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Abstract. Application-level migration schemes have been paid more at-
tention recently because of their great potential for heterogeneous migra-
tion. But they are facing an obstacle that few migration-unsafe features
in certain programming languages prevent some programs from migrat-
ing. Most application-level migration schemes declare or assume they
are dealing with “safe” programs which confuse users without explana-
tion. This paper proposes an application-level thread migration package,
MigThread, to identify “unsafe” features in C/C++ and migrate this
kind of programs with correct results. Therefore, users need not worry if
their programs are qualified for migration as they experienced before.
Besides the existing characteristics such as scalability and flexibility,
MigThread improves transparency and reliability. Complexity analysis
and performance evaluation illustrate the migration efficiency.

1 Introduction

Recent improvements in commodity processors and networks have provided a
chance to support high-performance parallel applications within an everyday
computing infrastructure. As high-performance facilities shift from supercom-
puters to Networks of Workstations (NOWs), migration of computing from one
node to another will be indispensable. Thread/process migration enables dy-
namic load distribution, fault tolerance, eased system administration, data ac-
cess locality and mobile computing [1, 2, 7].

Thread migration can be achieved at kernel, user, or application level. Ker-
nel level thread migration is a part of the operating system. Threads are moved
around among processors if they are on multi-processors, such as SMPs, or
among workstations by distributed operating systems. Kernel-level migration
is complicated, but efficient. User-level approaches move migration functional-
ity from the kernel into user space and typically yield simpler implementations,
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but suffer too much from reduced performance and less transparency. User-level
migration is targeted for long-running threads with few OS requirements, less
transparency, and a limited set of system calls. Programs will need to re-linked
with certain library to enable migration feature.

Traditional application-level migration is implemented as a part of an ap-
plication. It achieves simplicity by sacrificing transparency and reusability. But
it has an attractive potential for heterogeneous migration feature. As internet
is popular and grid computing is emerging, heterogeneous migration will be in-
dispensable. We have proposed an application-level thread migration scheme,
MigThread, to improve transparency and reusability for migration [3]. A big
impediment to thread migration is due to “migration-unsafe” features within
C/C++. If the programmer uses these “unsafe” features in their programs, the
migration leads to errors. To ensure the correctness, most application-level or
language level migration schemes declare they only work on “migration-safe”
programs. There are two problems with this. First, the “unsafe” features are not
well defined. Second, such restriction greatly reduces the domain where migra-
tion can be utilized.

In this paper, we make the following contributions:

– Determine and overcome “migration-unsafe” features in programs to widen
the applicability of thread migration.

– Improve existing thread migration scheme[3].
• Speed up source-to-source transformation at compile time.
• Handle pointers and pointer arithmetic efficiently.
• Support better memory segment management.

– Provide complexity comparison and analysis, and performance evaluation on
real applications.

The remainder of this paper is organized as follows: Section 2 describes the
performance improvements to the existing one in [3]. Section 3 identifies and
overcomes some migration-unsafe features in C. In section 4, we compare the
complexity of our scheme with existing implementations and show experiment
results on benchmark programs. Section 5 gives an overview of related work. We
wrap up with conclusions and continuing work in Section 6.

2 Optimizing thread migration using MigThread

In this section we present some optimization to the migration scheme in [3].

2.1 MigThread

MigThread is an portable and scalable application-level thread migration pack-
age. It takes thread state out of kernel or libraries, and moves it up to the lan-
guage level. MigThread consists of two parts: preprocessor and runtime support
module. At compile time, the preprocessor scans the source code and collects re-
lated thread state information into two data structures which will be integrated
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Fig. 1. Function call graph to reduce compile time overhead

into the thread state at runtime. Local variables, function arguments, and Pro-
gram Counters (PC) are all parts of thread state. Dynamically allocated mem-
ory is also supported. Thus data in heap are migrated with the thread state and
restored remotely. Since destination nodes might use different address spaces,
pointers referencing stack or heap might be invalid after migration. MigThread

detects and marks pointers at language level so that at runtime it just accesses
predefined data structures to update most of them precisely. Adaptation points
where thread migration can take place are detected, labelled, and pointed by
switch statement [3].

At runtime, MigThread maintains a thread control area (TCA) which holds
a record for each thread containing references to a stack, a control block for
memory segments in the heap and a pointer translation table. During migration,
thread state is constructed, transferred, and restored. After updating pointers,
MigThread resumes computation at the right place. Since the physical thread
state is transformed into a logical form, MigThread has great potential to be used
in heterogeneous environments without relying on any type of thread libraries
or operating systems. More design and implementation details are in [3].

2.2 Reducing compile time overhead

To reduce the overhead, MigThread only transforms the related functions invoked
by the migrating threads. It creates a call graph starting out of main() to detect
the thread starting function and the migration function. These two and all other
functions between them should be transformed into the migration-enabled code.
For example, in Fig. 1, B and S are the thread starting and migration functions
respectively. There are three paths between them: BFKS, BGLS and BGOS.
The program execution has to take one of them based on the runtime situation.
Therefore, at compile-time, MigThread uses breadth first search to identify and
transform related functions on these possible paths. Since only a fraction of the
entire program is transformed, compile time overhead is greatly reduced (see
Fig. 6 in Section 4).



2.3 Generalizing pointer handling

The scheme in [3] identifies pointer variables at language level and collects them
into a data structure sr ptr. If some structure type variables in sr var contain
pointer fields, they need to be referenced by new pointer variables in the other
data structure sr ptr. On the destination node, it scans the memory area of
sr ptr to translate most pointers. This strategy is more efficient than reporting
pointers one-by-one as in Porch[6] and SNOW[7]. MigThread extends this model
further to handle more complicated cases in dynamically allocated memory. If
some pointer variables in sr ptr contains pointer type subfields, the preproces-
sor just reports their offsets in base units and the runtime support module will
detect other dynamic pointer fields by pointer arithmetic. MigThread does not
trace pointers if programs are “migration-safe”. No matter how pointers are
manipulated, only the current values of variables and pointers hold the cor-
rect thread state. This “ignore-strategy” makes MigThread efficient. MigThread

traces pointers only when “unsafe” features are involved as in Section 3.

2.4 Memory management optimization

Unlike the linked-list structure in [3], MigThread maintains a red-black tree of
memory segment records, traces all dynamically allocated memory in local or
shared heap, and provides the information for pointer updating. Each segment
record consists of the address, size, and type of the referenced memory block,
with an extra linked list of offsets for inner pointer subfields. In user applications,
when malloc() and free() are invoked to allocate and deallocate memory space,
the preprocessor inserts STR mig reg() and STR mig unreg() accordingly
to let MigThread create and delete memory segment records at runtime. Since
memory blocks are maintained in order, the insertion, deletion or searching of one
node in the red-black tree takes O(logN) time. Again, the dynamically allocated
memory management is moved up to the application level [3].

3 Handling Migration-unsafe Features

Application level migration schemes rely on programming style to ensure the
correctness of the resumed computation after migration. Most migration schemes
declare that they only work on “safe” programs to avoid those “unsafe” features
in C and obtain the correct thread state. MigThread can detect and handles some
such “unsafe” features, including pointer casting, pointers in unions, library calls,
and state-carrying instructions.

3.1 Pointer casting

Pointer manipulations can cause problems with migration. Pointer casting is
one of them. It does not mean the cast between different pointer types, but the
cast to/from integral types, such as integer, long, or double. The problem is
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declaration

case (1)

case (2)

case (3)

int  * foo();
             .
             .
unsigned long   num;
int    ivar,  *ptr;
             .
             .
num = (unsigned long) ptr;
             .
             .
num = (unsigned long) &ivar;
             .
             .
num = (unsigned long) foo();
             .
             .
ptr = &num;
*ptr = (unsigned long)&ivar; case (4)

Fig. 2. Four cases of hiding pointers in integral type variables

that pointers might hide in integral type variables. Application level migration
schemes identifies pointer values (or memory addresses) by pointer names or even
types if they are in dynamically allocated memory segments. If pointers are cast
into integral type variables, migration schemes might miss updating them when
address space changes during migration. So the central issue is to detect those
integral variables containing pointer values (or memory addresses) so that they
could be updated during state restoration. Casting could be direct or indirect.
There are four ways to hide pointers in integral type variables (shown in Fig. 2):

1. Cast pointers directly or indirectly. In Fig. 2, case (1) only shows the di-
rect cast. If num is assigned to another integral type variable, indirect cast
happens and it also can cause problems.

2. Memory addresses are cast into integral type variables directly.
3. Functions’ returning values are cast in.
4. Integral variables are referenced indirectly by pointers or pointer arithmetic

and their values are changed by all the above three cases.

To avoid dangerous pointer casting, MigThread investigates pointer opera-
tions at compile time. The preprocessor creates a pointer-group by collecting
pointers, functions with pointer type return values, and integral variables that
have already been cast in pointer values. When the left-hand side of an assign-
ment is an integral type variable, the preprocessor checks the right-hand side to
see if pointer casting happens. If members of pointer-group exist without chang-
ing their types, the left-hand side variable should also be put into pointer-group
for future detection and reported to the runtime support module for possible
pointer update during migration. The preprocessor ignores all other cases.

The preprocessor is insufficient for indirect access and pointer arithmetic as
case (4) in Fig. 2. The preprocessor inserts primitive STR check ptr(mem1,
mem2) to request the runtime support module to check if mem1 is actually
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together

union u_type {
      struct s_type {
            int   idx;
            int   *first;
            int   *second;
      }        a;
       int  *b;
       int    c;
};

Fig. 3. Pointers in Union

an integral variable’s address (not on pointer trees) and mem2 is an address
(pointer type). If so, mem1 will be registered as a pointer which could also be
deregistered later. Here mem1 is the left-hand side of assignment and mem2 is
one member of right-hand side components. If there are multiple components
on the right-hand side, this primitive will be called multiple times. Frequently
using pointer arithmetic on the left-hand side can definitely cause heavy burden
on tracing and sacrifice performance. This is a rare case since normally pointer
arithmetic is applied more on the right-hand side. Thus, computation is not
affected dramatically. During the migration, registered pointers will be updated
no matter if their original types are pointer ones or not. MigThread’s preprocessor
and runtime support module work together to find out memory addresses hidden
in integral variables and update them for migration safety.

3.2 Pointers in Union

Union is another construct where pointers can evade updating. In the example
of Fig. 3, using member a means two pointers are meaningful; member b indi-
cates one; and member c requires no update. Migration schemes have to identify
dynamic situations on the fly. Application-level migration schemes have advan-
tages over kernel- and user-level ones. When a union variable is declared, the
compiler automatically allocates enough storage to hold the largest member of
the union. In the program, once the preprocessor detects a certain member of
the union variable is in use, it inserts primitive STR union upd() to inform
the runtime support module which member and its corresponding pointer fields
are in activation. The records for previous members’ pointer subfields become
invalid because of the ownership changing of the union variable. We use linked
list to maintain these inner pointers and get them updated after migration.

3.3 Library calls

Library calls bring difficulties to all migration schemes since it is hard to figure
out what is going on inside the library code. Application-level migration schemes
work on the source code. Without the source code of libraries, problems can



int   *ptr;
              .
              .
              .
ptr =  library_call();
              .
              .

Program

int * library_call()
{
      int  *tmp;
      static int  i_var;
                .
                .
                .
      tmp = (int *)malloc(...);
                .
                .
      if (tmp == NULL)
              return &i_var;
      else
              return tmp;
}

library  (binary code)

Fig. 4. Pointers dangling after library calls

occur when pointers are involved. For MigThread, the major concerns are static
local variables and dynamically allocated memory. In the example of Fig. 4, the
pointer ptr might be pointing to an address of static local variable i var for which
compilers creates permanent storage or a dynamically allocated memory block.
Both of them are invisible to MigThread. Pointers pointing to these unregistered
locations are also called “dangling pointers”, as those pointing to de-allocated
memory blocks. This phenomena indicates that MigThread is unable to catch
all memory allocations because of the “blackbox” effect. The current version
of MigThread can inform users of the possible danger of “memory leakage” so
that programmers can register these memory blocks by hands if they know the
library calls well. This is one workaround solution whereas all other migration
schemes have to face the same problem. For malloc() wrappers, another option
is for users to specify the syntax so that the preprocessor can know how to insert
proper primitives for memory management.

3.4 State-carrying instructions

                  .
                  .
var =  X(t) + Y(t) + Z(t);
                  .
                  .

migration
takes place
inside

Fig. 5. Migration happens inside of single complex statement

Since MigThread works at language level, the adaptation points can only be
inserted at this level. Thus, there is at least one C language statement between
two adaptation points. It seems that the migration can only happen between



Table 1. Complexity comparison in data collecting

System Collect Collect Collect Save Save Allocate

Variables Pointers Memory Blocks Variables Pointers Memory Blocks

Porch O(Nvar) O(Nptr) O(Nmem) O(Nvar) O(Nptr) O(Nmem ∗ logNmem)

SNOW O(Nvar) O(Nptr) O(Nmem ∗ logNmem) O(Nvar) O(Nptr) O(Nmem)

MigThread 1 1 O(Nmem) 0 0 O(Nmem ∗ logNmem)

Table 2. Complexity comparison in data restoration

System Restore Restore Update Re-allocate Delete

Variables Pointers Pointers Memory Blocks Memory Blocks

Porch O(Nvar) O(Nptr) O(Nptr ∗ logNmem) O(Nmem) O(Nmem ∗ logNmem)

SNOW O(Nvar) O(Nptr) O(Nptr ∗ Nmem) O(Nmem) O(N2

mem)

MigThread 1 1 O(Nptr ∗ logNmem) O(Nmem) O(Nmem ∗ logNmem)

statements. But functions break this rule and enable migration to take place
within single statement as the example in Fig. 5. The right-hand side is a sum-
mation of three functions’ results. Suppose thread migration takes place inside
the third function Z(t). We assume that the functions are executed in order. Be-
fore migration, the compiler saves the results of the first two functions in some
temporary storages which are useful only if they are under MigThread’s control.
To achieve this, the statement should be broken down and temporary variables
are introduced to save temporary results. The advantage of this is that we in-
crease the adaptation points. But this brings minor changes to the program’s
structure.

To avoid modification of programs, the first two functions could be rerun
to retrieve their return values. This means they should be “re-entrant” and
deliver the same result with the same inputs. MigThread has to detect “state-
carrying” functions and make them “stateless” and label the position right before
each return statement. During the re-running of the first two functions after
migration, their switch statements dispatch computation directly to their last
escape points. Therefore, no actual computation goes through function bodies
and functions become stateless.

4 Complexity Analysis and Performance Evaluation

Besides MigThread, there are two other application level migration systems,
Porch [6] and SNOW [7] which collect and restore variables one-by-one explicitly
at each adaptation point in time O(N). This makes it hard for users to insert
adaptation points by themselves. Our MigThread only registers variables once
in time O(1) and at adaptation points the programs only check for condition
variables. Therefore, MigThread is much faster dealing with thread state.

For memory blocks, Porch and MigThread have similar complexity because
they both maintain memory information in red-black trees. SNOW uses a mem-
ory space representation graph, which is quick to create a memory node, but



Fig. 6. Functions transformed by Preprocessor

extremely slow for other operations because searching for a particular node in
a randomly generated graph is time-consuming. Also, SNOW traces all pointers
and slows down much for pointer-intensive programs. MigThread virtually only
cares about results (“ignore process”) and therefore less dependent on type of
programs. We summarize the complexity of these three systems, and list the re-
sults in Table 1 and 2. The Nvar, Nptr and Nmem represent numbers of variables,
pointers and dynamically allocated memory blocks. From these, we can see that
MigThread is very efficient.

The migration platform is a software Distributed Shared Memory (DSM)
System [5] over SMPs (SUN UltraEnterprise 3000s) connected by fast Ether-
net. Each SMP contains four 330Mhz UltraSparc processors. The parallelized
programs are running on two SMP machines with one thread on each. The
communication layer is UDP/IP. Since the inserted primitives do not cause any
noticeable slowdown when no migration happens, we only focus on the migration
cost and compare it with pure execution time on two SMP nodes. We use several
applications from the SPLASH-2 application suite, matrix multiplication, and
Molecular Dynamics (MD) simulation to evaluate the thread migration cost.

MigThread’s preprocessor scans and transforms C programs automatically.
The function call graph eliminates unnecessary functions so that preprocessor
only transforms a fraction of functions to reduce the compile-time cost. Only
about 10-20% functions require to be transformed (see Fig. 6). This one-time
transform procedure takes about 1-8 seconds for our benchmark programs.

The runtime overheads are shown in Table 3. As mentioned before, no no-
ticeable overhead is seen when no migration happens. For most applications, the
thread states range from 100 to 184 bytes, and their migration time is around
2.4 ms. Even though the thread state of OCEAN-c is increased to 432 bytes, its
migration time does not change. Only thread states of RADIX and MD are big
enough to make difference. Since shared data are in DSM’s global shared regions
which do not need to be migrated with threads, thread state sizes are invariant



Table 3. Migration Overhead in real applications

Program Input Size State Size Transform Execution Migration Migr./Exec.

(bytes) Time (sec) Time (ms) Time (ms) Rate (%)

FFT 64 Points 160 5.87 85 2.42 2.85

1024 Points 160 5.87 112 2.46 2.20

LU-c 16 x 16 184 4.19 77 2.35 3.05

512 x 512 184 4.19 7,699 2.41 0.03

LU-n 16 x 16 176 4.17 346 2.34 0.68

128 x 128 176 4.17 596 2.37 0.40

MatMult 16 x 16 100 1.34 371 2.32 0.63

128 x 128 100 1.34 703 2.47 0.35

OCEAN-c 18 x 18 432 7.98 2,884 2.45 0.08

258 x 258 432 7.98 14496 2.40 0.02

RADIX 64 keys 32,984 2.86 688 5.12 0.74

1024 keys 32,984 2.86 694 5.14 0.74

MD 5,286 Atoms 7,040,532 2.45 38,067 83.65 0.22

to problem sizes in Table 3. Compared to programs’ execution time, migration
cost is so small (mostly less than 1% and at most 3%) for benchmark programs.

The chosen programs are popular, but all array-based. Fortunately, MigTh-

read does not slow down particularly for pointer-intensive applications because
pointers are not traced all the time. Definitely more memory blocks incur bigger
overhead, which is inevitable.

5 Related Work

The major concern in thread migration is that the address space could be to-
tally different on various machines and internal self-referential pointers may no
longer be valid. There are three approaches to handle the pointer issue. The first
approach is to use language and compiler support to identify and update point-
ers[4, 8], such as in Emerald[9] and Arachne[8]. But they rely on new languages
and compilers. The second approach requires scanning the stacks at runtime to
detect and translate the possible pointers dynamically, as in Ariadne[10]. Since
some pointers in stack are probably misidentified, the resumed execution can
be incorrect. The third approach is popular, such as in Millipede[11] and ne-
cessitates the partitioning of address spaces and reservation of unique virtual
addresses for the stack of each thread so that the update of internal pointers
becomes unnecessary. This faces severe scalability and portability problem [11,
4].

Application-level implementation achieves the heterogeneity feature. The Tui
system [2] is a heterogeneous process migration package which modifies a com-
piler (ACK) to provide runtime information via debugging code and relies on
Unix ptrace to obtain the state of processes. SNOW [7] is another heteroge-
neous process migration scheme which only work on “migration-safe” programs.



Its memory representation model implies a pointer-sensitive design which slows
down the migration dramatically. The Porch system [6] reports pointers indi-
vidually to create state as in SNOW. This might cause flexibility and efficiency
problems for complex applications. The thread migration approach in [3] is sim-
ilar to MigThread but has limitations. MigThread can handle pointer arithmetic,
memory management, and “migration-unsafe” features efficiently.

6 Conclusion and Future Work

MigThread is shown to be generic in its scope. It handles four major “migration-
unsafe” features in C/C++. Under MigThread, more programs become migrat-
able and programmers do not need to worry if they are coding in “migration-safe”
style. Thread state is constructed efficiently at runtime. More adaptation points
can be inserted into programs to improve sensitivity of dynamic environment
without sacrificing performance. As an application-level approach, MigThread

places no restriction on thread types and operating systems. Experiments on
real applications indicate that the overhead of MigThread is minimal.

We are currently porting MigThread to multiple platforms to exploit its het-
erogeneity potential. More work is being conducted on transferring process state
and communication state for a complete thread migration package.
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