
Improving MPI-HMMER’s Scalability With Parallel I/O∗

John Paul Walters, Rohan Darole, and Vipin Chaudhary

Department of Computer Science and Engineering

University at Buffalo, The State University of New York

{waltersj, rdarole, vipin}@buffalo.edu

Abstract

We present PIO-HMMER, an enhanced version

of MPI-HMMER. PIO-HMMER improves on MPI-

HMMER’s scalability through the use of parallel I/O

and a parallel file system. In addition, we describe

several enhancements, including a new load balancing

scheme, enhanced post-processing, improved double-

buffering support, and asynchronous I/O for returning

scores to the master node. Our enhancements to the core

HMMER search tools, hmmsearch and hmmpfam, allow

for scalability up to 256 nodes where MPI-HMMER pre-

viously did not scale beyond 64 nodes. We show that our

performance enhancements allow hmmsearch to achieve

between 48x and 221x speedup using 256 nodes, de-

pending on the size of the input HMM and the database.

Further, we show that by integrating database caching

with PIO-HMMER’s hmmpfam tool we can achieve up

to 328x performance using only 256 nodes.

1 Introduction

As the size of biological sequence databases continue

to grow exponentially, out pacingMoore’s Law, the need

for highly scalable database search tools increases. Be-

cause a single processor cannot effectively cope with

the massive amount of data present in today’s sequence

databases, newer MPI-enabled search tools have been

created to reduce database search times. These dis-

tributed search tools have proven highly effective and

have enabled researchers to investigate larger and more

complex problems.

HMMER [4–6] is perhaps the second most widely

used sequence analysis suite. MPI-HMMER is a freely

available MPI implementation of the HMMER sequence

analysis suite [8, 17]. MPI-HMMER is used in thou-

sands of research labs around the world. In previous

∗This research was supported in part by NSF IGERT grant

9987598, MEDC/Michigan Life Science Corridor, and NYSTAR.

work it has been shown to scale nearly linearly for

small to mid-sized clusters up to 64 nodes. However, as

database sizes increase, the need for greater scalability

has become clear.

In this paper we improve on the scalability of MPI-

HMMER through the use of parallel I/O and a paral-

lel file system. This allows us to eliminate much of the

communication that previously acted as a bottleneck to

MPI-HMMER. By using parallel I/O, we are able to of-

fload most communication to a cluster’s dedicated I/O

nodes, thereby reducing the participation of the master

node in the parallel computation. We call our new im-

plementation PIO-HMMER. Our contributions are:

• We characterize MPI-HMMER, showing its exist-

ing bottleneck.

• Provide a parallel I/O implementation of MPI-

HMMER to improve scalability on clusters greater

than 64 nodes.

The remainder of this paper is organized as follows:

in Section 2 we provide a brief overview of HMMER

andMPI-HMMER. In Section 3 we describe the existing

HMMER acceleration work. In Sections 4 and 5 we de-

scribe our implementation and results, and in Section 6

we present our conclusions.

2 HMMER and MPI-HMMER Back-

ground

HMMER is a sequence analysis suite that allows

scientists to construct profile hidden Markov models

(HMMs) of a set of aligned protein sequences with

known similar function and homology, and provides

database search functionality to compare input HMMs

to sequence databases (as well as input sequences to

HMM databases) [4–6]. It includes two database search

tools, hmmsearch and hmmpfam. hmmsearch accepts as

input a profile HMM, and searches the HMM against a

database of sequences (such as the NR database [11]).

The hmmpfam tool performs similarly, but searches one



or more sequences against an HMM database (such as

the Pfam database [13]). These tools nearly perform the

opposite functions from one another, with the exception

that hmmpfam allows for searching multiple sequences

against a database where hmmsearch restricts the input

to a single HMM.

HMMER includes a master-worker style PVM (par-

allel virtual machine) implementation in its source

distribution. MPI-HMMER is based on this model;

however, its I/O improvements have led to significant

speedup and scalability over the PVM implementation.

In particular, MPI-HMMER uses both database frag-

mentation and double-buffering to reduce the overhead

of message passing, and to mask (as much as possible)

the communication latency.

We use the term “database fragmentation” to refer to

the sending of multiple database elements (sequences or

HMMs) rather than a single database element per mes-

sage. It is based on the observation that sending a small

number of large messages is generally more efficient

than sending a large number of short messages. We

combine database fragmentation with double-buffering

to hide the impact of message passing, thereby allow-

ing a worker node to compute and return results while

simultaneously receiving the next batch.

Figure 1. MPI-HMMER’s hmmsearch design.
For clarity we omit the double-buffering

details. This closely mirrors the PVM im-
plementation.

The basic structure of hmmsearch is shown in Fig-

ure 1 and is described algorithmically by:

1. The master reads the HMM from disk and sends it

to each worker.

2. The master reads a batch of sequences (database

fragment) from the sequence database.

3. The master then sends a database fragment to each

worker.

4. After receiving a database fragment, workers com-

pute the similarity score for each sequence.

5. Workers return the results to the master node for

post-processing.

6. If additional sequences remain unprocessed, go to

step 2.

Figure 2. MPI-HMMER’s hmmpfam design.
hmmpfam is more I/O intensive and as
a result exhibits lower scalability. Us-

ing database fragmentation helps to keep
nodes busy while reducing communica-
tion.

MPI-HMMER’s hmmpfam implementation functions

similar to hmmsearch, except that an indexing strategy

is used to help combat hmmpfam’s I/O-bound nature.

Rather than distributing HMMs from the master node,

the master simply distributes index chunks to the work-

ers. The workers then directly read the HMMs from

the HMM database. This means that a copy of the

HMM database must be available either locally or via

network storage. This method functions similarly to

our parallel I/O implementation, but relies on standard

UNIX file I/O rather than high-speed parallel I/O. The

indexes are distributed using a double-buffering scheme

in the same way that hmmsearch double-buffers the se-



quence database fragments. The PVM implementation

of hmmpfam uses a similar strategy, but does not employ

either double-buffering or database fragmentation.

hmmpfam functions as shown in Figure 2 and is de-

scribed by:

1. The master node reads a sequence from the input

sequence file.

2. The master node broadcasts the sequence to each

worker.

3. The master then reads an index file to determine

which HMMs each worker will process.

4. The master distributes the corresponding indexes to

the workers.

5. The workers then obtain an offset into the HMM

database based on the indexes.

6. The workers read each HMM from the HMM

database based on the offsets obtained in step 5.

7. The worker computes the scores for a given se-

quence against each assigned HMM

8. The workers return the scores to the master node.

9. Master performs post-processing against all hits.

10. If additional HMMs remain unprocessed, go to step

3.

11. If additional sequences remain, go to step 1.

Excellent performance is achieved through 32 and 64

nodes in hmmpfam and hmmsearch respectively. Ulti-

mately, the bottleneck in the computation is in the sin-

gle master that must send and receive all results. The

master eventually becomes becomes 100% utilized be-

tween processing the results and sending a new batch

of database entries. In hmmfpam, the problem is further

exacerbated due to its I/O-bound nature.

3 Related Work

HMMER itself includes a PVM implementation of

the core database search tools. However, its scalability

is limited as the PVM HMMER implementation does

not utilize non-blocking I/O nor parallel I/O. Further,

because it does not include support for database frag-

mentation, each node is given only a single sequence

to process at each iteration. This results in a sub-

stantial message passing penalty for each database en-

try. The database fragmentation could be easily ported

to HMMER’s PVM implementation; however, without

non-blocking sends the full complement of the MPI-

HMMER optimizations is not possible.

In addition to our existing implementation, MPI-

HMMER [8, 17], there has been a variety of work in

accelerating HMMER. The most closely related imple-

mentation is the IBM Bluegene/L work performed by

Jiang et al. [9]. Given the highly parallel Bluegene/L

along with its specialized network fabric, the Jiang et al.

port is capable of scaling up to 1024 nodes provided that

each node is allocated its own I/O coprocessor. They use

a hierarchical master model to help alleviate the single

master bottleneck present in MPI-HMMER.

SledgeHMMER [2] is a web service designed to al-

low researchers to perform Pfam database searches with-

out having to install HMMER locally. SledgeHMMER

includes caching of results to enable rapid look-up of

precomputed searches. It also includes a parallel opti-

mization as well as database caching of HMM databases

into local memory.

ClawHMMer was the first GPU-enabled hmmsearch

implementation and is capable of efficiently utilizing

multiple GPUs in the form of a rendering cluster [7].

Other optimizations, including several FPGA imple-

mentations, have been demonstrated in the literature [10,

12, 15, 16]. FPGAs can achieve excellent performance,

at the cost of exceptionally long development times. The

advantage of both FPGAs and GPUs is their potential for

high parallelism within a single GPU/FPGA. However,

the implementations are rarely portable. Other acceler-

ation strategies, such as the use of network processors

have also been described in the literature [18].

Other sequence analysis suites have been enhanced

with both multi-master and parallel I/O strategies. mpi-

BLAST is perhaps the most used parallel sequence anal-

ysis suite [3]. Its original implementation has been fur-

ther enhanced using a multi-master strategy similar to

the Bluegene/L implementation described above [14].

4 Parallel I/O Implementation

In this section we describe the major enhancements

that have been added to PIO-HMMER. In addition

to parallel I/O, we include enhanced post-processing,

database fragmentation, double buffering, load balanc-

ing, and database caching that complement the parallel

access to sequence databases. In this section we describe

each of these enhancements.

We modified the database distribution mechanism for

both hmmsearch and hmmpfam to include the use of par-

allel MPI I/O in order to alleviate a major portion of the

master node’s network overhead. We use the low-level

MPI File iread at() primitives to allow workers to scan

to their appropriate database locations to begin compu-

tation. In Figures 3 and 4 we show the overall schematic

of our parallel I/O-optimized hmmsearch and hmmpfam

implementations.

We used indexing on all sequence databases to enable

hmmsearch to perform parallel reads with distributed

workers. We first preprocess the sequence database (of-

fline) which generates an index consisting of the se-

quence offsets, and sequence length with one tuple per



Figure 3. Parallel I/O hmmsearch design.
The master pre-distributes indexes to the
workers and the workers read from the

database at their designated locations.
Double buffering details are omitted for
clarity.

Figure 4. Parallel I/O hmmpfam design.
Workers read directly from the parallel file

system as-needed.

line and with the first line consisting of the total number

of sequences and the total number of bytes for all se-

quences. This makes finding a particular sequence offset

quite straightforward. It also makes database distribu-

tion easy, allowing for distribution by either the number

of sequences or the length of sequences.

Because hmmpfam already uses an indexing strat-

egy, we used a similar technique for its parallel I/O

implementation. In this case, however, we modi-

fied the hmmpfam offset file to include a similar tuple

to the hmmsearch implementation in order to remove

the reliance on application-level indexes in hmmpfam

searches.

4.1 Post-processing

The original MPI-HMMER implementation followed

the PVM HMMER model in that it required all results

to be returned to the master for post-processing. Mak-

ing matters worse, extraneous data (for non-hits) was

continually being sent back to the master node in order

to facilitate the post-process. We reduce the number of

messages being returned to the master node to only those

that result in hits.

As a result, only database hits return extensive infor-

mation to the master node. For non-hits, only a 32-bit

floating point score is returned to the master. To put

things into perspective, a typical database search results

in only a 2% hit rate. It is only these 2% that need to

return Viterbi traces to the master.

4.2 Database Fragmentation

MPI-HMMER was the first to introduce database

fragmentation into HMMER database searching. Each

fragment was a small chunk of the database, typically

12 sequences per message. This worked well for the

smaller clusters that MPI-HMMER targeted, and pro-

vided effective load balancing over the duration of the

computation. However, by using parallel I/O, with indi-

vidual worker nodes capable of reading database frag-

ments as needed, we found that larger database frag-

ments were needed in order to keep all worker nodes

busy.

Through experimentation, we found that approxi-

mately 500 sequences or HMMs provided a good bal-

ance of communication to computation, allowing the

double-buffering to almost completely overlap with the

computation. Once a node has received its chunk of the

database, it continues to read and process 500 sequences

or HMMs at every iteration.

4.3 Double Buffering (hmmsearch) and
Asynchronous I/O

Double buffering is used to improve performance

by overlapping I/O with computation. In the parallel

I/O implementation of MPI-HMMER, we are able to



employ both double-buffering and asynchronous I/O.

Double-buffering is used by the workers to keep their

input sequence buffers full. Before a worker begins

to score the first sequence in its batch, it triggers an

MPI File iread at() for the next database fragment. This

allows the next fragment to begin its transfer while scor-

ing and post-processing commences.

Asynchronous I/O is used when returning the results

to the master node. After a worker computes the scores

for its database fragments, it returns the scores to the

master node. However, because the worker need not

wait for the master to acknowledge the receipt of data,

it may send it and immediately proceed to compute the

scores for the next database fragment.

4.4 Load Balancing (hmmsearch)

There are several strategies that could be used in or-

der to improve the load distribution over tens or hun-

dreds of nodes or processors. MPI’s parallel I/O allows

worker nodes to read data from databases without in-

teraction with a master node. Thus, the most obvious

strategy is to pre-distribute the database at the beginning

of computation. That is, the master node sends each

worker a start and finish offset into the database, and

workers simply compute on their portion of the database.

However, this strategy is only minimally effective due

to HMMER’s scoring algorithm relying on the lengths

of both the HMM and sequence. By simply allocating

database chunks (either from an HMM database or se-

quence database) based on only the total number of se-

quences or HMMs, there will be a natural load imbal-

ance due to differing sequence and HMM lengths within

the database.

Our solution was to allocate database fragments

based on the lengths of the sequences. Because the mas-

ter node knows both the total number of sequences in

the database, as well as the total lengths of all sequences

(stored on line 1 of the index file), it is able to allocate

fragments of the database based on those lengths rather

than the number of entries. In this manner, a node that is

allocated a database fragment with many long sequences

is allocated fewer total sequences in order to maintain

a reasonable balance of computation. The master can

perform this job by traversing the index once, thus the

serialization of this step is quite minimal and does not

contribute undue overhead to the implementation.

4.5 Database Caching (hmmpfam)

Because of the design of hmmpfam, multiple input

sequences may be searched against the HMM database.

This is not true of hmmsearch, where a database search

is limited to a single input HMM. This presents a simple

opportunity for optimizing the performance of hmmp-

fam in that we may cache the HMM database entries,

either in memory or on local storage, for subsequent se-

quence iterations. We are not the first to implement this

feature [2, 9]. However, we include the caching due to

its simplicity and effectiveness.

5 Results

In this section we describe the actual performance of

our parallel I/O enabled hmmsearch and hmmpfam im-

plementations. All tests were carried on out at the Uni-

versity at Buffalo’s Center for Computational Research

(CCR) [1]. The CCR’s hardware resources consist of

1056 nodes, each equipped with 2x3.2 GHz Intel Xeon

processors, 2GB RAM, gigabit ethernet, Myrinet 2G

network interfaces, and an 80 GB SATA hard disk.

For our tests we used the gigabit ethernet network in-

terface. In previous tests, no substantial improvement

was found with the use of the Myrinet network. For

mass storage the CCR includes a 25 TB (usable) EMC

CX700-based SAN as well as a 25 TB Ibrix parallel

file system. The Ibrix file system includes 21 segment

servers (often called I/O nodes by other parallel file sys-

tems). The Ibrix file system’s physical storage exists as

a pool of storage on the EMC SAN. Segment servers are

connected to the EMC SAN via fiber channel.

5.1 hmmsearch Performance

Our hmmsearch results present data for two HMMs

and two database sizes. We doubled and quadrupled

the NR database to provide sufficient data for large-scale

analysis. Because the P7Viterbi algorithm is sensitive to

the size (number of states) of the input HMM, we have

tested our enhancements for both a 77 state HMM and a

236 state HMM.

In Figures 5 and 6 we show the performance of the

smaller 77 state HMM (named RRM, the RNA recog-

nition motif) against both databases. This represents a

worst-case performance of both HMMER implementa-

tions as the smaller HMM is both computationally light-

weight and generates tens of thousands of hits against

the NR database. Clearly, the parallel I/O implemen-

tation outperforms standard MPI-HMMER by a wide

margin. While both show a slight improvement with

the larger database, we can see that MPI-HMMER levels

off and begins to exhibit performance degradation at 32

processors. The parallel I/O implementation, however,

continues to demonstrate nonlinear speedup through 256

nodes for both database sizes.

In Figures 7 and 8 we compare the 236 state HMM

(a 14-3-3 protein) against both databases. Again the

parallel I/O implementation performs well through 256



 128

 256

 512

 1024

 2048

 4096

 8192

 16384

2 4 8 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
p

e
e

d
u

p

N CPU

hmmsearch 2*NR vs. 77 State HMM

PIO-HMMER
MPI-HMMER
Speedup PIO
Speedup MPI

Figure 5. Comparing MPI-HMMER and PIO-HMMER for 77 state HMM and small database. The
small HMM and small database size results in poor overall scalability. PIO-HMMER peaks at
48x compared to MPI-HMMER’s 21x speedup.

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

2 4 8 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
p
e
e
d
u
p

N CPU

hmmsearch 4*NR vs. 77 State HMM

PIO-HMMER
MPI-HMMER
Speedup PIO
Speedup MPI

Figure 6. Comparing MPI-HMMER and PIO-HMMER for 77 state HMM and large database. The
larger database provides more computation, resulting in a PIO-HMMER speedup of 63x com-

pared to MPI-HMMER’s peak of 24x.

processors. However, the larger HMM now results in

a greater amount of computation, demonstrating the

compute-bound nature of hmmsearch. Indeed, for a

cluster of 256 processors we are able to achieve 190x

speedup (see Figure 8), far out pacing the MPI-HMMER

implementation. MPI-HMMER, however, exhibits bet-

ter performance for smaller cluster sizes and is able

to maintain almost perfectly linear speedup through 64

nodes as long as the database is large enough to provide

adequate computation. This is due to the fine grained

load balancing of MPI-HMMER where much smaller

database fragments are distributed to nodes as needed.

In the parallel I/O implementation, all portions of the

database are allocated at the beginning of computation,

based on sequence lengths. Such static load balancing

cannot account for the individual variances at run-time.

The performance impact of our I/O optimization is

shown in Figure 9. As we show, reducing the commu-

nication between the master and the worker nodes rep-

resents the single greatest performance impact of all op-



 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

2 4 8 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
p

e
e

d
u

p

N CPU

hmmsearch 2*NR vs. 236 State HMM

PIO-HMMER
MPI-HMMER
Speedup PIO
Speedup MPI

Figure 7. Comparing MPI-HMMER and PIO-HMMER for 236 state HMM and small database. The
larger HMM provides a more compute-intensive workload and reduces some of the network
contention on the master node. PIO-HMMER is able to achieve 175x speedup at 256 nodes

while MPI-HMMER peaks at 55x speedup at 64 nodes.

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2 4 8 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
p
e
e
d
u
p

N CPU

hmmsearch 4*NR vs. 236 State HMM

PIO-HMMER
MPI-HMMER
Speedup PIO
Speedup MPI

Figure 8. Comparing MPI-HMMER and PIO-HMMER for 236 state HMM and large database. Even

with a large database and HMM, MPI-HMMER is unable to achieve speedup beyond 64 nodes
due to the bottleneck on the master, while PIO-HMMER achieves speedup through 256 nodes.

timizations. Indeed, our implementation improves from

42x to 190x between the non-optimized and the opti-

mized cases. By reducing the amount of communica-

tion, both the master and workers spend a greater pro-

portion of their time performing useful computation.

In Figure 10 we compare the result of two database

distribution schemes. In the non-load balanced case, all

offsets are distributed equally among processors. Thus,

for n processors and a database consisting of p entries,

each processor is allocated p

n
sequences. Through ex-

perimentation we found that this results in considerable

imbalance, with many processors completing their as-

signed work and waiting for several others to finish. Be-

cause the P7Viterbi algorithm is sensitive to the length of

the sequence, we changed the load distribution scheme

to allocate an approximately equal length of sequences

to each processor. This provided nearly a doubling of

speedup in the load-balanced case, from 109x to 190x



 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2 4 8 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
p

e
e

d
u

p

N CPU

Impact of Enhanced I/O on hmmsearch

Enhanced
Non-enhanced

Speedup Enhanced
Speedup Non-enhanced

Figure 9. The impact of reducing communication from worker to master. Extraneous informa-
tion to facilitate post-processing is no longer needed. As a result we improve performance
from 42x to 190x.

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2 4 8 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
p
e
e
d
u
p

N CPU

Impact of Length-based Load Balancing on hmmsearch

Load Balanced
Non-balanced

Speedup Balanced
Speedup Non-balanced

Figure 10. Length-based load balancing vs. static work division. Nodes are allocated se-
quences based on sequence lengths. The entire database is allocated before beginning com-
putation. We nearly double the speedup through this approach from 109x in the non-balanced

case to 190x with load balancing.

speedup.

Finally, we present the results of our parallel I/O

hmmsearch with each processor accessing a dedicated

network card in Figure 11. By dedicating a network

interface to each processor, we are able to achieve a

speedup of 220x on 256 nodes as opposed to the 190x

performance achieved with two processors per node.

While we cannot directly compare our implementation

to the Jiang et al. Bluegene/L work (see [9]) due to their

presentation of normalized results rather than measured

timings, we believe that we are competitive, particularly

in terms of raw runtime. Further, this performance is

achieved at only a small fraction of the cost of a Blue-

gene/L, using gigabit ethernet and a commercially avail-

able parallel file system, all of which are commodity

components.



 128

 256

 512

 1024

 2048

 4096

 8192

 16384

 32768

 65536

2 4 8 16 32 64 128 256 512
 0

 50

 100

 150

 200

 250

 300

 350

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
p

e
e

d
u

p

N CPU

Comparing hmmsearch for One vs. Two Processors Per Node

2 PPN
1 PPN

Speedup 2 PPN
Speedup 1 PPN

Figure 11. hmmsearch performance with dedicated network interfaces. We show an improvement
from 190x to 221x by allowing each node dedicated access to a network interface.

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

2 4 8 16 32 64 128 256 512
 0

 20

 40

 60

 80

 100

 120

 140

 160

E
x
e
c
u
ti
o
n
 T

im
e
 (

s
)

S
p
e
e
d
u
p

N CPU

Comparing hmmpfam using 2*Pfam and Globins50

PIO-HMMER
MPI-HMMER
Speedup PIO

Speedup MPI 

Figure 12. Basic hmmpfam implementation without database caching. For each sequence query
we read from the HMM database. Subsequent sequence searches have the same I/O charac-

teristics as the first sequence. We achieve a maximum speedup of 83x.

5.2 hmmpfam Performance

In this section we present the results of our hmmp-

fam implementation. We compared 50 globin sequences

to the Pfam HMM database, and show results for both

database caching and non-database caching. In order to

provide adequate computation for large numbers of pro-

cessors we doubled the size of the Pfam database from

from 800 MB to 1.6 GB, resulting in 20,680 HMMs.

In Figure 12 we show the performance of hmmpfam

without HMM database caching. In this case, each

hmmpfam process must re-read the Pfam database for

all 50 sequences. From Figure 12, we can see that MPI-

HMMER’s performance peaks at 64 nodes. This is due

to the I/O-bound nature of hmmpfam and the lack of

communication optimization in MPI-HMMER. Thus, a

great deal of communication is required for each MPI-

HMMER hmmpfam search. PIO-HMMER, however, is

able to achieve nonlinear speedup through 512 nodes.

This results in a per-sequence time of only 2.1 seconds

compared to MPI-HMMER’s best per-sequence time of

6.4 seconds, and translates to a performance improve-



 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

 16384

2 4 8 16 32 64 128 256 512
 0

 100

 200

 300

 400

 500

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
)

S
p

e
e

d
u

p

N CPU

Comparing hmmpfam using 2*Pfam and Globins50 with Caching

PIO-HMMER
MPI-HMMER
Speedup PIO

Speedup MPI 

Figure 13. hmmpfam implementation using database caching. Because the same HMMs are
searched for each sequence query, we cache all HMM locally in order to further reduce file
system I/O and communication. We achieve a maximum speedup of 328x.

ment of 83x, where MPI-HMMER’s hmmpfam is lim-

ited to 27x.

In Figure 13 we improve on the per-sequence hmmp-

fam times by utilizing database caching for subsequent

sequence iterations. Rather than discarding the HMMs

after their use, each node caches the assigned HMMs in

memory for subsequent reuse. As a result we are able

to improve the overall speedup to 328x at 256 nodes.

This results in a per-sequence search time of only 0.53

seconds. We expect that implementing double buffering

and load balancing in hmmpfam would further improve

the search time for the first non-cached sequence.

5.3 Future Improvements

As we have shown, HMMER can benefit greatly from

the use of parallel I/O. Because our cluster is a pro-

duction system, we were unable to test multiple parallel

file systems in order to determine the file system’s im-

pact on performance. However, we believe that better

performance could be achieved by using a parallel file

system that is geared more towards scientific comput-

ing. The Ibrix file system, for example, does not support

striping a single file over multiple I/O nodes or segment

servers. Instead the segment servers are designed to bal-

ance many files over the file system. This results in im-

proved cluster performance overall, but is less useful for

database-driven applications such as ours. Traditional

parallel file systems such as PVFS/PVFSv2 would likely

prove better suited to PIO-HMMER.

We also hope to further improve the load balancing

strategy to allow for a more dynamic run-time-balanced

computation. Currently, we divide the database propor-

tionally among the worker nodes by sequence length.

While we were able to achieve excellent improvement

over the more naive (static allocation) approach dis-

cussed in Section 4 (and shown in Figure 10) we believe

that further improvements are possible. Further, various

system hardware (interconnects, CPU clock speeds, etc.)

will impact load balancing as well as the size of database

fragments that should be processed by each node. We

plan to revisit the load balancing issue in the future.

We are also in the process of integrating a hierar-

chical approach similar to that described by Jiang et

al. [9]. Not only would this help to alleviate the single-

master bottleneck, it would also allow for the easy in-

tegration of heterogeneous accelerators (such as GPUs,

FPGAs, and Cell processors). In our previous work we

have shown that multiple FPGAs can work in conjunc-

tion with general-purpose processors to accelerate MPI-

HMMER searches [16]. With a hierarchical model, ac-

celerators could be arranged into homogeneous groups

(e.g. one group of FPGAs and another group of GPUs).

We hope to then extend these improvements to the

hmmpfam tool in order to further reduce the compute

time of non-cached searches.

6 Conclusions

In this paper we have shown that MPI parallel I/O

can be effectively applied to the MPI-HMMER imple-

mentation of the HMMER sequence analysis suite to

achieve exceptional performance on commodity hard-



ware. We have demonstrated this performance on a com-

modity cluster, using an inexpensive network (gigabit

ethernet) and the Ibrix parallel file system. Similar hard-

ware is commonly accessible worldwide, and as we have

demonstrated it can be used to achieve 221x speedup

for hmmsearch and 328x speedup for hmmpfam. This is

more than 3x the peak performance of the publicly avail-

able MPI-HMMER.We hope to make the PIO-HMMER

implementation available to the public shortly.

Acknowledgments

We would like to gratefully acknowledge Muzammil

Hussain for various comments and discussions regard-

ing this project and its implementation. We also ac-

knowledge the anonymous reviewers for their helpful

suggestions in improving this manuscript.

References

[1] University at Buffalo, The Center for Computational Re-

search. http://www.ccr.buffalo.edu, 2009.

[2] G. Chukkapalli, C. Guda, and S. Subramaniam.

SledgeHMMER: A Web Server for Batch Searching the

Pfam Database. Nucleic Acids Research, 32(Web Server

issue), 2004.

[3] A. Darling, L. Carey, and W. Feng. The Design, Imple-

mentation, and Evaluation of mpiBLAST. In 4th Inter-

national Conference on Linux Clusters: The HPC Rev-

olution 2003 in conjunction with the ClusterWorld Con-

ference and Expo. IEEE Computer Society, 2003.

[4] R. Durbin, S. Eddy, A. Krogh, and A. Mitchison. Bio-

logical Sequence Analysis: Probabilistic Models of Pro-

teins and Nucleic Acids. Cambridge University Press,

1998.

[5] S. Eddy. HMMER: Profile HMMs for Protein Sequence

Analysis. http://hmmer.janelia.org, 2009.

[6] S. R. Eddy. Profile Hidden Markov Models. Bioinfor-

matics, 14(9), 1998.

[7] D. R. Horn, M. Houston, and P. Hanrahan. ClawHM-

MER: A Streaming HMMer-Search Implementation. In

In SC ’05: The International Conference on High Per-

formance Computing, Networking and Storage. IEEE

Computer Society, 2005.

[8] J. P. Walters. MPI-HMMER. http://www.

mpihmmer.org/, 2009.

[9] K. Jiang, O. Thorsen, A. Peters, B. Smith, and C. P.

Sosa. An Efficient Parallel Implementation of the Hid-

den Markov Methods for Genomic Sequence Search on

a Massively Parallel System. Transactions on Parallel

and Distrbuted Systems, 19(1):15–23, 2008.

[10] R. P. Maddimsetty, J. Buhler, R. Chamberlain,

M. Franklin, and B. Harris. Accelerator Design for Pro-

tein Sequence HMM Search. In Proc. of the 20th ACM

International Conference on Supercomputing (ICS06),

pages 287–296. ACM, 2006.

[11] NCBI. The NR (non-redundant) database.

ftp://ftp.ncbi.nih.gov/blast/db/

FASTA/nr.gz, 2009.

[12] T. F. Oliver, B. Schmidt, J. Yanto, and D. L. Maskell.

Acclerating the Viterbi Algorithm for Profile Hidden

Markov Models using Reconfigurable Hardware. Lec-

ture Notes in Computer Science, 3991:522–529, 2006.

[13] Pfam. The PFAM HMM library: a large collection of

multiple sequence alignments and hidden markov mod-

els covering many common protein families.

http://pfam.sanger.ac.uk/, 2009.

[14] O. Thorsen, B. Smith, C. P. Sosa, K. Jiang, H. Lin, A. Pe-

ters, and W. c. Feng. Parallel Genomic Sequence-Search

on a Massively Parallel System. In CF ’07: Proceed-

ings of the 4th international conference on Computing

Frontiers, pages 59–68. ACM, 2007.

[15] TimeLogic BioComputing Solutions. DecypherHMM.

http://www.timelogic.com/, 2009.

[16] J. P. Walters, X. Meng, V. Chaudhary, T. F. Oliver, L. Y.

Yeow, B. Schmidt, D. Nathan, and J. I. Landman. MPI-

HMMER-Boost: Distributed FPGA Acceleration. VLSI

Signal Processing, 48(3):223–238, 2007.

[17] J. P. Walters, B. Qudah, and V. Chaudhary. Accelerating

the HMMER Sequence Analysis Suite Using Conven-

tional Processors. In AINA ’06: Proceedings of the 20th

International Conference on Advanced Information Net-

working and Applications - Volume 1 (AINA’06), pages

289–294. IEEE Computer Society, 2006.

[18] B. Wun, J. Buhler, and P. Crowley. Exploiting Coarse-

Grained Parallelism to Accelerate Protein Motif Finding

with a Network Processor. In PACT ’05: Proceedings

of the 2005 International Conference on Parallel Archi-

tectures and Compilation Techniques. IEEE Computer

Society, 2005.


