used in this work in-
clude two standard message passing libraries, PVM and
MPI, and a multithreaded Distributed Shared Memory sys-
tem,Strings[1].

2.1 Parallel Virtual Machine

The Parallel Virtual Machine (PVM) [2] is a runtime
system composed of two parts. The first part is a daemon
that resides on all the computers making up the virtual ma-
chine. When a user wishes to run a PVM application, a
virtual machine is created first by starting up the PVM dae-
mon on each host in the physical distributed machine. The
PVM application can then be started from any of the hosts.

The second part of the system is a library of PVM in-
terface routines. It contains a fairly complete repertoire of
primitives that are needed for cooperation between tasks
of an application. This library contains routines for pass-
ing messages, spawning processes, coordinating tasks, and
modifying the virtual machine.

2.2 Message Passing Interface

The Message Passing Interface (MPI) [3] is another
industry standard message passing library that includes
point-to-point communication and collective operations,
all scoped to a user-specified group of processes. MPI
allows the construction of virtual topologies for graph or
Cartesian naming of processes that help relate the applica-
tion semantics to the message passing semantics in a conve-
nient, efficient way. Communicators, which house groups
and communication context (scoping) information, provide
an important measure of safety that is necessary and useful
for building up library-oriented parallel code.

MPI also provides services for environmental inquiry,
basic timing information for application performance mea-
surement, and a profiling interface for external perfor-
mance monitoring. The performance measurements in this
paper were done with the MPICH implementation from Ar-
gonne National Laboratory [4].

2.3 Strings: Distributed Shared Memory

Strings[1] is a fully multithreaded DSM that incorpo-
rates Posix1.c threads multiplexed on kernel lightweight
processes. The kernel can schedule multiple threads across
all the processors on an SMP node, using these lightweight
processes.Stringsis implemented as a library that is linked
with the application programs. At initialization of the run-
time, a separatecommunication thread is created. This
thread handles all incoming messages by issuing a block-
ing recvmsg(3N) on aUDP socket. Hence, messages
do not generate explicit interrupts that would have to be
serviced. Requests from other nodes for synchronization
objects or shared memory pages are handled by short lived
threads. Thus multiple independent requests can be served
in parallel.

Portable global pointers are implemented across nodes
in the DSM program by mapping the shared regions to
fixed addresses in the memory space. The system uses Re-
lease Consistency with an update protocol, derived from
Quarks[5]. Changes to shared pages are only propagated
to other nodes when there is a synchronization release ie.
unlock or a barrier arrival. The changes are obtained by
diffing the current version of the page with the contents af-
ter the previous release operation. A distributed queue is
implemented for locks, requests from the local node pre-
empt remote requests. While this policy is not fair, this
optimization works well for the programs tested.

3 Application Details

The two applications evaluated are deblurring of images
obtained from magnetic resonance imaging and genetic op-
timization of radiation treatment planning.

3.1 Deblurring of MRI Images

Magnetic resonance imaging (MRI) is a relatively new
technique for obtaining images of the human body. It offers
many advantages over conventional techniques such as X-
ray and-ray imaging, since it does not use radiation and
has no known side-effects. MRI images are obtained by
placing the sample to be imaged in a very strong, uniform
magnetic field.



Images generated by MRI may suffer a loss of clarity
due to inhomogeneities in the magnetic field. One of the
algorithms proposed for deblurring uses a map of the mag-
netic field to correct the image for local inhomogeneities
[6]. First, the local field map data is acquired and a set of
frequency points is determined for demodulation and im-
age reconstruction. The collected data is corrected for non-
linear sampling density and then gridded onto a Cartesian
scale [7, 8]. Next, a two dimensional Fast Fourier Trans-
form (FFT) is used to get the image in Cartesian space.
This process is carried out for each of the selected fre-
quency points. This is a very computation intensive opera-
tion and appreciable gains could be provided through paral-
lelization. A set of images is produced, each deblurred for a
particular frequency component of the local magnetic field.
The final image is obtained by a consolidation of these im-
ages. For each pixel, the value of the local frequency map
corresponding to its Cartesian coordinates is taken and the
two closest selected frequencies are determined. Then a
linear interpolation of the pixel values of the images from
these frequencies is done to get the pixel value of the final
image.

The parallel implementation was done using two ap-
proaches, message passing using PVM and MPI, and a
Distributed Shared Memory (DSM) version usingStrings.
Three different parallel algorithms were evaluated.

3.1.1 One-to-one Task Mapping

The program is divided into three main phases. In the dis-
tribution phase, the master program reads in the input data
and calculates which frequencies are to be demodulated.
After the number and value of frequency points to be de-
modulated has been determined, a corresponding number
of slave processes is spawned and the relevant data is dis-
tributed to the slaves. This is the distribution phase of the
program. At the end of this phase, each slave program pos-
sesses its own copy of the data on which it performs com-
putations.

Each of the slave programs then proceeds to do the de-
modulation, gridding, and Fourier transform for its chosen
frequency. This phase of the program is executed in par-
allel and it is where the bulk of the computation is carried
out. At the end of the computation, the local results are
sent back to the master which then consolidates all the data
by calculating the best possible value for each pixel in the
final image. This was the initial algorithm described in [9],
and was implemented using PVM and MPI.

3.1.2 Workpile Model

The DSM implementation of the algorithm used the
workpile model of computation. A master thread starts

first, allocates memory for shared variables and initializes
data. It then reads the input data and determines the fre-
quencies that should be demodulated. Child threads are
then created to perform computation on the data. These
threads obtain one frequency to be deblurred from a shared
memory region and carry out the computation on that fre-
quency. When the process is done, the child updates the
final image with the data from this frequency. It then takes
another frequency, until the workpile is empty. Note that
this kind of computational model would be difficult to im-
plement using explicit message passing, since one would
have to fork a special handler process to serve incoming
requests from the child processes.

3.1.3 Static Task Distribution

The third implementation statically divides the number of
frequency points that need to be demodulated across the to-
tal number of tasks that are created. In this approach, the
MPI and PVM versions can use less tasks to handle a larger
number of points. Compared to the original DSM version,
the slave threads do not have to obtain new tasks from the
master and this save on communication. If a task handles
more than one frequency, the results are initially accumu-
lated in a local copy of the image. These partial results are
then passed to the master process before the child task ter-
minates. This reduces the amount of communication com-
pared to the One-to-one task mapping and the Workpile
models.

3.2 Radiation Therapy Treatment Planning

Radiation therapy using external photon beams is an in-
tegral part of the treatment of the majority of cancerous tu-
mors. In this modality, beams of photons are directed at the
tumor in the patient from different directions, thereby con-
centrating radiation dose in the tumor. The maximum dose
that can be delivered to a tumor is limited by its neighbor-
ing normal organs’ tolerance to radiation damage. Conven-
tionally, desired dose distributions within the patient are
calculated by dosimetrists/physicists using computers and
represent attempts to maximize the dose to the tumor while
minimizing the dose to normal tissues. Treatment plans
acceptable to the radiation oncologist are obtained by itera-
tive interaction between the dosimetrist and the oncologist.
This treatment planning process is fairly time consuming
for three-dimensional treatment planning.

Computerized treatment planning was limited for many
years to producing dose distribution on one or a few planes
of a patient’s body. In addition, the beams that could be
modeled were limited to those coplanar with the patient
planes. These limitations were primarily caused by the
computing resources generally available and the need to



produce evaluable plans in time frames relevant to clinical
practice, which is to say in minutes, not hours or days. A
detailed description of the genetic algorithm used in this
implementation is available in [10]. The purpose of the
code is to select a set of beams, each with a correspond-
ing weight, used to treat the patient. A beam’s weight is
its relative intensity. This set of beams and weights col-
lectively is called a plan. Each beam is a description of a
particular radiation field, its orientation in space, energy,
shape, wedge, etc. Each beam will produce a particular
dose distribution within a patient, and this is character-
ized by calculating the dose per unit beam weight at many
points within the body. A plan is the total dose distribution
obtained by summing, for each point being considered, the
dose from each beam in proportion to its weight. The qual-
ity of the plan is judged by evaluating this dose distribu-
tion in relation to the particular constraints imposed by the
physician. The point of the optimization is to select the
best beams and weights.

3.2.1 Parallel Implementation of RTTP

The genetic optimization algorithm has a dependency from
each generation to the former generation, except for the
first random generation. Hence, the main loop cannot be
parallelized. However, each function call within the main
loop has many simple uniform loops which can be exe-
cuted in parallel. The parallel algorithm has a fork-join im-
plementation and a large number of synchronization points
when compared to the MRI application. The master pro-
gram reads in the data and creates an initial population
of beams. This population data is distributed across the
slaves. Each slave task determines the dose distribution in
the patient’s body due to the beams in its part of the pop-
ulation. The master collects the results, and uses genetic
optimization to determine a new population. This process
is repeated until the change between two iterations is below
some threshold value. In an actual clinical environment the
same procedure would be repeated multiple times so that
the oncologist can select a suitable plan from the ones gen-
erated.

4 Performance Analysis

The performance analysis of both applications was
done on a cluster of four SUN UltraEnterprise Servers.
One machine is a six processor UltraEnterprise 4000 with
1.5 Gbyte memory. The master process in each case was
started on this machine. The other machines are four
processor UltraEnterprise 3000s, with 0.5 Gbyte memory
each. All machines use 250 MHz UltraSparcII processors,

with 4 Mb external cache. Two networks are used to in-
terconnect the machines in the cluster, 155 Mbps ATM
with a ForeRunnerLE 155 ATM switch, and 100 Mbps
FastEthernet with a BayStack FastEthernet Hub. The re-
sults presented in this paper are obtained on the FastEther-
net network. Based on previous work, we would not expect
the ATM network to provide a very large performance im-
provement [11].

4.1 Deblurring of MRI Images

The performance evaluation of this code was done us-
ing a 256x256 pixels test image. First, the One-to-one task
mapping implementations is compared against the serial
code. Then the workpile model versions of the DSM is
compared against the One-to-one task mapping. Finally
we show results for the Static Load Allocation approach
using MPI, PVM, andStrings.

4.1.1 One-to-one Task Mapping

Figure 1 shows the performance comparison between the
serial code and the MPI as well as PVM implementations.
This test was conducted using two of the four processor
SMP machines.
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Figure 1: Speed-Up with up to 8 Processors

From the figure, very good initial speedups are observed
for both PVM and MPI versions but the PVM version does
consistently better than MPI. The code was further ana-
lyzed and it was found that the main difference was in
the efficiency of collective communication. There are two
broadcasts/multicasts in the master program. The second
broadcast consists of3.667 MBytes.

The MPI version takes a very large amount of time for
the broadcast as compared to PVM. The reason is that PVM
uses a multi-level broadcast system. The masterpvmd
daemon sends the broadcast message to all the daemons
running on the other hosts in the virtual machine. Each
daemon then forwards the message locally to all the tasks



running on its host. In MPI, on the other hand, there is
no daemon process and the broadcast is implemented as a
tree structured multiple unicast. Hence, the broadcast con-
sumes more time and bandwidth, leading to an overall per-
formance degradation.

It is also seen that the performance degrades when the
number of tasks is more than the number of processors.

4.1.2 Workpile Model

The One-to-one model using message passing was then
compared to the Workpile model onStrings, using 16
CPUs. .
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Figure 2: MRI onStrings, PVM and MPI (16 CPUs)

Figure 2 shows that the DSM version of the code out-
performs the MPI version for all the configurations of prob-
lem and machine size that were used. The MPI code could
not be used for the problem size of 32 frequency points
being deblurred by 32 processes, because the MPI master
program was being contacted by too many slave processes
leading to a hot spot in communications. This caused a
communication timeout and a consequent shutdown of the
MPI environment.

The PVM program also performs better than MPI for all
program and network sizes. This is due to the extra over-
head incurred by MPI during the broadcast phase, as ex-
plained earlier. The comparison between PVM andStrings
shows that for small problem sizes, PVM performs better
thanStringsbut as the problem size is increased, ie. for a
greater number of frequency points chosen,Stringsperfor-
mance is better. Therefore,Stringsexhibits better scalabil-
ity than PVM.

4.1.3 Static Load Allocation

Figure 3 shows the speed-ups obtained using 48 frequency
points and the Static Load Allocation algorithm. Compared

to Figure 1, the message passing codes scale much bet-
ter, since the number of processes has been limited to the
physical number of CPUs. TheStringsversion of the code
performs marginally better, since at the end of the com-
putation, it only sends data that was changed in the code.
The message passing programs on the other hand send the
entire local copy of the partially deblurred image.
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Figure 3: MRI onStrings, PVM and MPI (Static Load Al-
location)

4.2 Genetic Optimization

The genetic optimization program was tested using the
MPI implementation and theStringsversion. Two beam
sets are generated using a population of 100. Figure 4
shows the speed-up obtained using the two approaches. It
can be seen that theStringsversion of the program per-
forms almost as well as the MPI code.
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Figure 4: Speed-Up for Genetic Optimization

In the MPI version of the program, there is a reduction
operation at the end of the parallel part of the loop when
the child tasks inform the parent process about the resul-
tant beam dose due to their part of the population. At the
beginning of each iteration, the parent broadcasts the new
population obtained by genetic optimization of the current
generation.



In the shared memory version, these updates are
achieved by using barrier synchronization. SinceStrings
uses release consistency, this is the only way that updates
to globally shared memory can be made visible to other
tasks. The barrier synchronization requires more messages
than the broadcast, since all the processes have to contact
the barrier manager when they arrive at the barrier, and the
manager in turn has to send out thebarrier crossedmes-
sage to each participating node. Hence theStringsversion
performs a little worse than the MPI implementation.

5 Conclusion

In this paper the performance of two message passing
systems, PVM and MPI was compared to a Distributed
Shared Memory,Strings, using two large applications. The
performance figures obtained show that theStrings can
provide nearly equivalent performance compared to the
message passing platform, depending on the algorithm se-
lected. This is particularly true for a compute cluster con-
sisting of multiprocessors nodes, since the multithreaded
design of theStringssystem provides a light-weight ap-
proach to exploiting all the processors on each node.

Related research compared the performance of Tread-
Marks, an early generation DSM, with PVM using mostly
benchmark codes and computational kernels [12]. The
DSM performed worse than PVM due to separation of syn-
chronization and data transfer, and additional messages due
to the invalidate protocol and false sharing. In contrast, in
this paper we have shown performance results with actual
programs used in medical computing.Stringsuses a mul-
tithreaded approach to allow efficient use of an update pro-
tocol, and reduces the effect of false-sharing by allowing
multiple writers to a page.

In conclusion, this paper shows that a Distributed
Shared Memory system can provide performance close to
that of message passing code, while allowing a simpler and
more intuitive programming model. Our future work in-
cludes trying to reduce the barrier synchronization over-
head further, and to attempt to exploit even more paral-
lelism in the RTTP application.
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